
FastGFDs: Efficient Validation of Graph Functional
Dependencies with Desbordante

Anton Chernikov1, Yurii Litvinov1, Kirill Smirnov1, George Chernishev1,2,
1 Saint-Petersburg University

2 Universe Data

Saint-Petersburg, Russia
3st068877@student.spbu.ru, {y.litvinov, k.k.smirnov, g.chernyshev}@spbu.ru

Abstract—Graph functional dependencies (GFD) are a
recently-developed concept aimed at capturing both topological
structures in graphs and functional dependencies between at-
tributes. The process of verifying whether a given GFD holds
over a particular graph is referred to as GFD validation. In
this very computationally expensive problem, locating suitable
subgraphs accounts for about 99% of the total run time.
The concept’s authors originally proposed a parallel scheme
(algorithm), targeting specifically clusters of high-performance
servers.

The goal of this study is to open GFD validation to a broader
public by making it possible to run it on a consumer class PC.
Our initial experiments demonstrated that the existing algorithm
may not be optimal for these purposes. Therefore, we propose
FastGFDs — a GFD validation algorithm that employs a recently
developed graph matching technique. In contrast to the parallel
scheme, it is sequential and operates on the entire graph. Its
novelty lies in the use of Core-First Decomposition and the
Compact Path Index (CPI). We compare it with the naive
sequential algorithm and the parallel scheme, evaluating run
times and memory consumption. The current study is the first
step towards designing an efficient algorithm for GFD validation
in low-end single-node environments.

We also provide an open-source implementation of GFD
validation over large data graphs. To the best of our knowledge,
this is the only publicly available implementation of an algorithm
for this problem. It is developed in Desbordante — an open-
source high-performance data profiler aimed at science-intensive
tasks.

Finally, our experiments on a real-life graph demonstrated
up to three times performance (2.6x on average) improvement
over the parallel scheme. Employing the new subgraph matching
algorithm also reduced memory consumption by five times.

I. INTRODUCTION

Graph functional dependencies [1] (GFDs) are a gener-

alization of relational functional dependencies [2] to graph

data. They consist of a graph pattern and a set of functional

dependencies between the labels of nodes and edges in the

pattern. They have the following semantics: a graph functional

dependency is satisfied if, for every occurrence of the pattern

in the data graph, every functional dependency specified by

the GFD holds.

GFDs capture topological structures as well as functional

dependencies between attributes and have many uses in graph

databases, such as [1], [3]: searching for inconsistencies,

defining schema for graph data, formulating graph integrity

Fig. 1. Data inconsistency in YAGO3 and the graph pattern that finds
it

constraints, detecting spammers and fake accounts in social

networks, and many more.

As an example, consider the inconsistency that Fan et al. [3]

found using GFDs in the YAGO3 [4] graph database and the

graph functional dependency that was used to detect it, in

Fig. 1. Here, St. Petersburg is located in two places, Russia

and Florida — in reality, they are two different cities, but they

got incorrectly merged in YAGO3. This can be detected via

a GFD with the graph pattern from the right side of Fig. 1

and an attribute dependency ∅ → y.name = z.name, where

∅ denotes an empty set of conditions in the “if” part and

y.name = z.name denotes that in a match of graph pattern

from Fig. 1 names of locations must be the same (i.e. if a city

is located in y and z, then y and z are the same place).

Furthermore, GFDs can be automatically discovered in large

graphs, thus helping to find out non-trivial facts about data.

For example, GFD Q[x, y, z, y′](y.name = “GoldBear” ∧
y′.name = “GoldLion” → false) was discovered [3] in the

YAGO2 database, and its graph pattern can be seen in Fig. 2.

It means that no movie has ever received both the Golden

Bear and the Golden Lion awards, which is correct, since both

festivals require movies to be an initial release.

As seen in examples above, there are two core user-facing

problems of GFDs:

1) GFD validation [1] — for a given GFD ϕ and a graph

G, check that dependencies in ϕ are not violated in G.

2) GFD discovery [3] — for a given graph G, find all

dependencies that hold in G.

