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Abstract— The paper presents an automated method to guide 
a human operator during RGB image shot for improving the 
quality of further 3D reconstruction for low-rise outdoor objects 
and a use case for method application. The method provides 
automation as a three-step process: local analysis of images 
performed during the shooting, global analysis, and 
recommendations performed after the shooting. Method steps 
filter out defective images, approximate future 3D-model using 
Structure-from-Motion (SfM), and map it to human operator 
trajectory estimation to identify object areas that will have low 
resolution on the final 3D model, requiring additional shooting. 
Method structure does not require any sensors except RGB 
camera and inertial sensors and does not rely on any external 
backend, which lowers the hardware requirement.  The authors 
implemented the method and use-case as an Android application. 
The method was evaluated by experiments on outdoor datasets 
created for this study. The evaluation shows that the local analysis 
stage is fast enough to perform during the shooting process and 
that the local analysis stage improves the quality of the final 3D 
model. 
 

I.  INTRODUCTION 

Nowadays, 3D reconstruction has become increasingly 
available for many domains [1]. Сheap drones and 
photogrammetry enable 3D reconstruction for large-scale 
outdoor objects such as buildings using only RGB data [2]. 
However, real applications of the technology are complicated 
with the data collection task. The operator (through the device 
or manually) is required to create a sufficient set of RGB images 
which should have enough overlapping, evenly cover all areas 
of the object, and contain enough features for photogrammetry. 
The knowledge of shooting enough and sufficient image sets is 
often based on an operator's experience because, usually, even 
compliance with the criteria described above does not guarantee 
the quality of a reconstructed 3D model. Moreover, the 
technical process of obtaining images in the case of large-scale 
objects is a challenging task itself due to the great diversity of 
forms, landscapes, and outdoor conditions. Dependency on the 
operator experience and uncertainty of the result limits the 3D 
reconstruction technology application and raises the possible 
prices. Therefore there is a problem of low-cost guiding the 
operator during the shooting process to make a sufficient image 
set which will be enough for successful further 3D 
reconstruction. 

The paper aims to create an automated method for guiding 
a human operator during RGB image shots and for improving 
the quality of further 3D reconstruction for low-rise outdoor 
objects by image analysis. The operator uses a smartphone with 
a mono RGB camera and an inertial measurement unit.  The 
operator can walk freely around the object. Another 
requirement is that method calculations take place fully on the 
mobile device without additional computational units. The 
method combines analysis of individual RGB photos with 
analysis of intermediate Structure-from-Motion (SfM) 
reconstructed 3D models and estimated coordinates of each 
photo to determine recommendations for reshooting 
problematic areas of the object.  

The novelty of the proposed method is defined by a 
combination of automatic analysis of captured images' 
applicability for further 3D reconstruction and by the generation 
of recommendations. The recommendations form guidance for 
the operator, which allows increased quality and resolution of a 
future 3D model by providing a set of the object areas requiring 
capturing additional images or recapturing improper ones.  

II.  POSSIBLE ALTERNATIVES AND SOLUTIONS 

The problem of the automation of operator guidance for 3D 
reconstruction has several solutions. Some methods use 
smartphones and tablets with additional hardware to the main 
camera, such as a depth sensor or visual markers. Others use an 
algorithmic approach based only on RGB data. In order to 
determine the best possible method, a review of existing 
solutions should be done.  

Due to the desired goal of this paper, the posed problem can 
be considered a special case of  the Next Best View (NBV) 
problem. The NBV aims to determine the minimum number of 
object survey points (viewpoints) and their relative position 
required to collect the information about the object to achieve a 
certain resolution level[3]. Therefore, the review should focus 
on NBV papers about the specific restrictions of this research.  

A. Paper selection criteria 

Possible solutions were searched among papers that are 
dedicated to NBV problem as the main topic and to 3D 
reconstruction, photogrammetry, or building detailed 3D 
models of real-world objects as a secondary topic. The 
intermediate list was processed to filter out papers that do not 
cover operator guiding or quality estimation for the future 3D 
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model. Finally, the list was filtered by the publication date (not 
older than 2018) and the journal impact factor criteria (> 3.0). 
As a result, four papers were selected for further review [4-7]. 

