
Some Methods of Applying Attributes for the 
Definition of Static Semantics 

 
 

Ludmila Fedorchenko, Alexander Geida 
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS) 

St. Petersburg, Russia 
{lnf, geida}@iias.spb.su 

 
Abstract—Traditional theoretical works on language 

processing systems define the syntax of a formal language as a set 
of rules of grammar, which a compiler can check, all other 
language aspects, which we can detect only in runtime. We call 
them "semantics". Moreover, static semantics – i.e., those 
language properties which may be checked at the translation 
(compilation) time, distinguish from dynamic semantics – all 
other properties of this language. This article describes various 
approaches to defining the static semantics of an implemented 
language. A comparison of attribute-based language specification 
methods is also given. Examples provided. In addition, a new 
attribute-based approach to the implementation of contextual 
conditions in a translational context-free grammar in regular 
form are presented in the article. The attention is paid to the 
attributed automation model in the framework of automata 
theory to the decomposition problem and, to the application of 
attributed automata from the point of view of model developed.  

I. INTRODUCTION 

Modern language processing systems are aimed not only at 
parsing the input text in a formal language, but at its 
transformation into some other form as well, provided the 
language syntax and semantics are properly specified. A 
common example is translation of programs in a high-level 
programming language into their internal machine 
representation to be executed by a computing device. 

Conventional theoretical works in this area define the 
syntax of a formal language as a set of rules, which a compiler 
can check, all other language aspects, which we can detect only 
in runtime being referred to as "semantics". Moreover, static 
semantics – i.e., those language properties which may be 
checked at the translation (compilation) time, distinguish from 
dynamic semantics – all other properties of this language. 

In this paper, we assume that grammar rules of a formal 
language represent its syntax. Some other rules, which 
determine correct usage of language words, compose its static 
semantics and all other properties of language expresses their 
dynamic semantics.  

We suppose that a program in a formal language consists of 
words rather than of individual characters and therefore, 
terminal symbols of its context-free grammar (CF-grammar) 
are language words. 

In comparison with the natural languages we find out that a 
lot of the programming languages have a strange feature, – 
significant set of the legal  words have no predefined meaning 
or the meaning is partly defined and their semantic attributes 
are fixed only in the program. For example, an identifier in 

ALGOL 68 can denote any type of constant or variable or can 
denote a label or an operation, etc. In Basic, a letter followed 
by a left bracket, may denote an array (either one- or two-
dimensional), etc. Therefore, the majority of programming 
languages have embedded mechanisms to create syntactical 
(semantical) attributes for all allowable language words. 

In modern compilers syntactic checks are usually 
performed with tables where current attributes of already 
analyzed words (language constructs) are registered, check 
goes in the program text in the program text systematically 
from left to right. 

Unlike powerful language such as ALGOL 68, Ada, Java or 
FORTRAN, in many very simple languages, like those for 
calculators, industrial or household equipment etc, and each 
word has a clear predefined meaning. In these cases, there is no 
static semantics in the language and formal correctness of a 
program in such simple language may be formally checked 
with its context-free syntax only. Although the proper work of 
the program is not guaranteed. 

The branch of computer science, which deals with the 
theory of formal languages, since early 1950-es have developed 
a variety of abstract formalisms for defining programming 
languages in three, various directions: 

• Substituting another, more powerful grammar for the 
initial context-free grammar; 

• Extending the initial context-free grammar with various 
attributes and predicates (checks); 

• Systematic modifying the initial grammar with a 
grammar transformer.  

A number of attempts failed in the first direction until the 
van Wiingaarden grammar (VW-grammar) was introduced in 
order to formally define ALGOL 68 in 1965 [0], [[12]], [[13]], 
[[14]] with certain context dependent features embedded into 
the grammar (like "an applied occurrence of an identifier 
should match its defining occurrence"). 

Knuth highlighted the second direction in paper [[8]], which 
introduced inherited and synthesized attributes for each 
syntactic construct. This idea was enriched with Koster affix 
grammars [[9]], [[10]], [[11]] and became a theoretical basis for 
CDL [[11]], [[15]]. In 1973, Griffits proposed a similar method 
[[18]] independently of Knuth. 

The third direction was based on Ledgard's work [[16]] and 
was applied in practice by Williams [[17]] et al. This approach 
assumes a table or a similar structure for current words with 
their attributes, while certain functions related to syntax 
constructs modify its contents. Terminal symbols of a context-
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free grammar act as transition functions, which force the parser 
to transit from one state to another. Attributes for syntax units 
of higher orders are introduced in a way similar to VW- 
grammars.  

