
Some Methods of Applying Attributes for the
Definition of Static Semantics

Ludmila Fedorchenko, Alexander Geida
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)

St. Petersburg, Russia
{lnf, geida}@iias.spb.su

Abstract—Traditional theoretical works on language

processing systems define the syntax of a formal language as a set
of rules of grammar, which a compiler can check, all other
language aspects, which we can detect only in runtime. We call
them "semantics". Moreover, static semantics – i.e., those
language properties which may be checked at the translation
(compilation) time, distinguish from dynamic semantics – all
other properties of this language. This article describes various
approaches to defining the static semantics of an implemented
language. A comparison of attribute-based language specification
methods is also given. Examples provided. In addition, a new
attribute-based approach to the implementation of contextual
conditions in a translational context-free grammar in regular
form are presented in the article. The attention is paid to the
attributed automation model in the framework of automata
theory to the decomposition problem and, to the application of
attributed automata from the point of view of model developed.

I. INTRODUCTION

Modern language processing systems are aimed not only at
parsing the input text in a formal language, but at its
transformation into some other form as well, provided the
language syntax and semantics are properly specified. A
common example is translation of programs in a high-level
programming language into their internal machine
representation to be executed by a computing device.

Conventional theoretical works in this area define the
syntax of a formal language as a set of rules, which a compiler
can check, all other language aspects, which we can detect only
in runtime being referred to as "semantics". Moreover, static
semantics – i.e., those language properties which may be
checked at the translation (compilation) time, distinguish from
dynamic semantics – all other properties of this language.

In this paper, we assume that grammar rules of a formal
language represent its syntax. Some other rules, which
determine correct usage of language words, compose its static
semantics and all other properties of language expresses their
dynamic semantics.

We suppose that a program in a formal language consists of
words rather than of individual characters and therefore,
terminal symbols of its context-free grammar (CF-grammar)
are language words.

In comparison with the natural languages we find out that a
lot of the programming languages have a strange feature, –
significant set of the legal words have no predefined meaning
or the meaning is partly defined and their semantic attributes
are fixed only in the program. For example, an identifier in

ALGOL 68 can denote any type of constant or variable or can
denote a label or an operation, etc. In Basic, a letter followed
by a left bracket, may denote an array (either one- or two-
dimensional), etc. Therefore, the majority of programming
languages have embedded mechanisms to create syntactical
(semantical) attributes for all allowable language words.

In modern compilers syntactic checks are usually
performed with tables where current attributes of already
analyzed words (language constructs) are registered, check
goes in the program text in the program text systematically
from left to right.

Unlike powerful language such as ALGOL 68, Ada, Java or
FORTRAN, in many very simple languages, like those for
calculators, industrial or household equipment etc, and each
word has a clear predefined meaning. In these cases, there is no
static semantics in the language and formal correctness of a
program in such simple language may be formally checked
with its context-free syntax only. Although the proper work of
the program is not guaranteed.

The branch of computer science, which deals with the
theory of formal languages, since early 1950-es have developed
a variety of abstract formalisms for defining programming
languages in three, various directions:

• Substituting another, more powerful grammar for the
initial context-free grammar;

• Extending the initial context-free grammar with various
attributes and predicates (checks);

• Systematic modifying the initial grammar with a
grammar transformer.

A number of attempts failed in the first direction until the
van Wiingaarden grammar (VW-grammar) was introduced in
order to formally define ALGOL 68 in 1965 [0], [[12]], [[13]],
[[14]] with certain context dependent features embedded into
the grammar (like "an applied occurrence of an identifier
should match its defining occurrence").

Knuth highlighted the second direction in paper [[8]], which
introduced inherited and synthesized attributes for each
syntactic construct. This idea was enriched with Koster affix
grammars [[9]], [[10]], [[11]] and became a theoretical basis for
CDL [[11]], [[15]]. In 1973, Griffits proposed a similar method
[[18]] independently of Knuth.