1) Plausible reconstruction of an approximated mesh
model for next-best view planning of SFM-MVS [4]. The paper 
provides an approach for reducing time costs when constructing 
a dense model using the two-stage Structure-from-Motion - 
Multi-View Stereo (SfM-MVS) method. The method predicts 
the quality of a future dense model based on an approximate 
model obtained by the SfM method. Therefore, the quality of 
the final dense model can be predicted immediately after 
obtaining a cloud of sparse points using the SfM method. It will 
be possible to reshoot the current frames or add new ones for a 
more accurate dense model obtained by the SfM-MVS method. 
The method uses Delaunay triangulation from a sparse cloud of 
points and polygons and filtering tetrahedra. The following 
criteria predict possible errors and low resolution: the number 
of images per point of a sparse model, the area and sides size of 
a polygon, and the ratio of the base and median ratio. 

2) Surface-driven Next-Best-View planning for 

exploration of large-scale 3D environments [5].  The method 
relies on a quadcopter with a depth camera. An approximate 
map of the object is loaded into the quadcopter; the method 
builds the route by solving the Traveling Salesman problem. 
Based on the data obtained, it dynamically adjusts to new 
circumstances; for example, it goes around the detected 
obstacles. Voxels are constructed using the Truncated Signed 
Distance Function method [11]. This algorithm converts 
information from the camera and depth sensor into voxels in 3D 
space. The Signed Distance Function (SDF) gives the distance 
from point X to the boundary of the surface. The method’s 
advantage is a determination of whether a point is inside or 
outside the boundary of a surface. 

3) Humanoid Robot Next Best View Planning Under

Occlusions Using Body Movement Primitives [6]. The method 
uses a humanoid robot with a depth sensor as a shooting agent. 
The robot autonomously explores a point of interest (POI) in a 
selected area with an unknown environment. The robot's 
position on the surface is ultra-precise (deviation < 1 mm) and 
monitored by the motion capture system. The robot can solve 
two tasks: the most accurate study of the point of interest and 
the study of its entire environment. By relying on the exact 
coordinates of the robot and POI, the method automatically 
plots the route to the next viewpoint. If an obstacle is detected, 
the robot can tilt to study the POI better or determine a new 
point of view of the POI. When studying POI, the task of 
studying the environment is simultaneous. In difficult 
conditions, for example, incomplete visibility of the object, the 
robot automatically switches from the task of studying the POI 
to the task of studying the environment. While studying the 
environment,  the solution simultaneously built  a 2D surface 
map and a 3D model as voxels. 

4) Mobile3DRecon: Real-time Monocular 3D
Reconstruction on a Mobile Phone [7]. The method uses a 
neural network to estimate the depth of an object and a 
Simultaneous Localisation and Mapping (SLAM) algorithm to 
determine key points in space. The neural network chooses the 
most appropriate keyframe for the reference frame to simulate 
a frame from a stereo camera to determine the depth of the 
layers in the frame. The creation of a polygonal mesh occurs 
gradually. The CHISEL[10] algorithm creates a mesh in chunks 
for each scene. This approach does not guarantee the grid's 
constancy (consistency) and non-redundancy. Mesh generation 
is performed by a scalable voxel merge TSDF[11] to avoid 
voxel hash conflicts while progressively updating the surface 
mesh according to the TSDF variation of the newly merged 
voxels. 

B. Criteria for comparison 

For a correct assessment of methods described in papers [4-
7], it is necessary to provide uniform comparison criteria. It 
should characterize the degree of automation, the need for 
additional preparation for shooting, taking into account the 
degree of detail of the model, and the ability to predict the 
quality of the future model:  

● Method type: analytical or machine learning (ML-
based).

● Method speed (on equivalent tasks) calculated using
Geekbench[10]: quick (operating time less than 1
minute), slow (working time more than 1 minute).

● Achieved model resolution.
● Camera type.
● Shooting agent - a person, a robot, or an autonomous

drone.
● Route planning. Presence or absence in the algorithm

for constructing a route for shooting an object.
● Apriori information about the environment: the

relative position of objects, landforms, and other
factors.