II. COMPARISON OF VW- AND AFFIX GRAMMARS 

A VW-grammar is a context-free grammar with an 
infinite set of production rules presented recursively. 

Grammar symbols are denoted by alphabetical strings, 
these are the so-called protonotions. The terminal symbols 
terminate with the word "symbol". The individual symbols are 
separated by commas. 

For the construction of context-free production rules, 
schemes (so-called hyper-rules) are given. In the hyper-rules 
at both sides such symbols are composed of small-letter words 
(protonotions) and capital-letter words (metanotions). The 
metanotions are parameters. For each metanotion there are a 
possibly infinite set of protonotions generating a context-free 
grammar . 

A production rule is generated from a hyper-rule in such a 
way that all occurrences of each metanotion must be replaced 
by a corresponding protonotion so that the same metanotion 
must be replaced by the same protonotion (synchronous 
replacement). 

Using the metanotions we can generate (automatically or 
by hand) production rules which can fulfil any algorithm in a 
style similar to a Markovian algorithm. Those symbols in the 
hyper-rules have a special role from which we can derive the 
empty string. Such symbols are called predicates. They can 
express a relation between the parameters denoted by 
metanotions. If the relation is true, we can derive the empty 
string. If it is false, the derivation stops and a non-terminal 
symbol remains in the derived string. Therefore, the derivation 
is not valid. 

A. EXAMPLE OF A VW-GRAMMAR 

The following example demonstrates how to check that 
each variable is declared only once in a program (semicolons 
separate alternatives in meta-production rules.) 
Metaproductions: 
'ALPHA': : A, B;... X; Y; Z. 
'LETTER': :  letter 'ALPHA'. 
'NAME': :'LETTER'; 'LETTER' 'NAME'. 
'DEF': : 'NAME' has 'MODE'.  
'TABLE': : 'DEF'; 'TABLE' 'DEF'.  
'DEFSETY': : TABLE'; 'EMPTY'. 
'EMPTY': : . 

 
Hyper rules: 
Program:   Begin symbol, 

Declare of TABLE', TABLE' restrictions, 
TABLE' statement train, 

end symbol. 

(The " 'TABLE' restrictions" symbol is a predicate, which 
checks the unique declaration.) 
 
'DEFSETY' 'NAME' has 'MODE' restrictions: 

where 'NAME' is not in 'DEFSETY', 
'DEFSETY' restrictions; 

 where 'DEFSETY' is 'EMPTY'. 
 
Where 'NAME1' is not in 'NAME2' has 'MODE' 
'DEFSETY': 

where 'NAME1' differs from 'NАМЕ2', where 
'NAME1' is not in 'DEFSETY';  

where 'NAME1' differs from 'NAME2', where 
'DEFSETY' is 'EMPTY'. 
 
Where 'EMPTY' is 'EMPTY': 'EMPTY'. 
 
Where 'NAME1' letter 'ALPHAl' differs from 'NAME2' 
letter 'ALPHA2':  

where 'NAME 1' differs from 'NАМЕ2';  
'ALPHA1' is not 'ALPHA2'. 

 
Where 'NAME' letter 'ALPHA 1' differs from letter 
'ALPHA2': 'EMPTY'. 
Where letter 'ALPHA1' differs from 'NАМЕ' letter 
'ALPHA2': 'EMPTY' 
A is not B: 'EMPTY'.  
A is not C: 'EMPTY'.  
A is not D: 'EMPTY' 

.....etc. 
As can be seen from the example, this type of definition is 

easily legible and comprehensive. On the other hand, we can 
see that the definition is rather redundant, not mathematically 
but in practice, since very simple functions are implemented in 
an artful way, using sophisticated string manipulations. Such a 
string manipulation is solvable in a computer but it is surely an 
ineffective solution. 

B. EXAMPLE OF AN AFFIX-GRAMMAR 

D.E. Knuth [[8]] proposed a context-free grammar in 
which every grammatical unit has a set of attributes. An 
attribute is called ascendant if it is derived from attributes of 
lower-level units and called descendant if it originates from a 
higher-level grammatical unit. 

This concept and the concept of VW-grammar were 
effectively combined in the notion of an affix grammar [[9], 
[10], [11]]. 