The third direction was based on Ledgard's work [[16]] and
was applied in practice by Williams [[17]] et al. This approach
assumes a table or a similar structure for current words with
their attributes, while certain functions related to syntax
constructs modify its contents. Terminal symbols of a context-

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 353 --

free grammar act as transition functions, which force the parser
to transit from one state to another. Attributes for syntax units
of higher orders are introduced in a way similar to VW-
grammars.

II. COMPARISON OF VW- AND AFFIX GRAMMARS

A VW-grammar is a context-free grammar with an
infinite set of production rules presented recursively.

Grammar symbols are denoted by alphabetical strings,
these are the so-called protonotions. The terminal symbols
terminate with the word "symbol". The individual symbols are
separated by commas.

For the construction of context-free production rules,
schemes (so-called hyper-rules) are given. In the hyper-rules
at both sides such symbols are composed of small-letter words
(protonotions) and capital-letter words (metanotions). The
metanotions are parameters. For each metanotion there are a
possibly infinite set of protonotions generating a context-free
grammar .

A production rule is generated from a hyper-rule in such a
way that all occurrences of each metanotion must be replaced
by a corresponding protonotion so that the same metanotion
must be replaced by the same protonotion (synchronous
replacement).

Using the metanotions we can generate (automatically or
by hand) production rules which can fulfil any algorithm in a
style similar to a Markovian algorithm. Those symbols in the
hyper-rules have a special role from which we can derive the
empty string. Such symbols are called predicates. They can
express a relation between the parameters denoted by
metanotions. If the relation is true, we can derive the empty
string. If it is false, the derivation stops and a non-terminal
symbol remains in the derived string. Therefore, the derivation
is not valid.

A. EXAMPLE OF A VW-GRAMMAR

The following example demonstrates how to check that
each variable is declared only once in a program (semicolons
separate alternatives in meta-production rules.)
Metaproductions:
'ALPHA': : A, B;... X; Y; Z.
'LETTER': : letter 'ALPHA'.
'NAME': :'LETTER'; 'LETTER' 'NAME'.
'DEF': : 'NAME' has 'MODE'.
'TABLE': : 'DEF'; 'TABLE' 'DEF'.
'DEFSETY': : TABLE'; 'EMPTY'.
'EMPTY': : .

Hyper rules:
Program: Begin symbol,

Declare of TABLE', TABLE' restrictions,
TABLE' statement train,

end symbol.

(The " 'TABLE' restrictions" symbol is a predicate, which
checks the unique declaration.)

'DEFSETY' 'NAME' has 'MODE' restrictions:

where 'NAME' is not in 'DEFSETY',
'DEFSETY' restrictions;

 where 'DEFSETY' is 'EMPTY'.

Where 'NAME1' is not in 'NAME2' has 'MODE'
'DEFSETY':

where 'NAME1' differs from 'NАМЕ2', where
'NAME1' is not in 'DEFSETY';

where 'NAME1' differs from 'NAME2', where
'DEFSETY' is 'EMPTY'.

Where 'EMPTY' is 'EMPTY': 'EMPTY'.

Where 'NAME1' letter 'ALPHAl' differs from 'NAME2'
letter 'ALPHA2':

where 'NAME 1' differs from 'NАМЕ2';
'ALPHA1' is not 'ALPHA2'.

Where 'NAME' letter 'ALPHA 1' differs from letter
'ALPHA2': 'EMPTY'.
Where letter 'ALPHA1' differs from 'NАМЕ' letter
'ALPHA2': 'EMPTY'
A is not B: 'EMPTY'.
A is not C: 'EMPTY'.
A is not D: 'EMPTY'

.....etc.
As can be seen from the example, this type of definition is

easily legible and comprehensive. On the other hand, we can
see that the definition is rather redundant, not mathematically
but in practice, since very simple functions are implemented in
an artful way, using sophisticated string manipulations. Such a
string manipulation is solvable in a computer but it is surely an
ineffective solution.