This study is focused on the GFD validation problem. It is

very computationally expensive: it was shown that it belongs

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 346 --

Fig. 2. Graph pattern of a more complex GFD discovered in YAGO2

to the co-NP-complete class [1]. However, there are scalable

parallel algorithms that make it possible to check GFDs in real-

world large graphs in reasonable time [1]. Unfortunately, the

original paper provided no implementation and to the best of

our knowledge, there is no publicly-available implementation

of this algorithm.

The central issue of the GFD validation is the graph pattern

matching complexity. Our preliminary experiments demon-

strated that locating suitable subgraphs takes up about 99%

of the total run time and only 1% is spent on checking the

dependency. However, recent advances in algorithms and data

structures for graph pattern matching, such as [5] and [6],

make it possible to speed up this part.

In this paper, we present FastGFDs — a fast algorithm

for validation of GFDs. Its novelty is the use of Core-First

Decomposition and the Compact Path Index (CPI) described

in paper [5] intended to speed up the subgraph matching part

of the original algorithm.

This technique aims to reduce the number of redundant

graph Cartesian products. The idea is to decompose the query

graph into a dense subgraph and a forest, and then process

the dense subgraph first. This dense subgraph will have more

edge-connectivity information, which can be exploited during

matching. The matching itself is performed using the CPI,

which allows to avoid enumerating all embeddings of a query

path in the data graph.

The original paper [1] did not provide explicit details about

the subgraph matching algorithm. Instead, one of the core

contributions was the introduction of a parallel scheme that

included subgraph matching. Roughly speaking, its idea is

assigning work units to multiple processors in a balanced

manner. Each work unit is responsible for matching a pattern

in a graph chunk. In contrast to this, FastGFDs uses a

sequential matching algorithm that operates on an entire graph.

The authors of the parallel scheme benchmarked it using

a cluster of high-end servers with nearly two hundreds of

processors. Their experiments demonstrated good scalability

and in general proved its suitability for massively parallel

environments. Our idea is to study the performance of the orig-

inal parallel scheme in a local multi-threaded case with low-

end hardware, evaluating both its performance and memory

usage. We aim to assess the necessity of the parallel scheme

in such an environment and compare it to a modern sequential

algorithm. This examination serves as the first step towards

designing an efficient algorithm for GFD validation in low-

end single-node environments.

Overall, we have implemented the original parallel algo-

rithm, a naive sequential algorithm, and FastGFDs within the

Desbordante platform [7] — an open source science-intensive

data profiling tool. To the best of our knowledge, this is the

only publicly available implementation of a GFD validation

algorithm. We then conducted a series of experiments to study

these algorithms.

In summary, our main contributions can be outlined as

follows:

1) we provide an open-source implementation of the base-

line GFD validation algorithm from [1] in C++ for

maximum performance;

2) we improve the original algorithm from [1] using the

ideas from [5];

3) we present an experimental evaluation for our imple-

mentations of three algorithms.

The rest of this paper is organized as follows. Section II

introduces main definitions and the used notation, and for-

malizes the problem. Section III provides a brief overview

of related work. Section IV describes the proposed solution,

Section V provides its evaluation on both a real-life graph.

In Section VI we discuss threats to the validity of our study.

Finally, Section VII concludes the paper.

II. BACKGROUND

In this section, we will formally define the concepts and

notation, closely following [1].

We consider directed labeled graphs with attributes (we will

refer to them as graphs for brevity) and define them as follows:

G = (V,E, L, FA), where V is a finite set of vertexes, E ⊆
V × V is a set of edges, L is a label function (i.e. L(v) or

L(e) provides a label for a vertex v ∈ V or an edge e ∈ E),

FA is an attribute function that maps every vertex v ∈ V to a

tuple (A1 = a1, . . . , An = an) where ai is some constant. Ai

is an attribute of vertex v, and we denote its value (i.e. ai) as

v.Ai. Note that edges do not have attributes.