In an affix grammar three types of objects are 
considered. Non-terminal symbols denote grammatical units, 
terminal symbols are words of programs and checks are 
predicates over attributes. All types of objects have a definite 
number of attributes; terminal symbols have no attributes. 

Using a set of context-free substitution rules, non-
terminal characters are replaced by a string consisting of 
terminals, non-terminals, and checks. Attributes of non-
terminals and checks in both sides of each rule are connected 
with objects. An attribute is denoted by a symbol or it can 
have constant value, too. 

A non-terminal symbol with attributes with certain values 
can be replaced with the string in the right-hand side of the 
respective rule with this non-terminal in the left-hand side). 
The attributes of the objects must be given so that attributes, 
which were denoted by the same symbol must have the same 
value. Then, in the new string, we must substitute for the non-
terminal symbols repeatedly and the checks must be evaluated. 
Every check means a recursive predicate over the attributes. If 
the check is true, the empty string will substitute it. If it is false, 
it will be substituted for by a non-terminal symbol, which has 
no further derivation. The derivation is finished when a string 
consisting of terminal symbols only is produced. 

The example below extends the previous one with more 
detail on the derivation mechanism 
Program: Begin,  

Declaration+'TABLE',  
Restrictions+'TABLE', 
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Statement train+ 'TABLE' ,  
End. 

Here the "restriction" is a predicate over the domain of the 
'TABLE's. It checks that every name is unique in the 'TABLE'. 

Declaration 'TABLE': Declare+ 'MODE'+ 'TABLE'; 
 Declare+'MODE'+'SUBTABLE 1', 
 Declaration+'SUBTABLE2' , 
 Union+'TABLE' +'SUBTABLE1+'SUBTABLE2'. 

 
'Union' checks that the 'TABLE' is the union of the two 

'SUBTABLE's 
Declare+'MODE'+ 'TABLE': Declarer+'MODE', 
            Idlist+ 'TABLE'+ 'MODE'. 
 
Idlist+ 'TABLE + 'MODE': Identifier*'NAME', 
          Include+'TABLE'+'NAME'+'MODE', 
          Semicolon; 
          Identifier+'NAME', 
           Include+'TABLE'+'NAME'+'MODE', 
           Comma, 
           Idlist+'TABLE'+ 'MODE'. 
 

("Include" checks that 'NAME' having 'MODE' is included 
in TABLE'.) 

Based on affix grammars, Koster created the Compiler 
Description Language (CDL) [[15]]. A CDL program is a 
syntactic/semantic definition, which can be translated into a 
code (subprogram) to parse the program text. In the form of 
the grammar, there were modifications, which turn the 
description of languages, and the execution of the parsing 
shorter. 

Text of a CDL program are translated into calls recursive 
procedures, while terminal symbols and checks are translated 
into substitutions of user-defined macros.  

The body of a procedure is a sequence of macro and 
procedure calls. The calls are given in accordance with the 
sequence of objects in the substitution rule. Parsing of the text 
goes on from top to bottom and from left to right.  

Attributes are parameters of the procedures and macros. 
Descendant attributes are input parameters and ascendant ones 
are output parameters. So left-recursive rules are excluded. 

Thus, an affix grammar is a frame for the execution 
program, where syntax and data united. In affix grammars, the 
values of attributes are strings generated by a context-free 
grammar though tables, lists, or some other data structures 
would be more natural to represent them. In CDL, attributes 
are data structures, integers and integer arrays. They are used 
to represent the necessary logical data structures mentioned 
above.Conceptions and the solution of the mentioned problem 
with VW- and affix grammar are very similar, but the latter 
mechanism is more explicit and thus much easier for 
realization. 

The CDL-method appeared to be much less efficient 
than expected. Its inefficiency is due to two reasons: recursive 
calls to procedures and a large number of parameters 
transferred at each call. Majority of attributes are logically 
related to terminal symbols which themselves are deprived of 
attributes. Therefore, another model was proposed, which at 
least partly resolved this issue. 

C. STATE TRANSITION METHODS 

A VW-grammar is a synchronous model in the sense that 

all substitutions resulting from applying grammar rules are 
simultaneously. As a generic mechanism for defining a formal 
language with context dependences, it assumes that first 
terminals and attributes of the language model are defined and 
them the respective language grammar is designed. 

An affix grammar can be regarded as both synchronous, 
and generic model too. But this model may be enforced 
through consideration of the distinction between ascendant and 
descendant attributes which helps to determine how to build 
the parsing tree of a program. On the other hand, this 
additional consideration means a restriction either for the 
grammar or for the parsing algorithm, or for both. 