B. EXAMPLE OF AN AFFIX-GRAMMAR

D.E. Knuth [[8]] proposed a context-free grammar in
which every grammatical unit has a set of attributes. An
attribute is called ascendant if it is derived from attributes of
lower-level units and called descendant if it originates from a
higher-level grammatical unit.

This concept and the concept of VW-grammar were
effectively combined in the notion of an affix grammar [[9],
[10], [11]].

In an affix grammar three types of objects are
considered. Non-terminal symbols denote grammatical units,
terminal symbols are words of programs and checks are
predicates over attributes. All types of objects have a definite
number of attributes; terminal symbols have no attributes.

Using a set of context-free substitution rules, non-
terminal characters are replaced by a string consisting of
terminals, non-terminals, and checks. Attributes of non-
terminals and checks in both sides of each rule are connected
with objects. An attribute is denoted by a symbol or it can
have constant value, too.

A non-terminal symbol with attributes with certain values
can be replaced with the string in the right-hand side of the
respective rule with this non-terminal in the left-hand side).
The attributes of the objects must be given so that attributes,
which were denoted by the same symbol must have the same
value. Then, in the new string, we must substitute for the non-
terminal symbols repeatedly and the checks must be evaluated.
Every check means a recursive predicate over the attributes. If
the check is true, the empty string will substitute it. If it is false,
it will be substituted for by a non-terminal symbol, which has
no further derivation. The derivation is finished when a string
consisting of terminal symbols only is produced.

The example below extends the previous one with more
detail on the derivation mechanism
Program: Begin,

Declaration+'TABLE',
Restrictions+'TABLE',

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 354 --

Statement train+ 'TABLE' ,
End.

Here the "restriction" is a predicate over the domain of the
'TABLE's. It checks that every name is unique in the 'TABLE'.

Declaration 'TABLE': Declare+ 'MODE'+ 'TABLE';
 Declare+'MODE'+'SUBTABLE 1',
 Declaration+'SUBTABLE2' ,
 Union+'TABLE' +'SUBTABLE1+'SUBTABLE2'.

'Union' checks that the 'TABLE' is the union of the two

'SUBTABLE's
Declare+'MODE'+ 'TABLE': Declarer+'MODE',
 Idlist+ 'TABLE'+ 'MODE'.

Idlist+ 'TABLE + 'MODE': Identifier*'NAME',
 Include+'TABLE'+'NAME'+'MODE',
 Semicolon;
 Identifier+'NAME',
 Include+'TABLE'+'NAME'+'MODE',
 Comma,
 Idlist+'TABLE'+ 'MODE'.

("Include" checks that 'NAME' having 'MODE' is included
in TABLE'.)

Based on affix grammars, Koster created the Compiler
Description Language (CDL) [[15]]. A CDL program is a
syntactic/semantic definition, which can be translated into a
code (subprogram) to parse the program text. In the form of
the grammar, there were modifications, which turn the
description of languages, and the execution of the parsing
shorter.

Text of a CDL program are translated into calls recursive
procedures, while terminal symbols and checks are translated
into substitutions of user-defined macros.

The body of a procedure is a sequence of macro and
procedure calls. The calls are given in accordance with the
sequence of objects in the substitution rule. Parsing of the text
goes on from top to bottom and from left to right.

Attributes are parameters of the procedures and macros.
Descendant attributes are input parameters and ascendant ones
are output parameters. So left-recursive rules are excluded.

Thus, an affix grammar is a frame for the execution
program, where syntax and data united. In affix grammars, the
values of attributes are strings generated by a context-free
grammar though tables, lists, or some other data structures
would be more natural to represent them. In CDL, attributes
are data structures, integers and integer arrays. They are used
to represent the necessary logical data structures mentioned
above.Conceptions and the solution of the mentioned problem
with VW- and affix grammar are very similar, but the latter
mechanism is more explicit and thus much easier for
realization.