We also define a subgraph G′ = (V ′, E′, L′, F ′
A), denoted

by G′ ⊆ G as a graph that contains a subset of edges and

vertices from G: V ′ ⊆ V , E′ ⊆ E, ∀v ∈ V L′(v) = L(v)
and F ′

A(v) = FA(v), ∀e ∈ E L′(e) = L(e).

An example of a directed labeled graph is shown in Fig. 3.

Here, “city”, “country” and “state” are vertex labels, “located”,

“containsPlace” are edge labels, “name” is an attribute, and

“Peterhof”, “Saint Petersburg”, “Russia” and “Florida” are

attribute values. The left part of Fig. 1 is a subgraph of this

graph.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 347 --

Fig. 4. Pattern and data graph match example

Fig. 3. Directed labeled graph example

A graph pattern is a graph Q[x̄] = (VQ, EQ, LQ, μ) where

VQ is a set of nodes in a graph pattern, EQ ⊆ VQ × VQ is a

set of edges, LQ is a label function (with the same meaning as

above), x̄ is a list of variables for each vertex (i.e. |x̄| = |VQ|,
and μ is a bijective map from x̄ to VQ, i.e. ∀x ∈ x̄ μ(x) = v ∈
VQ. Intuitively, x̄ is a set of vertexes to be found in a data graph

G by pattern (or query) Q, and we will define graph pattern

matching as filling variables from x̄ with vertexes from G so

that they “correspond” to the pattern Q. We will use simply

x to denote μ(x) when it will not lead to confusion.

More precisely, a match of a pattern Q[x̄] in a graph G is a

subgraph G′ = (V ′, E′, L′, F ′
A) that is isomorphic to Q[x̄], i.e.

there exists a bijective function h : VQ → V ′ such that ∀v ∈
VQ LQ(v) = L′(h(v)) (i.e. labels match) and e = (v, v′) ∈
EQ ⇐⇒ e′ = (h(v), h(v′)) ∈ E′ and LQ(e) = L′(e′) (i.e.

edges for matching vertices match — note that a matching

subgraph cannot contain “additional” edges). We also use the

wildcard symbol that matches any label, i.e. if LQ(v) =
then LQ(v) = L′(h(v)) always holds. And we will use h(x̄)
to denote a match of Q[x̄] in a graph G.

An example of two of six possible matches is shown in

Fig. 4. Here G′
1, a match denoted by red dashed arrows in

Fig. 4, consists of vertices with names “Saint Petersburg”,

“Russia” and “Florida”, edges incident to them and corre-

sponding labels and attributes. x̄ = (x, y, z), h(x) is a vertex

with name “Saint Petersburg”, h(y) — “Russia” and h(z) —

“Florida”.

Now we can formally introduce graph functional depen-

dencies. A GFD ϕ is either a pair (Q[x̄], X → Y) or a

pair (Q[x̄], X → false), where Q[x̄] is a graph pattern and

X and Y are two sets of attribute constraints. An attribute

constraint is either a constant constraint xi.A = c or a variable
constraint xi.A = xj .B where xi, xj ∈ x̄. An attribute
dependency X → Y is similar to a relational functional

dependency and intuitively has a meaning of “if for a match

of graph pattern Q[x̄] all constraints from X hold, then all

constraints from Y also hold”. More formally, given a match

h(x̄) of Q[x̄] in G, we say that h(x̄) satisfies a constant

constraint xi.A = c if in a node v = h(xi) ∈ G there

exists an attribute A and v.A = c. Similarly, for variable

constraints xi.A = xj .B: h(xi).A = h(xj).B. No match h(x̄)
can satisfy false. We denote h(x̄) |= X if h(x̄) satisfies all

the constraints in X .

For example, Fig. 4 illustrates the GFD ϕ =
(Q[x, y, z], ∅ → {y.name = z.name}. It has no “if”

part, but it requires that for a match of y and z pattern nodes,

their “name” attributes must be equal.

Graph G satisfies GFD ϕ (denoted by G |= ϕ) if for all

matches h(x̄) of Q in G if h(x̄) |= X then h(x̄) |= Y .