In practice, one should distinguish between implementer's 
problems and user's problems. The implementer must read and 
check existing programs, so another model (called diachronic) 
is more adequate for this activity. The diachronic model means 
that the program is considered in its development in time. In 
the program, new words are created first (defined, declared, 
etc.), later on these words get used. Sometimes they get new 
attributes, which are valid in a limited scope. In majority of 
the programming languages, words and attributes must be 
created before they are applied. 

CDL, as an implementer-oriented realization of the affix 
grammar technique, assumes the diachronic nature of its 
subject languages. Sometimes this limits its applicability. For 
example, it is not applicable to languages, where declarations 
of identifiers can appear everywhere in the program. 

Ledgard proposed another approach known as VDM 
(Vienna Definition Method) was given by H.F. Ledgard, later 
applied for definition of static semantics of PL/I [[16]]. This 
method was refined by Williams [[17]] and by Farkas [[19]] in 
various directions. 

In VDM attributes are not included in the context-free 
grammar but rather are enclosed into tables or similar 
structures. The table state changes gradually, while advancing 
through the program text. Each syntactic unit; i.e., each 
substitution rule in the context-free grammar of the language 
being considered is connected to a state transition function. 
When recognition of the next syntactic unit is completed, 'the 
associated state transition function is called and the associated 
state transition is performed. Upon completion of the overall 
parsing, it must be checked, whether the table is in a legal final 
state. 

In this automaton model the diachronic nature of the 
subject language is thoroughly utilized, and parsing goes on 
from beginning to the end of text  

 D. EXAMPLE OF THE DIACHRONIC APPROACH. 

In this example there are two variables 'MODE' and 
'NAME', and a table with the name 'TABLE'. 
Program: Begin, Declaration, Statement Train, End. 
Declaration: Declare; 

   Declare, Declaration. 
Declare: Declarer /'MODE':=MODE/, idlist. 
 
Idlist: Identifier /"NAME" := Identifier, 
'TABLE':='TABLE' + ('NAME', 'MODE')/,Semicolon;  
Identifier / 'NAME' := Identifier, 
'TABLE' := 'TABLE' + (NAME' + 'MODE')/, Comma, 
Idlist. 

……etc. 
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Checking, whether every declaration is unique, is done 
with the help of function 'UNIQUE' that defined by a program, 
similarly to functions in the substitution rules. 

This method is realized through a state table and a table 
handling function. In contrast to the former approaches, in this 
method state transition functions are connected to terminal 
symbols only. Then the question arises, how to implement 
transitions related to higher-level syntactic units (e.g. blocks, 
etc.). The solution is very simple: each such higher-level unit 
has its first and last terminal symbols and the necessary 
actions relate to these ones. Therefore, the state transition 
function is defined in a separate table where three items are 
specified: the terminal symbol the lexical unit, and the state 
transition action. In the example below the prefix "D" 
indicates a defining occurrence of an identifier. 

E. ANOTHER EXAMPLE 
Program: Begin, Declaration, Statement Train, End. 
Declaration: Declare; Declare, Declaration. 
Declare: Declarer, Idlist. 
Idlist: D. Identifier, Semicolon; D. Identifier, 
Comma, Idlist. 
etc. 

An advantage of this method is that lexical rules, syntax, 
and static semantics are separated, and static semantics has no 
impact on the parsing method implementation. 

III. THE ATTRIBUTE TECHNIQUE FOR CFR GRAMMAR 

Knuth introduced the notion of attribute [[8]] as a means to 
describe the semantics of languages generated by classical 
context-free grammars of Chomsky [0]. His attribute approach 
assumes construction of a parsing tree for source language 
statements in the given context-free grammar and then 
calculation of attribute values in each vertex of the tree 
according to rules derived from grammar rules used in parsing. 
This approach was implemented in a series of toolsets for 
compiler building, such as YACC [[7]], Eli [[5]], or CUP 
[[18]]. 

In 1970-ies, regularized versions of context-free grammars 
started to be used for defining the context-free language 
syntax, such as regular context-free (CFR)[3], regular Backus-
Naur form (RBNF), and extended Backus-Naur form (EBNF) 
grammars, as well as their graphic representation – syntactic 
graph-schemes [[2], [3]]. Each non-terminal is matched to one 
component in such a diagram, which represents a rule of the 
respective CFR-grammar. The right-hand part of such rule is a 
generalized regular expression over the symbols of the united 
grammar alphabet [[3]], [[4]] [20] consisting of the alphabets 
of terminals, non-terminals, semantics names, and predicate 
names.  