The CDL-method appeared to be much less efficient
than expected. Its inefficiency is due to two reasons: recursive
calls to procedures and a large number of parameters
transferred at each call. Majority of attributes are logically
related to terminal symbols which themselves are deprived of
attributes. Therefore, another model was proposed, which at
least partly resolved this issue.

C. STATE TRANSITION METHODS

A VW-grammar is a synchronous model in the sense that

all substitutions resulting from applying grammar rules are
simultaneously. As a generic mechanism for defining a formal
language with context dependences, it assumes that first
terminals and attributes of the language model are defined and
them the respective language grammar is designed.

An affix grammar can be regarded as both synchronous,
and generic model too. But this model may be enforced
through consideration of the distinction between ascendant and
descendant attributes which helps to determine how to build
the parsing tree of a program. On the other hand, this
additional consideration means a restriction either for the
grammar or for the parsing algorithm, or for both.

In practice, one should distinguish between implementer's
problems and user's problems. The implementer must read and
check existing programs, so another model (called diachronic)
is more adequate for this activity. The diachronic model means
that the program is considered in its development in time. In
the program, new words are created first (defined, declared,
etc.), later on these words get used. Sometimes they get new
attributes, which are valid in a limited scope. In majority of
the programming languages, words and attributes must be
created before they are applied.

CDL, as an implementer-oriented realization of the affix
grammar technique, assumes the diachronic nature of its
subject languages. Sometimes this limits its applicability. For
example, it is not applicable to languages, where declarations
of identifiers can appear everywhere in the program.

Ledgard proposed another approach known as VDM
(Vienna Definition Method) was given by H.F. Ledgard, later
applied for definition of static semantics of PL/I [[16]]. This
method was refined by Williams [[17]] and by Farkas [[19]] in
various directions.

In VDM attributes are not included in the context-free
grammar but rather are enclosed into tables or similar
structures. The table state changes gradually, while advancing
through the program text. Each syntactic unit; i.e., each
substitution rule in the context-free grammar of the language
being considered is connected to a state transition function.
When recognition of the next syntactic unit is completed, 'the
associated state transition function is called and the associated
state transition is performed. Upon completion of the overall
parsing, it must be checked, whether the table is in a legal final
state.

In this automaton model the diachronic nature of the
subject language is thoroughly utilized, and parsing goes on
from beginning to the end of text

 D. EXAMPLE OF THE DIACHRONIC APPROACH.

In this example there are two variables 'MODE' and
'NAME', and a table with the name 'TABLE'.
Program: Begin, Declaration, Statement Train, End.
Declaration: Declare;

 Declare, Declaration.
Declare: Declarer /'MODE':=MODE/, idlist.

Idlist: Identifier /"NAME" := Identifier,
'TABLE':='TABLE' + ('NAME', 'MODE')/,Semicolon;
Identifier / 'NAME' := Identifier,
'TABLE' := 'TABLE' + (NAME' + 'MODE')/, Comma,
Idlist.

……etc.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 355 --

Checking, whether every declaration is unique, is done
with the help of function 'UNIQUE' that defined by a program,
similarly to functions in the substitution rules.

This method is realized through a state table and a table
handling function. In contrast to the former approaches, in this
method state transition functions are connected to terminal
symbols only. Then the question arises, how to implement
transitions related to higher-level syntactic units (e.g. blocks,
etc.). The solution is very simple: each such higher-level unit
has its first and last terminal symbols and the necessary
actions relate to these ones. Therefore, the state transition
function is defined in a separate table where three items are
specified: the terminal symbol the lexical unit, and the state
transition action. In the example below the prefix "D"
indicates a defining occurrence of an identifier.