In our example from Fig. 4, the graph G satisfies GFD ϕ
if for any city that is connected with “located” edges with at

least two vertices, those vertices will have the same value of

the “name” attribute. If we recall that the YAGO database is

derived from Wikipedia, WordNet and so on, it is possible that

some relations come from different sources and are duplicated,

but different targets for some relations point to errors in data.

Intuitively, a graph pattern provides a topological context

for dependency, and for all occurrences of this context in data

graph functional dependencies over attributes must hold. Also,

graph pattern defines an equivalent of a relational schema for

GFDs, allowing to match attributes. But note that match in

the data graph may not contain all attributes from X , in that

case relevant constraints are holding trivially. This property

of GFDs makes them useful for semi-structured data, which

is common in graph databases. In contrast, by definition of

satisfaction, if a constraint is in Y , it enforces the existence

of all relevant attributes in a data graph, which allows to, for

example, express typing constraints (Q[x], ∅ → x.A = x.A)
which require a vertex with some label defined in a single-

vertex pattern Q[x] have an attribute A.

At last, we can define the validation problem. Given a GFD

ϕ = (Q[x̄], X → Y) and a graph G, we say that a match h(x̄)
of Q[x̄] in G is a violation of ϕ if Gh
|= ϕ, where Gh is a

subgraph induced by h(x̄) (i.e. there is a structural match, but

FDs over attributes do not hold).

For a set Σ of GFDs and a given graph G we say that G
satisfies Σ (and denote it as G |= Σ if there are no violations of

GFDs from Σ in G. The validation problem for a set of GFDs

Σ and a graph G is formulated as finding all violations of all

GFDs from Σ in G, i.e. given a set of GFDs Σ and a graph

G find a set V io(Σ, G) of violations, where V io(Σ, G) =
{h(x̄) | ∃ϕ ∈ Σ : Gh
|= ϕ}.

In our example from Fig. 4 ϕ = (Q[x, y, z], ∅ →
{y.name = z.name} ∈ V io({ϕ}, G), because there exist

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 348 --

a match where y.name = Russia and z.name = Florida
and Russia
= Florida.

It is shown in reference [1] that the validation problem is

coNP-complete.

III. RELATED WORK

The current paper is based on [1], which defines and

examines graph functional dependencies, states problems of

satisfiability, implication and validation, and describes and

evaluates validation algorithms on large real-life graphs. It is

concluded that despite the coNP-hardness of the validation

problem, it is possible to devise parallel-scalable algorithms

(an algorithm is parallel-scalable if it works faster after adding

more computation nodes), that have adequate performance

and can actually be used for real-life graph analysis, and

descriptions of two such algorithms are provided. However,

paper [1] does not provide an implementation of these al-

gorithms, and our first difference from this work is actually

providing a reusable implementation of one of the parallel

GFD validation algorithms. Note that our work is much more

technical than [1] and has a limited scope — we do not

consider satisfiability and implication problems at all, and we

do not implement the graph partitioning algorithm from [1],

but we extend and improve the “replicated graphs” algorithm,

which can be considered as a baseline for our research.

There is a more recent work from the authors of [1],

concerning the discovery of GFDs, [3]. It shows that there is a

parallel-scalable algorithm for GFD discovery that is feasible

for real-life large graphs. However, we do not cover discovery

problem in our study.

Since the most time-consuming part of GFD validation is

finding a match for a graph pattern Q[x] in a data graph G, it

could be worthwhile to look at recent graph pattern matching

studies:

• Reference [5] provides a good overview of existing graph

pattern matching algorithms and proposes to search for

a query graph Q in a data graph G using heuristics

that minimize required vertex comparisons. According

to [5], all graph pattern matching algorithms are heuristic

due to the NP-hardness of the problem, and all follow

Ullmann’s backtracking approach: find a vertex in a data

graph with a label that matches some vertex of a query

graph and then iteratively grow the partially matched

subgraph following the edges from the query graph and

finding matching edges in the data graph. The selection

of vertices to consider and the order in which matching

is done is extremely important — an algorithm needs to

consider all possible matches for edges incident to a given

vertex, which can lead to unnecessary matches when it is

possible to decide that there is no match by considering

vertices in another order.