Table I shows the comparison. 

C. Comparison results 

According to the results of a comparison, it follows that the 
[5] and [6], although they use an analytical method for solving 
the problem and plan a route for the agent to move, require a 
camera with a depth sensor and autonomous vehicles to move 
it. In addition, the speed of these algorithms is quite slow, and 
[6] is not applicable for large-scale objects. [7] requires a phone 
with a mid-range processor with a mono camera. However, for 
the software module's operation to determine this algorithm's 
frame depth, it is necessary to train a deep neural network. The 
model may change over time, which does not allow us to predict 
the reconstruction's resolution. The method [4] combines high 
speed with a transparent analytical approach for predicting 
errors and resolution of the 3D model without additional 
requirements to hardware.
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TABLE I. METHOD COMPARISON 

Method 
type 

Method 
speed 

Achieved model 
resolution  

Camera type Shooting agent Route planning Apriori 
information about 
the environment 

[4] Analytical Quick High (error<1mm) Mono camera Operator Missing Missing 

[5] Analytical Long High (error ~13cm) Camera with 
depth sensor 

Autonomous flying 
drone 

Dynamic. Changes as 
shooting progress 

Preloaded map 

[6] Analytical Long No data Depth sensor Humanoid robot Dynamic. 
The algorithm 

automatically switches 
from studying the object 

to studying the 
environment 

The area of the 
terrain for the 

study is set 

[7] Machine 
learning 

Quick Depends on the 
duration 

Mono camera Operator Missing Missing 

III. METHOD

A. The general idea and use case 

The review showed that solutions for NBV are not fully 
applicable for solving low-cost automating shooting guidance 
for the operator. The methods mostly perform slow on mobile 
devices, require pre-trained ML models with a hypothesis of 
reconstructed objects, or require additional sensors. Moreover, 
the NBV solutions “as is” can provide only local 
recommendations for the next shot location and orientation, 
which might not be enough to guide the operator and does not 
increase the chance of successful 3D reconstruction. Approach 
[4] may seem promising for estimating mesh quality by the 
current image set. [6] is approximates mesh by using fewer 
computations and does not rely on any additional devices or 
information. However, in the case of large-scale outdoor 
objects, the solution [4] performance might not keep up with a 
large number of images. In contrast, each new image provides 
little information to improve the future 3D model quality. 
Instead, the analysis of each new image might be as fast as 
possible. It should not rely on all previous images but on only 
several last ones to keep the application responsible. 

The ideas defined above shape a desired possible use case 
sequence for a solution - mobile application: 

1) The operator opens the application on the mobile device.
2) The operator starts to take images of the object.
3) On each image taken, the application displays feedback

about this particular image's local quality in the sense of
a future 3D model and marks images that do not meet
minimal conditions.

4) When the operator takes enough images or completes
shooting the object from all sides, the application
performs a global analysis of all images. It provides a set
of recommendations for the operator.

5) After all recommendations are considered, and the
application marks the image set as complete and
acceptable, the operator sends the set to the detailed 3D

reconstruction backend, which exists separately from the 
app. 

6) The detailed 3D reconstruction backend builds the final
3D model from the image set using photogrammetry or
another approach.

In order to implement the application, the following method for 
automating RGB image shooting is defined: 

1) Local analysis. During the shooting process - analyze
the current image to meet minimal requirements of
future 3D reconstruction. It is proposed to use fast pre-
processing algorithms designed for the last frame taken
directly in the shooting process and aimed at filtering
images that have obvious issues and most certainly will
decrease the quality of a future 3D model.

2) Global analysis. After the shooting is complete, create
an approximated mesh and evaluate its quality to predict
possible problems during the full 3D reconstruction
process. It is proposed to use information about the
reconstructed camera trajectory and image coordinates
(obtained during approximate 3D reconstruction). The
data allows us to evaluate the degree of coverage of the
object by images and the degree of overlap and check the
loop closure.

3) Recommendations. Transform quality evaluation of the
approximated mesh into recommendations to the
operator about the additional shooting.
Recommendations are formed based on aggregated
global analysis data during the survey. The result of
generating recommendations is a set of instructions
(views) for additional object images, which the user
should shoot. Such additional images will allow better
model coverage for less human effort, avoiding sending
incomplete image sets to the detailed 3D reconstruction
backend.