E. ANOTHER EXAMPLE
Program: Begin, Declaration, Statement Train, End.
Declaration: Declare; Declare, Declaration.
Declare: Declarer, Idlist.
Idlist: D. Identifier, Semicolon; D. Identifier,
Comma, Idlist.
etc.

An advantage of this method is that lexical rules, syntax,
and static semantics are separated, and static semantics has no
impact on the parsing method implementation.

III. THE ATTRIBUTE TECHNIQUE FOR CFR GRAMMAR

Knuth introduced the notion of attribute [[8]] as a means to
describe the semantics of languages generated by classical
context-free grammars of Chomsky [0]. His attribute approach
assumes construction of a parsing tree for source language
statements in the given context-free grammar and then
calculation of attribute values in each vertex of the tree
according to rules derived from grammar rules used in parsing.
This approach was implemented in a series of toolsets for
compiler building, such as YACC [[7]], Eli [[5]], or CUP
[[18]].

In 1970-ies, regularized versions of context-free grammars
started to be used for defining the context-free language
syntax, such as regular context-free (CFR)[3], regular Backus-
Naur form (RBNF), and extended Backus-Naur form (EBNF)
grammars, as well as their graphic representation – syntactic
graph-schemes [[2], [3]]. Each non-terminal is matched to one
component in such a diagram, which represents a rule of the
respective CFR-grammar. The right-hand part of such rule is a
generalized regular expression over the symbols of the united
grammar alphabet [[3]], [[4]] [20] consisting of the alphabets
of terminals, non-terminals, semantics names, and predicate
names.

Techniques which employ CF-grammars with attributes
(like affix grammars) usually transform the source grammar
into an equivalent unambiguous grammar. In case of a CFR-
grammar, the names of semantics and predicates are used in
the grammar rules along with terminal symbols, and in
syntactic charts they are placed on arcs which connect vertices
marked with terminals and non-terminals.

The technique of building syntax state tables for a syntax-
controlled language processor implemented in the SynGT tool
[[3]] uses syntactic graph-schemes and translational CFR-

grammars to define translation of source language statements
into the target language.

Fig. 1 presents a syntactical graph-scheme for the non-
terminal "statement" in the C language.

Fig. 1. Syntactical graph-scheme for the non-terminal statement in C

A. THE TECHNIQUE

By definition [0] Translation from the language 1L into

the language 2L is defined as a relation 21 LL  .

According to requirements for language descriptions
formulated in [[12]], a translation specification should ensure
automated synthesis of a translator from specifications,
analysis of the input language properties, and visualization of
the description of input language syntax and semantics.

Attractiveness of CF-grammars for language analysis and
their simplicity (grammar rules have the form A→α where α is
a string of symbols from the united alphabet of the grammar)
for creating efficient parsers stimulated creation of a variety of
classes and subclasses of grammars with various language
constraints. The strongest language constraints (LL(k)), LR(k),
LALR, SLR) allow to build parsers with linear complexity
w.r.t. to the length of the source program.

Developed in SynGT system method of translation
specification allows to define context-dependent languages.
This is achieved due to predicates introduced to limit the
choice among alternatives by context dependencies when
parsing source statements. The context state is modified by
semantic procedures introduced directly into the grammar
rules or graph-schemes and processed along with terminal
symbols. Grammar pre-processing translates occurrences of
predicate and semantic names into invocations of respective
predicated functions and semantic procedures, thus ensuring a
computational support for the parser. These functions and
procedures are parameterized implicitly through a common
computational stack (or stacks) and attribute values considered
as their shared global variables.

In [[8]] the semantics of a source statement are defined
from its context-free syntax structure. In case of semantics
parameterization, our technique uses attributes as classical
Knuth attributes. Semantics of an input statement is defined by
its context-dependent syntax structure, which means that
parsing analysis and semantics computations are inseparable
and interleave in time.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 356 --

When attributes parameterize predicates, non-terminals
parameterization with affixes is used, same as in CDL3 [[15]].
Thus, a CFR-grammar with attributes becomes a two-level one
[[12]]. VW-grammars [[14]] are other representatives of this
class of two-level grammars, along with Koster affix
grammars.