The main idea of [5] is to start matching from the “core”

of a query graph, i.e. a set of highly connected vertices,

postponing matching of vertices with fewer connections

and especially leaf vertices (vertices with degree of 1).

Highly-connected subgraphs with a given structure are

“rarer” in data graphs, so this selection of matching

order filters out negative matches earlier. The authors

also propose a “compact path-index” (CPI) auxiliary data

structure, which maintains a candidate set of vertices

in G for each vertex from Q and a set of edges that

match corresponding edges for candidate vertices from

G. It is used to generate the matching order and to

conduct matching that significantly reduces the amount

of “unpromising” partial matches.

Performance evaluation shows [5] that their technique

outperforms existing graph pattern matching algorithms

by up to three orders of magnitude on a real and synthetic

graphs, so it is natural to try to apply it to the GFD val-

idation problem. Note that it can not be applied directly,

since in [5] additional edges are allowed in G that are

not present in Q, but both of their incident vertices are

in Q. However, our definition of a graph pattern match

explicitly prohibits it.

• The study [6] describes an updatable indexing structure

for fast graph pattern matching. At first, authors build an

index of small subgraphs (called features) in a data graph

and partition the data graph into overlapping regions that

contain those features. Index maps features to regions

they are contained in, and every vertex of the data graph

into its regions. It is shown that using some storage

optimizations such index can be relatively small for real-

life large graphs and can be constructed in a reasonable

amount of time. For example, it requires 2.2GB to store

the Flickr website user accounts graph, with more than

1.2M vertices. Its built time is a bit less than two hours

on a two 3.33GHZ quad-core CPUs and 32 GB of RAM.

Searching for a pattern using that index begins with

identifying features in a query graph (note that the query

graph can contain several features), then finding these

features in the index and getting candidate subgraphs by

joining features, then checking each candidate as usual,

by growing the matched graph.

IV. PROPOSED SOLUTION

We describe both the baseline algorithm, which is our

implementation of the “replicated graphs” algorithm from [1]

and our improvement, FastGFDs. Both algorithms take the

data graph G and a set of GFDs Σ as input, and produce the

set of violations V io(Σ, G) as defined in Section II.

A. Baseline algorithm implementation

Following [1], we define workload W (Σ, G) as a necessary

amount of work required to compute V io(Σ, G). For an

algorithm to be parallel scalable, we partition W (Σ, G) so

that we can assign an approximately equal amount of work to

n processors.

The algorithm itself is described in detail in study [1], and

here we will provide a brief overview.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 349 --

1) Given coordinator Sc and n processors S1, . . . , Sn,

we estimate the total workload W (Σ, G) and create a

balanced partition Wi(Σ, G) for i ∈ [1, n] in parallel.

a) The coordinator Sc for each GFD ϕ ∈ Σ creates a

pivot vector PV (ϕ) — given a graph pattern Q of

ϕ, a pivot vector is a set of centers of connectivity

components of Q, where centers are vertices with

the minimum of the maximal distances between

other vertices in the connectivity component. For

example, for pattern Q from Fig. 4 “Saint Pe-

tersburg” is the center of its only connectivity

component.

b) Then it calculates the frequency distribution of

candidate vertices C(zi) in G — nodes in the data

graph that have the same label as centers zi for the

pattern Q.

c) Next, it evenly partitions candidates C(zi) into m
sets so that the number of candidates with attribute

values that fall into a range of each partition is

even.

d) Then it constructs a set of m messages with ϕ
and partitions from the previous step and evenly

distributes them to n processors.

e) Then each processor Si for each received message

identifies work units by finding all candidate ver-

tices with attributes falling in a given range and

reports back to coordinator Sc such candidates and

the count of vertices in G within radius equal to

radius (maximum distance from the center) of the

corresponding connectivity component.

f) The coordinator uses this information to partition

W (Σ, G) to n pair-wisely disjoint work unit sets

{W1(Σ, G), . . . ,Wn(Σ, G)} consisting of work

units from the previous step, using a greedy al-

gorithm to evenly distribute workload.