The combination of three stages allows the operator to 
create a sufficient set of images while spending less time. The 
method filters out low-quality images and guides the operator. 
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The guidance allows the operator to create additional images in 
areas where the final 3D model might have a low resolution 
before the detailed 3D reconstruction.  

B. Algorithms for local analysis 

During outdoor shooting, some photo defects can appear 
due to external conditions such as lighting, weather, and 
obstacles. Blurry or overexposed images can reduce the number 
of tracked features and feature track length in the photo 
sequence. Moreover, features should appear in as many images 
as possible; therefore, checking the distance between 
corresponding features in adjacent photos is required. All 
mentioned checks can be performed right after a single photo 
shoot. In case of failures, it is almost certain that the image can 
reduce the quality of a future model, and therefore the shooting 
must be redone. In order to keep local analysis fast enough, the 
following algorithms were selected for the method: blurriness 
detection, closeness checking, and overexpose detection. 

1) Blurriness detection. The algorithm for
solving the problem was based on the article [12], 
where a comparative analysis of various algorithms 
was carried out.  If a sharp image is recognized as 
blurry, the application can ask the user to repeat the 
shooting of the last image. If a blurry image is defined 
as sharp, the quality of the 3D reconstruction will be 
reduced, and the shooting process might need to be 
repeated from the beginning. Therefore it was decided 
that it was more important to recognize as many blurry 
images as possible with the risk of marking sharp 
images as blurry but not the other way around. Based 
on these requirements, the Laplacian operator 
algorithm was chosen to detect blurry images during 
the local analysis stage. The algorithm detects edges in 
a picture. It finds the variance of convolution with the 
Laplacian kernel. The image is considered sharp when 
the calculated value is higher than the threshold. 
Otherwise, the image is blurry. 

2) Closeness checking. Because almost all
photogrammetry solutions rely on the SfM method, a 
descriptor-based approach with image matching was 
chosen.  

There are three stages of image closeness checking: 

a) Descriptors searching on both images.

b) Matching descriptors from two images.

c) Check if corresponding descriptors are close enough
(based on the threshold).

There are several ways to implement the first and the second 
step of the algorithm; the most effective are 

a) Lucas-Kanade optical flow with forward-backward
consistency check [13].

b) SIFT, AKAZE, ORB descriptors with brute force or
FLANN-based matcher [14].

The corners used as descriptors in the Lucas-Kanade algorithm 
are more sensitive to scale and brightness changes than other 
types of descriptors mentioned above; however, this property of 

corners allows us to implicitly force the user to keep the 
distance to the target object and the level of brightness. 
Therefore, the first way of implementation was chosen. As a 
result, the following algorithm was implemented for image 
closeness checking: 

a) Convert both images to grayscale.

b) Find corners on the first image using Shi–Tomasi
corner detection algorithm [15]. These corners are
called primary corners.

c) Find corresponding corners on the second image using
the Lucas-Kanade optical flow method.

d) Calculate reverse optical flow (from the second image
to the first); the secondary corners on the first image
are the resulting corners.

e) For each primary corner, calculate the distance to the
corresponding secondary corner and mark it if the
distance is lower than a predefined threshold.

f) Evaluate the ratio of marked corners.

g) Two images are considered close enough if the result
exceeds a predefined threshold.

3) Overexpose detection. The intensity
thresholding method [16] was chosen for detecting 
overexposure due to the method’s simplicity and high 
performance. Thresholding works by grouping pixels 
in an image into two classes, dark and light, depending 
on whether the pixel is below or above a predefined 
intensity threshold. After finding the bright parts of the 
image, it remains to find the ratio of their area to the 
total area of the image. The image is considered 
overexposed if the calculated ratio exceeds the 
predefined threshold. 

C. Algorithms for global analysis 

After taking shots of the object, there is a need to conduct a 
global analysis which will show the user the overall preliminary 
result. Since building a dense object model takes much time, it 
is appropriate to build an approximate mesh from a sparse point 
cloud. Moreover, by analysis of sparse point cloud mesh, it is 
possible to make predictions about dense object model quality. 
The SfM algorithm creates a sparse point cloud and an 
approximate mesh. 