As a rule, formal languages used in practice are often
context-dependent. Two-level grammars are powerful enough
to describe regular sets and to specify the syntax of respective
languages within a unified formalism as well as to express
context dependencies (i.e., static semantics).

As SynGT uses top-down syntax parsing, its major
constraint on the class of grammars it can process is absence
of left-recursive rules. I need equivalent transformations of
grammar rules. An algorithm of grammar transformation,
which eliminates any recursions in CFR-grammars, including
the left one, is described in detail in [[2]], [[3]], [[20]], [21].

Introducing attributes on this parsing mechanism assumes
a means of passing context-dependent data among procedures,
which analyze various language constructs in the process of
parsing the source language statements. The process develops
along several parallel routes in the syntactic graph-scheme
which represents the CFR-grammar of the language. Certain
constraints to be observed with introduced attributes are
imposed on the grammar in order to preserve the determinism
of the parsing process.

An analogy may be drawn between this mechanism and
analysis with the recursive descendant method in terms of a set
of finite automata [[2]] cooperating in a common operational
environment. Each rule of the CFR-grammar, which defines a
non-terminal A, is mapped into a procedure A. The right-hand
side of the rule is mapped into the body of the procedure A,
which specifies checking conditions (context-free or context-
dependent) regulating selection of the respective branch in
parsing. A context-free condition consists in checking that the
current input symbol coincides with the respective terminal
symbol in the right-hand side of the rule for A. If this check
succeeds, then a move forward in the input text is scheduled
along with transition to the next position in the right-hand side
of this rule. If a non-terminal B occurs in the current position
of the rule for A then an invocation of a procedure which is an
image of the rule for B is performed.

Context-dependent conditions are implemented by
respective predicate functions; their invocations are denoted in
grammar rules by names of semantic procedures of by
respective labels on the graph-scheme arcs. Invocations of
semantic procedures should be specified explicitly in the rules
right-hand sides.

Implementation of back-tracking with the recursive
descendant method is relatively complicated in a sequential
environment. Back-tracking is used to cancel semantic actions
because of detected violations of some context-free or context-
dependent condition in the current branch of parsing.
Therefore, the approach adopted in SynGT is equivalent to
mapping several rules into one procedure, which ensures
simultaneous mapping of several rules into one procedure.
This leads to simultaneous building of several parallel variants
of inference and rejecting inappropriate variants as the parsing
progresses.

Developing further the analogy with procedures, one can
match each rule with a set of input and output formal
parameters and local variables. Elements of this set are formal
attributes. In order to pass data to procedures, which
correspond to grammar rules or implement semantics and
predicates, actual attributes in form of actual parameters may
be used.

Therefore, at the grammar level, attributes describe only
the ordering, which the context data is passed in among
elements of a particular translation algorithm. Their main
purpose is to deliver data to semantic procedures and
predicates through parameters of respective procedure calls.

Possible variants of analysis continuation being developed
in parallel and being formed by lists of stacks, constraints
imposed on CFR-grammars allow for ambiguous grammars,
provided local semantic unambiguity is preserved taking into
account the determinism of analysis. On the other hand,
semantic actions along with context modifications and
translation are performed in parallel with parsing of the source
language statements. Sometimes a semantic action depends on
data available only at completion of parsing the whole
language statement. In this case, this action may be postponed
till the phase of looking at the parallel stacks and semantic
procedures invocations resulting from additional analysis. At
this phase, the parser states are reviewed in the reverse order,
and the postponed semantic procedures are invoked and more
exact identifying of the syntax structure of the input chain
through predicates.

The context of postponed actions should be restored to
perform them. In other words, storing/restoring of context data
should be ensured in such exceptional cases.