Techniques which employ CF-grammars with attributes 
(like affix grammars) usually transform the source grammar 
into an equivalent unambiguous grammar. In case of a CFR-
grammar, the names of semantics and predicates are used in 
the grammar rules along with terminal symbols, and in 
syntactic charts they are placed on arcs which connect vertices 
marked with terminals and non-terminals. 

The technique of building syntax state tables for a syntax-
controlled language processor implemented in the SynGT tool 
[[3]] uses syntactic graph-schemes and translational CFR-

grammars to define translation of source language statements 
into the target language.  

Fig. 1 presents a syntactical graph-scheme for the non-
terminal "statement" in the C language. 

 
Fig. 1. Syntactical graph-scheme for the non-terminal statement in C  

A. THE TECHNIQUE 

By definition [0] Translation from the language 1L  into 

the language 2L  is defined as a relation 21 LL  .  

According to requirements for language descriptions 
formulated in [[12]], a translation specification should ensure 
automated synthesis of a translator from specifications, 
analysis of the input language properties, and visualization of 
the description of input language syntax and semantics.  

Attractiveness of CF-grammars for language analysis and 
their simplicity (grammar rules have the form A→α where α is 
a string of symbols from the united alphabet of the grammar) 
for creating efficient parsers stimulated creation of a variety of 
classes and subclasses of grammars with various language 
constraints. The strongest language constraints (LL(k)), LR(k), 
LALR, SLR) allow to build parsers with linear complexity 
w.r.t. to the length of the source program. 

Developed in SynGT system method of translation 
specification allows to define context-dependent languages. 
This is achieved due to predicates introduced to limit the 
choice among alternatives by context dependencies when 
parsing source statements. The context state is modified by 
semantic procedures introduced directly into the grammar 
rules or graph-schemes and processed along with terminal 
symbols. Grammar pre-processing translates occurrences of 
predicate and semantic names into invocations of respective 
predicated functions and semantic procedures, thus ensuring a 
computational support for the parser. These functions and 
procedures are parameterized implicitly through a common 
computational stack (or stacks) and attribute values considered 
as their shared global variables.  

In [[8]] the semantics of a source statement are defined 
from its context-free syntax structure. In case of semantics 
parameterization, our technique uses attributes as classical 
Knuth attributes. Semantics of an input statement is defined by 
its context-dependent syntax structure, which means that 
parsing analysis and semantics computations are inseparable 
and interleave in time. 
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When attributes parameterize predicates, non-terminals 
parameterization with affixes is used, same as in CDL3 [[15]]. 
Thus, a CFR-grammar with attributes becomes a two-level one 
[[12]]. VW-grammars [[14]] are other representatives of this 
class of two-level grammars, along with Koster affix 
grammars. 

As a rule, formal languages used in practice are often 
context-dependent. Two-level grammars are powerful enough 
to describe regular sets and to specify the syntax of respective 
languages within a unified formalism as well as to express 
context dependencies (i.e., static semantics). 

As SynGT uses top-down syntax parsing, its major 
constraint on the class of grammars it can process is absence 
of left-recursive rules. I need equivalent transformations of 
grammar rules. An algorithm of grammar transformation, 
which eliminates any recursions in CFR-grammars, including 
the left one, is described in detail in [[2]], [[3]], [[20]], [21]. 

Introducing attributes on this parsing mechanism assumes 
a means of passing context-dependent data among procedures, 
which analyze various language constructs in the process of 
parsing the source language statements. The process develops 
along several parallel routes in the syntactic graph-scheme 
which represents the CFR-grammar of the language. Certain 
constraints to be observed with introduced attributes are 
imposed on the grammar in order to preserve the determinism 
of the parsing process.  

An analogy may be drawn between this mechanism and 
analysis with the recursive descendant method in terms of a set 
of finite automata [[2]] cooperating in a common operational 
environment. Each rule of the CFR-grammar, which defines a 
non-terminal A, is mapped into a procedure A. The right-hand 
side of the rule is mapped into the body of the procedure A, 
which specifies checking conditions (context-free or context-
dependent) regulating selection of the respective branch in 
parsing. A context-free condition consists in checking that the 
current input symbol coincides with the respective terminal 
symbol in the right-hand side of the rule for A. If this check 
succeeds, then a move forward in the input text is scheduled 
along with transition to the next position in the right-hand side 
of this rule. If a non-terminal B occurs in the current position 
of the rule for A then an invocation of a procedure which is an 
image of the rule for B is performed. 