D. Algorithms for recommendation 

The recommendation step improves the final 3D model 
quality by providing a list of locations around the object of 
interest (the recommendation list) where additional shooting is 
necessary. The algorithm consists of four steps: 

1) Trajectory estimation.
2) Alignment of estimated trajectory and SfM data,

identification of the image-level defects.
3) SfM mesh analysis, identification of polygon-level

defects.
4) Recommendation list aggregation.

Trajectory estimation. After the global analysis step, there 
are estimated 3D point cloud and rotation-translation data for 
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each image in the dataset. In order to form the recommendation, 
this data needs to be on a real-world scale and, therefore, to be 
possible to estimate future 3D model resolution using meters 
instead of abstract coordinates. For this purpose, the operator’s 
trajectory is estimated using inertial measurement unit (IMU) - 
accelerometer, magnetometer, and gyroscope data. The 
estimation process consists of two connected steps: rotation and 
position calculation. 

● IMU data-based rotation. The algorithm uses
magnetometer+accelerometer measurements to
calculate the rotation quaternion only when the user is
not moving (at the moment of the shoot) because
accelerometer readings during movement do not
correctly represent the orientation. After all, this
method assumes that the accelerometer shows the
current gravity acceleration value. Integrating the
gyroscope measurements with the Kalman filter and
bias estimation is used when the user moves.

● IMU data-based position. Since the cheap
accelerometers in mobile devices have poor accuracy,
it was decided to use accelerometer readings
in conjunction with a trajectory from the SFM
algorithm.

It is essential to mention that IMU accuracy and related low-
level API differ between different devices. Therefore, it is 
necessary to perform preliminary IMU calibration to keep the 
data uniform and avoid significant errors in the trajectory 
estimation step.   

Alignment of estimated trajectory and SfM data, 
identification of the image-level defects. The alignment of 
IMU-based trajectory and SFM-based point cloud and 
trajectory is done by estimating the transformation (rotation, 
translation, and scale) between two sets of coordinates which 
minimizes pairwise distance using L-BFGS-B [17]. That allows 
us to find problematic images where calculated coordinates 
or/and rotations are significantly different from the estimations 
of SfM - the distance between two corresponding points or the 
angle between two corresponding rotations is higher than the 
predefined threshold. These image differences can arise due to 
image defects that have not been filtered out during the local 
analysis and lead to the misplacement of problematic images 
around the rough point cloud generated on the global analysis 
stage. Therefore it is necessary to include locations around 
those images in the recommendations list. 

SfM mesh analysis, identification of polygon-level 
defects. During this step, the method analyzes an approximate 
mesh created by SfM on the global analysis stage. The analysis 
aims to detect polygon-level defects based on each polygon 
shape analysis: the number of images with this polygon (bigger 
is better), area of a polygon (smaller is better), length of polygon 
sides (smaller is better), and base to a median ratio (closer to 1 
is better). After calculating those metrics, the threshold check is 
done. The desired resolution level chooses the threshold values 
for the final model (e.g., if desired resolution is 1 mm, the 
polygon area and the polygon side length should not be larger). 
All areas that do not pass the threshold  are included in the 
recommendation list. 

Recommendation list aggregation. The last step of the 
recommendation process includes aggregating all 
recommendations into a short set of locations for reshooting. 
The aggregation is done by the closeness criteria of related 
problem object areas - the goal is two group many small close 
areas into several larger ones. The desired final model 
resolution defines the size of the areas to be grouped into larger 
ones. After the list is aggregated, the list of positions and angles 
for reshooting is generated for the user. Positions and angles are 
defined relative to existing defect-free images. 

IV. IMPLEMENTATION

A. Architecture 

For the approbation of the method, a prototype Android 
application was developed that partially implements the method 
as an interactive shooting procedure. The local analysis stage is 
fully implemented, and the global analysis and 
recommendations are partially implemented. The MVC 
(Model-View-Controller) architecture was used for the 
application. The Model implements the logic of storing survey 
data and executing the steps of the method, the View provides 
an interface for surveying and a project management interface 
(one project is equivalent to one survey of one single object), 
and the Controller connects the Model and the View. 