B. INFORMAL DEFINITION OF ATTRIBUTED TRANSLATION

Every occurrence of a non-terminal in the left-hand side of
a rule is bound with a set of formal attributes, and each
occurrence of a non-terminal, semantic procedure, or predicate
in the right-hand side of rules a set of actual parameters is
bound. Formal attributes may be inherited, synthesized, or
local. Actual parameters may be inherited or synthesized.

The proposed definition of attributed translation is close
the Early algorithm [5] used for analysis of arbitrary CF-
grammars. The recursive descendant method and
transformation of grammar rules into procedures with
parameters is similar to the Koster’s affix approach. The major
differences from these methods are: a) taking into account the
context conditions specified with predicates; b) executing
semantic actions; c) specifying grammar rules with
generalized regular expressions; and d) using attributes to
handle data.

Constraints on the attributed specification of compilation
are derived from the algorithm of the language processor work
and from the definition of attributed translation; they are
primarily reduced to absence of undefined values.

These requirements follow from general constraints of the
class of CFR-grammars used in SynGT to obtain deterministic
language processors of linear complexity.

Attributes, both formal and actual, are divided into direct
pass attributes and postponed attributes; some local attributes
may be defined as two-way attributes, which are computed at
the direct pass and may be used in case of postponed

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 357 --

computation (when the stacks are reviewed in the reverse
order).

When the translation algorithm executes, the processor
behaves as a deterministic finite automaton (DFA) on
particular parts of the input text. In certain cases, the work of
such DFA suspends and control is passed to some other DFA
for parsing some sub-construct. Upon completion of
processing the sub-construct, control is returned to the
suspended DFA. Each DFA corresponds to one or several
grammar rules. Values of formal attributes related to non-
terminals in the left-hand sides of the rules, determine the local
context of the DFA. Attribute values are considered to be
computed when a DFA reaches its terminal state or the source
text becomes exhausted. At this moment these attribute values
should be stored in order to be restored later in case of
postponed checks. The values are stored along with the
numbers of states which control is returned to (the so called
return states).

Control flow among DFAs at the postponed pass is
consistent and occurs when a return state is accepted. At this
moment, a new local context is formed from the values of
postponed attributes and the values of respective two-way
attributes are restored from the respective records.

CONCLUSION

Most of the programming languages have the feature that a
set of words has no predetermined meaning. The meaning of
these words is rather determined by the actual program. The
rules regarding the consistent use of these words is called static
semantics in this paper.

All 4 considered methods of syntax parsing are based on the
idea that the necessary attributes of program elements are
collected, registered and checked. There is a great difference
between the methods, how correspondence between these
elementss and attributes is established, represented, and
handled. Anyway, each method assumes recursive functions to
be used, which results in generating or accepting enumerable
recursive sets.

Similarly, it was demonstrated that in each of the 4 methods
three types of attributes are used (this fact was not mentioned
explicitly in the literature): the literal, the integer and the
pointer-type. The literal-type attribute denotes presence or
absence of an attribute, the integer-type attribute has an integer
value. The pointer-type attribute is the name of another word
with attributes; in practice, it is usually implemented through
pointers).

We can classify the definitional methods into two groups.
In the first group, the methods are more suitable to create
programs, we can call them user-oriented methods. These are
the generative synchronous models. The other class of methods
is more suitable for checking existing programs, which can be
denoted as implementer-oriented methods.

For the first time the attribute technique was applied
explicitly to regular expressions in context-free grammar rules
when building a language processor, taking the following
translation algorithm features into account: 1) attributes are
computed in the process of building the inference tree, taking
into account the context determined by these attributes; 2)

attributes are used for context-dependent resolution of semantic
ambiguity of translation. The obtained results further develop
the technique of syntax-directed data processing with the
SynGT tool, improving the development environment.. A
prototype of the attributed system is planned to be developed
on the .NET platform and derived from the SynGT code
developed at SPCRAS.