2) Then each processor Si computes a local set of vi-

olations by finding matches h(x̄) of pattern Q and

checking whether h(x̄) |= X ⇒ h(x̄) |= Y . All detected

violations are sent back to Sc.

• Note that [1] does not specify a matching algorithm

for matching pattern Q in G.

3) Then the coordinator Sc merges all detected violations

into V io(Σ, G) which becomes the output of the algo-

rithm.

Our implementation uses separate threads as processors, so

there is very little communication overhead.

We use the Boost Graph Library [8] to represent graphs.

B. FastGFDs

To improve subgraph matching performance, we propose an

algorithm that uses ideas from [5]. This algorithm is identical

to the baseline, except for Step 2. The improved Step 2 (graph

pattern matching) is as follows:

1) Building the compact path-index (CPI) data structure:

a) First, we select vertex vq in query graph Q and

find a set of candidate vertices vci in data graph G
by searching vertices with the same label as vq;

b) then we filter out candidates that definitely do not

match, by removing candidates with lower degree

than vq;

c) then we enumerate vertices in a data graph with

BFS, building candidate subgraphs; “dead-end”

vertices (vertices that do not have the edges needed

to continue the match) are removed.

d) Since the CPI is built only for trees, we build a

spanning tree for Q starting from vq , and then,

if a match of this spanning tree is found, we

additionally check remaining edges.

2) Matching the graph pattern:

a) we search a minimal subgraph of Q that contains

a cycle — the core of a query, Qc;

b) then we search for matches of Qc in G;

c) then we extend found matches by enumerating

remaining vertices in Q and finding corresponding

vertices in G.

V. EVALUATION

In order to evaluate the proposed approach, we varied

the embeddings enumeration subroutine. Overall, we have

compared three implementations:

1) Naive: a very naive GFD validation algorithm that uses

the standard Boost method vf2_subgraph_iso for

Q embeddings enumeration. This implementation does

not use the parallel scheme of the baseline method

described in Section IV-A in the first item of the list.

This version is provided for completeness.

2) Baseline: the original GFD validation algorithm with

the parallel scheme, fully described in Section IV-A.

Since the authors did not specify the exact subgraph

matching algorithm in the step 2, we employed the same

vf2_subgraph_iso routine. To implement parallel

processing, we used std::thread, employing four

of them during our experiments.

3) Proposed (FastGFDs): the GFD validation algorithm that

uses Core-First Decomposition and the Compact Path

Index from paper [5] for subgraph enumeration. It does

not rely on the parallel scheme, and instead processes

the unpartitioned graph.

We used the Twitch Gamers Social Network dataset [9],

available at the following link http://snap.stanford.edu/data/

twitch gamers.html. Since this dataset was too large for the

employed hardware, we used only the first 20K nodes and all

induced edges (92798).

This dataset describes the social relationships of Twitch

users. Within the dataset, nodes correspond to accounts and

edges denote followship relations. Accounts can have various

properties, such as language (EN/RU), abandoned/not aban-

doned, etc. The affiliate property means that this account is

controlled by another account.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 350 --

EN
0

EN
1

EN
2

⎧⎨
⎩

0.abandoned = T
1.abandoned = T
2.abandoned = T

⎫⎬
⎭ −→ {1.affiliate = T}

RU
0

RU
1

RU
2

RU
3

{} −→ {0.abandoned = F}

EN
0

EN
1

EN
2

{
0.abandoned = T
1.abandoned = T

}
−→ {2.abandoned = T}

Fig. 5. GFDs-queries

For benchmarking purposes, we have implemented the

following queries (see Fig. 5):

1) Simple path: if there are three accounts, where one

account (1) knows the other two, and all of them are

abandoned, then 1 is an affiliated account. At the same

time, 0 and 2 accounts may or may not be friends.

2) Star: if there are at least three friends, then the central

account is not abandoned.

3) Triangle: if an account 2 has two friends, which are in

turn friends with each other, and they have abandoned

their accounts, then 2 is abandoned too.