Fig. 1. Application files storage structure

Fig. 2. Project files storage structure

The model structures user data using two entities: projects 
and snapshots. A project (Fig. 1-2) is a collection of settings for 
shooting and analyzing images and a set of images. The 
snapshot is the actual RGB image in JPG format, its metadata, 
and intermediate results of the execution of the method steps. 
The Model also stores the calibration data of the smartphone 
sensors (camera, accelerometer, magnetometer, and 
gyroscope). Data is stored using the device's file system - 
projects are mapped to directories, and metadata is presented as 
JSON files. 

The main elements of the View (Fig. 3) include the sensor 
calibration screens, the project screen, the survey screen, and 
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the image set analysis screens. The project screen is a central 
element since the user can access automated data collection for 
future 3D reconstruction: switching to the camera, starting 
image analysis, importing images from the smartphone’s 
memory, setting algorithm parameters, accessing the image 
gallery, and statistics on images. The main space of the screen 
contains a brief description of each image - the name, quality 
metric, and timestamp. 

Fig. 3. Project and camera screen

There are several basic controls on the camera screen: a 
button for showing the previous image (if any), a button for 
taking a new one, a gallery screen shortcut, and a button for 
local analysis. Local analysis works as a “hint” for the operator, 
which in text form in different colors (green and red), informs 
the user about the results of testing the current frame.  

Showing the last  image taken allows the user to make a new 
image close to the previous one by overlaying a semi-
transparent last image on the current frame with a colored 
frame. Based on the image similarity algorithm, the frame can 
have three colors - green (high probability of matching), yellow 
(sufficient probability of matching), and red (low probability of 
matching).  

B. Threshold setup 

The choice of threshold values is important since it 
determines the effectiveness of the operator's work. Thresholds 
that are too low will create the risk of building a poor-quality 
final model. Thresholds that are too high will increase by 
shooting time. For flexibility, the user interface contains a view 
for customizing the thresholds. 

The values of local analysis thresholds may vary depending 
on the object and the requirements for the final model. Of 
course, the global analysis and recommendation steps can 
partially compensate for the poor quality of the image with 

default thresholds by re-shooting. However, it is important to 
have a method for selecting the values: 

1) Shoot the object in the necessary conditions to obtain
a sufficient number of shots.

2) Divide the dataset into three groups using expert
judgment by the number of visible issues (blurry, flare,
big angle difference):

a. “Suitable” - no issues.
b. “Drawback” - one type of issue exists.
c. “Unsuitable” - several types of issue exists.

3) Apply local analysis algorithms to the sample, and get
values for each image.

4) Make a distribution and determine the boundary
(lower or upper, depending on the algorithm) that
separates “Suitable” images from other groups.

The threshold setup approach is not aimed to use frequently  (on 
each object of 3D reconstruction). Instead, the approach is 
designed to provide initial values of threshold, which can be 
further adjusted to meet the requirements (desired final 3D 
model quality and resolution) for the particular object of 
interest. The approach can be automated by applying different 
optimization methods for the threshold selection problem 
described above.  

C. Implementation details 

The application uses Kotlin and open-source libraries. The 
execution of local analysis algorithms (determine_keypoints, 
detect_blurry,  detect_flare, and angle_check algorithms) is 
performed using the OpenCV library. The local analysis 
procedures during shooting are implemented by a separate 
thread that periodically analyzes the current frame in the 
camera's visibility area. The construction of a sparse point cloud 
and its processing for global analysis and recommendations is 
performed using the BoofCV Java library. 

V.  EXPERIMENTAL EVALUATION 

The experimental evaluation aims to justify the method by 
applying its simplest element (local analysis) to real-world data. 
Justification is based on two hypotheses: 1) the local analysis is 
fast enough to be computed during the shooting process on the 
mobile device 2) the local analysis allows for improved final 3D 
model quality by filtering out poor-quality images. 