REFERENCES
[1] A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques

and Tools. Addison-Wesley, 1986.
[2] L. Fedorchenko, "On Regularization of Context-Free Grammars".

Izvestiya vuzov. Priborostroyeniye. vol.49(11), 2006. pp. 50–54.
(In Russian).

[3] L. Fedorchenko, Regularization of Context-Free Grammars.
Saarbrucken: LAP LAMBERT Academic Publishing. 2011.

[4] S. Baranov, C. Lavarenne, "Open C Compiler in Forth", in Proc
EuroForth’95 conf, 27–29 Oct. Schloss Dagstuhl. 1995.

[5] Robert W. Gray, Vincent P. Heuring, Steven P. Levi Anthony M.
Sloane, William M. Waite "Eli: a complete, flexible compiler
construction system" . Communications of ACM, Vol. 35, Num. 2,
pp. 121–130, 1992.

[6] Jay Early. "An Efficient Context-Free Parsing Algorithm".
Communications of the ACM, Vol. 13, Num. 2, pp. 94–102. 1970.

[7] S.C. Johnson Yacc yet another compiler compiler. Computer
Science Technical Report 32. AT&T Bell Laboratories, Murray
Hill, N.J., 1975.

[8] D.E. Knuth "Semantics of context-free languages". Mathematical
Systems Theory 2:2., pp. 127–145. 1968

[9] C.H.A. Koster On the Construction of ALGOL-Procedures for
Generating, Analyzing and Translating Sentences in Natural
Languages. Report MR72, Mathematisch Centrum, Amsterdam,
1965.

[10] C.H.A. Koster "Affix Grammars". In: Proceedings of IFIP
Conference on ALGOL 68 Implementation. Munich, pp. 95–109.
1970.

[11] C.H.A. Koster "Affix Grammars for Programming Languages" In:
Attribute Grammars, Applications and Systems. International
Summer School SAGA. Prague. 1991.

[12] A. van Wijngaarden A. Orthogonal Design and Description of a
Formal Language. Report MR76, Mathematisch Centrum,
Amsterdam, 1965.

[13] B. J. Mailloux, J. E. L. Peck, C. H. A. Koster ”Report on the
algorithmic language ALGOL 68” Numerische Mathematik 14, pp.
79–218 1969) Springer-Verlag Berlin.

[14] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster,
C.H. Lindsey, M. Sintzoff, L.G.L.T. Meertens, R.G. Fisker
"Revised report on the algorithmic language Algol 68”// ACTA
Informatica 5 pp.1–236, 1974).

[15] C.H.A. Koster CDL3 manual Web:\\http://www.cs.ru.nl/
~kees/vbcourse/ivbstuff/cdl3.pdf .

[16] H.F. Ledgard “Production system or can we do better than BNF?”
CACM, pp.94–102. 1974/2

[17] V.H. Williams “ Static semantics features of Algol 60, and
BASIC”. The Computer Journal. Vol. 21. No. 3. pp. 234–242.

[18] M. Griffiths “Relationship between definition and implementation
of language”. //Advanced courses on software engineering. Lecture
Notes in Economics and Math Syst. Springer-Verlag 1973.

[19] Erno Farcas "Comparison of Some Methods for The Definition of
Static Semantics", Hungarian Academy of Sciences /
Computational Linguistics and Computer Languages Vol.
XII. Hungary.

[20] Ludmila Fedorchenko and Sergey Baranov "Equivalent
Transformations and Regularization in Context–Free Grammars".
Bulgarian Academy of Sciences. Cybernetics and Information
Technologies CIT). Vol. 14, No 4, pp.29–44. Sofia 2013/

[21] Lukichev A.S. Use of attributes in SYNTAX technology //Bulletin
of St.Petersburg. university. Series 1. Issue 2. SPb. 2005. Pp. 64-73

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 358 --