Interestingly, all three dependencies hold, including the

simple path one.

The hardware and software configuration was as follows:

SAMSUNG NP350E5C-S07RU, Intel(R) Core(TM) i5-3210M

(2 cores, 4 threads), 6GB RAM, x86 64, 20.04.1-Ubuntu, g++

9.4.0, boost 1.72.0.

These queries were selected since they are common in

this graph, they are relatively small, and they result in a

large number of embeddings. More complex queries almost

immediately produce tiny or empty results.

The resulting run times are presented in Table I. One can

see that the naive approach loses to all other implementations

for all three queries. The baseline approach is superior to it

by 15%–3x, depending on query. Thus, the parallel scheme

proposed by Fan et al. [1] provides positive speedup, even on

modest laptop with low number of cores.

Next, the proposed approach consistently beats the naive

up to 4 times (3.78x on average). It is also superior to the

baseline, up to 3 times (2.6x on average). Note that the

proposed approach does not rely on the parallel scheme, thus

the sequential algorithm has beaten the parallel one. However,

our experimental bench features a low number of cores, while

in the original paper hundreds were used.

Finally, it is interesting to note that the star query was the

fastest out of all, the path was the slowest, and the triangle

was in-between. At the same time, the improvement compared

to the baseline varied greatly, and here the order is different:

star (3.31x), path (3.06x), and triangle (1.45x).

Note that run times of the proposed approach include the

time it takes to construct all the necessary CPI data structures.

Therefore, in scenarios when the CPI can be precomputed in

advance, the efficient run time can be even lower. However,

the CPI is built for a particular query, and thus it cannot be

easily reused.

Now, let us examine the memory consumption of the

evaluated approaches, as shown in Table II. To do this,

we measured the peak memory consumption of the whole

application, using the VmPeak value of /proc. It is evident

that the naive implementation requires the least amount of

memory to run. The baseline approach requires approximately

5 times more. This memory is used to store messages for the

parallel scheme. Discarding the parallel scheme and employing

sequential subgraph matching from paper [5] reduced it to the

naive algorithm’s level. Note that unlike run times, memory

consumption does not depend on the studied pattern.

Based on these results, we can conclude the following:

1) The parallel scheme yields positive results compared to

the naive approach (with an average improvement of

1.74x), even on low-end hardware. However, this comes

at a cost, as memory consumption increases five times.

2) The modern sequential algorithm is significantly better

than the parallel scheme (2.6x on average) with the

vf2_subgraph_iso routine. Meanwhile, both its in-

dexing time and the required space are negligible.

VI. THREATS TO VALIDITY

Our work has the following threats to validity:

• First of all, the CPU of our test bench had only two cores

and supported only four threads. Therefore, the original

algorithm is at a serious disadvantage, since it relies on

parallel processing. Even slightly increasing the number

of available cores could enable the original algorithm

to reach its full potential and significantly improve its

performance. Exploring this possibility is one of the

directions of our future work.

• Another concern is the fact that the proposed algorithms

were evaluated in an in-memory environment. If any of

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 351 --

QueryAlgorithm
Star Triangle Path

Naive 84 ms 1689 ms 5235 ms
Baseline 73 ms 685 ms 4039 ms

FastGFDs 22 ms 470 ms 1321 ms

TABLE I. RUN TIMES OF THE CONSIDERED
IMPLEMENTATIONS

QueryAlgorithm
Star Triangle Path

Naive 35956 kB 35952 kB 35952 kB
Baseline 172656 kB 172656 kB 172652 kB

FastGFDs 35956 kB 35956 kB 35952 kB

TABLE II. MEMORY CONSUMPTION OF THE CONSIDERED
IMPLEMENTATIONS

these algorithms run out of memory, disk swapping might

occur, leading to a drastic decline in performance. In this

regard, the original algorithm is in an inferior position,

as it reaches the memory limit more quickly, given that

it requires five times more memory than the others.

Additionally, in our experiments, we used a small graph,

resulting in a negligible CPI memory footprint. However,

increasing graph size could change this outcome and

potentially turn it into a serious limitation. To address this

issue, further experiments with larger graphs are required.