A. Dataset 

To perform experimental evaluation, two datasets [18] of a 
low-rise outdoor object (tree trunk, radius 0.7 m) were prepared. 
The first one (“Bad”) contains 37 images of the tree created with 
intentional issues (blurriness, flare, large angle between 
images). The second dataset (“Good”) consists of 50 images 
created to provide the best possible images for future 3D 
reconstruction. Both datasets were shot using a POCO X3 NFC 
[19] smartphone and the same trajectory - a circle with a radius 
of 3.85 ± 0.2 m. The expert evaluation shows that the “Bad” 
dataset contains 24 “Suitable” images, 5 “Drawback” images,  
and 8 “Unsuitable” images. The “Good” dataset contains 46 
“Suitable” images and 4 “Drawback” images without any 
“Unsuitable” images. 
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Both datasets were processed using local analysis 
algorithms. Threshold values were selected as follows: 

● Extract_keypoints  15000,
● Detect_blurry 1000,
● Detect_flare 0.2,
● Angle_check 0.1.

Fig.4-5 shows the distribution of the values. 

B. Local analysis computation time 

For evaluating the computation time of local analysis, an 
experiment with both datasets  [18] was performed. Each image 
from each dataset was processed five times through the 
application installed on the  Realme C3 smartphone [20]. The 
resulting time was measured by the measureTimeMillis [21] 
function. Experimental results are presented in Table II.  

Fig. 4. Local analysis for the “Bad” dataset. 

Fig. 5. Local analysis of the“Good” dataset

TABLE II. LOCAL ANALYSIS AVERAGE COMPUTATION TIME 

Dataset Average 
time, 

extract 
keypoints, 

ms 

Average 
time, detect 
blurry, ms 

Average 
time,  
detect 

flare, ms 

Average 
time, 
angle 
check, 

ms 

Total 
average 

time, 
ms 

Bad 1458  16 66 257 1798 

Good 1784 18 74 331 2208 

Results show that on average the total computational time per 
each image is around two seconds. However, heuristics can 

improve it: calculate algorithms from fastest to slowest until 
there are two failed thresholds. 

C. Local analysis impact on 3D model quality 

In order to evaluate the quality of the filtration through the 
local analysis and the viability of the threshold setup approach, 
an experiment of 3D reconstruction was performed on “Bad” 
and “Good” datasets using Meshroom [22] software. Each 
dataset was reconstructed using the default photogrammetry 
pipeline. As a result, two different 3D models with textures 
were created (Fig 6-7).  

Fig. 6. 3D model for “Bad” dataset 

Fig. 7. 3D model for “Good” dataset 

Both models contain the object (tree); however, the “Bad” 
model  consisted of 713000 polygons instead of 1094000 for the 
“Good” dataset model which indirectly shows lower resolution 
for “Bad” case. The “Bad” model also contains more visible 
issues in the tree area, such as part of the background attached 
to the tree trunk. Therefore it can be concluded that filtering out 
by the local analysis can improve the quality of the future 3D 
model. 

VI. CONCLUSION

In the paper,  an automated method for guiding a human 
operator during RGB image shots and improving the quality of 
further 3D reconstruction for low-rise outdoor objects by image 
analysis is presented. The proposed method contains three steps 
and allows for automated data collection using average 
smartphones equipped with an RGB camera and IMU. 
Automation is achieved by providing two-level guidance for the 
operator: during the shooting process by filtering out defect 
images and after building a dataset by estimating future 3D 
model issues. The method can be configured to achieve the 
desired quality for the final 3D model by using a system 
threshold for each step. The method does not require any 
backend and can be implemented as an autonomous application 
without a backend server. 
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The proposed method was implemented as an Android 
application, which provides the user interface and business 
logic for the general method use case and implements the local 
analysis step. A threshold setup approach was defined for the 
method evaluation, and two datasets of a low-rise outdoor 
object were created. During experiments on the datasets, it was 
shown that local analysis implementation is fast enough to use 
during shooting and the method improves the quality of the final 
3D model. 

The future work includes evaluating the quality of the IMU-
based trajectory estimation and calibration, global analysis and 
recommendation steps performance, accuracy, and impact on 
the final 3D model. 
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