We also plan to explore this in our future work.

• Next, the performance of algorithms heavily depends on

the query and dataset properties. In order to negate this

threat, we have tried to evaluate these algorithms using

several different queries.

• Finally, in our implementation, we relied on the Boost

graph representation. Switching to another library for

representation, or implementing a custom one, could

affect the result. However, we believe that it might affect

only the obtained ratios, but not the relative order of

implementations. Exploration of this issue is also a matter

of future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we described our open-source implementation

of the graph functional dependency validation algorithm from

study [1] and an improved algorithm with fast graph pattern

matching that targets specifically a low-end multi-threaded

environment. Performance evaluation run on a real-life graph

demonstrated that the improved algorithm shows up to three

times performance (2.6x on average) increase over the state-

of-the-art algorithms. Employing the new subgraph matching

algorithm also led to a fivefold reduction in memory consump-

tion.

The source code of our C++ implementation and evalua-

tion datasets can be found in the GitHub repository (https:

//github.com/Mstrutov/Desbordante/pull/154) of the Desbor-

dante project [10].

There are several directions for future work:

• Integrate the CPI-based subgraph matching into the paral-

lel scheme of the original algorithm. However, the parallel

scheme is designed to work with small graphs, while CPI

is more suited for large graphs. Therefore, there should

be a some kind of compromise on the graph size.

• Develop a special parallel scheme for the CPI-based

subgraph matching. Since the previous approach might

not yield positive results, a straightforward idea is to

parallelize the CPI-based querying.

ACKNOWLEDGMENTS

We would like to thank Anna Smirnova for her help with

the preparation of this paper.

REFERENCES

[1] W. Fan, Y. Wu, and J. Xu, “Functional dependencies for graphs,” in
Proceedings of the 2016 international conference on management of
data, 2016, pp. 1843–1857.

[2] T. Papenbrock and F. Naumann, “A hybrid approach to functional
dependency discovery,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 821–833.
[Online]. Available: https://doi.org/10.1145/2882903.2915203

[3] W. Fan, C. Hu, X. Liu, and P. Lu, “Discovering graph functional
dependencies,” ACM Trans. Database Syst., vol. 45, no. 3, sep 2020.
[Online]. Available: https://doi.org/10.1145/3397198

[4] F. Mahdisoltani, J. Biega, and F. Suchanek, “Yago3: A knowledge base
from multilingual wikipedias,” in 7th biennial conference on innovative
data systems research. CIDR Conference, 2014.

[5] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 1199–1214.

[6] J. Yang and W. Jin, “Br-index: An indexing structure for subgraph
matching in very large dynamic graphs,” in Scientific and Statistical
Database Management: 23rd International Conference, SSDBM 2011,
Portland, OR, USA, July 20-22, 2011. Proceedings 23. Springer, 2011,
pp. 322–331.

[7] G. Chernishev, M. Polyntsov, A. Chizhov, K. Stupakov, I. Shchuckin,
A. Smirnov, M. Strutovsky, A. Shlyonskikh, M. Firsov, S. Manannikov,
N. Bobrov, D. Goncharov, I. Barutkin, V. Shalnev, K. Muraviev,
A. Rakhmukova, D. Shcheka, A. Chernikov, D. Mandelshtam,
M. Vyrodov, A. Saliou, E. Gaisin, and K. Smirnov, “Desbordante: from
benchmarking suite to high-performance science-intensive data profiler
(preprint),” 2023. [Online]. Available: https://arxiv.org/abs/2301.05965

[8] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library:
User Guide and Reference Manual, The. Pearson Education, 2001.

[9] B. Rozemberczki and R. Sarkar, “Twitch gamers: a dataset for
evaluating proximity preserving and structural role-based node
embeddings,” CoRR, vol. abs/2101.03091, 2021. [Online]. Available:
https://arxiv.org/abs/2101.03091

[10] A. Chernikov, “Desbordante gfd pull request,” https://github.com/
Mstrutov/Desbordante/pull/154, 2023.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 352 --