Context-dependent conditions are implemented by 
respective predicate functions; their invocations are denoted in 
grammar rules by names of semantic procedures of by 
respective labels on the graph-scheme arcs. Invocations of 
semantic procedures should be specified explicitly in the rules 
right-hand sides. 

Implementation of back-tracking with the recursive 
descendant method is relatively complicated in a sequential 
environment. Back-tracking is used to cancel semantic actions 
because of detected violations of some context-free or context-
dependent condition in the current branch of parsing. 
Therefore, the approach adopted in SynGT is equivalent to 
mapping several rules into one procedure, which ensures 
simultaneous mapping of several rules into one procedure. 
This leads to simultaneous building of several parallel variants 
of inference and rejecting inappropriate variants as the parsing 
progresses. 

Developing further the analogy with procedures, one can 
match each rule with a set of input and output formal 
parameters and local variables. Elements of this set are formal 
attributes. In order to pass data to procedures, which 
correspond to grammar rules or implement semantics and 
predicates, actual attributes in form of actual parameters may 
be used. 

Therefore, at the grammar level, attributes describe only 
the ordering, which the context data is passed in among 
elements of a particular translation algorithm. Their main 
purpose is to deliver data to semantic procedures and 
predicates through parameters of respective procedure calls. 

Possible variants of analysis continuation being developed 
in parallel and being formed by lists of stacks, constraints 
imposed on CFR-grammars allow for ambiguous grammars, 
provided local semantic unambiguity is preserved taking into 
account the determinism of analysis. On the other hand, 
semantic actions along with context modifications and 
translation are performed in parallel with parsing of the source 
language statements. Sometimes a semantic action depends on 
data available only at completion of parsing the whole 
language statement. In this case, this action may be postponed 
till the phase of looking at the parallel stacks and semantic 
procedures invocations resulting from additional analysis. At 
this phase, the parser states are reviewed in the reverse order, 
and the postponed semantic procedures are invoked and more 
exact identifying of the syntax structure of the input chain 
through predicates. 

The context of postponed actions should be restored to 
perform them. In other words, storing/restoring of context data 
should be ensured in such exceptional cases. 

B. INFORMAL DEFINITION OF ATTRIBUTED TRANSLATION 

Every occurrence of a non-terminal in the left-hand side of 
a rule is bound with a set of formal attributes, and each 
occurrence of a non-terminal, semantic procedure, or predicate 
in the right-hand side of rules a set of actual parameters is 
bound. Formal attributes may be inherited, synthesized, or 
local. Actual parameters may be inherited or synthesized. 

The proposed definition of attributed translation is close 
the Early algorithm [5] used for analysis of arbitrary CF-
grammars. The recursive descendant method and 
transformation of grammar rules into procedures with 
parameters is similar to the Koster’s affix approach. The major 
differences from these methods are: a) taking into account the 
context conditions specified with predicates; b) executing 
semantic actions; c) specifying grammar rules with 
generalized regular expressions; and d) using attributes to 
handle data. 

Constraints on the attributed specification of compilation 
are derived from the algorithm of the language processor work 
and from the definition of attributed translation; they are 
primarily reduced to absence of undefined values.  

These requirements follow from general constraints of the 
class of CFR-grammars used in SynGT to obtain deterministic 
language processors of linear complexity. 

Attributes, both formal and actual, are divided into direct 
pass attributes and postponed attributes; some local attributes 
may be defined as two-way attributes, which are computed at 
the direct pass and may be used in case of postponed 
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computation (when the stacks are reviewed in the reverse 
order). 

When the translation algorithm executes, the processor 
behaves as a deterministic finite automaton (DFA) on 
particular parts of the input text. In certain cases, the work of 
such DFA suspends and control is passed to some other DFA 
for parsing some sub-construct. Upon completion of 
processing the sub-construct, control is returned to the 
suspended DFA. Each DFA corresponds to one or several 
grammar rules. Values of formal attributes related to non-
terminals in the left-hand sides of the rules, determine the local 
context of the DFA. Attribute values are considered to be 
computed when a DFA reaches its terminal state or the source 
text becomes exhausted. At this moment these attribute values 
should be stored in order to be restored later in case of 
postponed checks. The values are stored along with the 
numbers of states which control is returned to (the so called 
return states). 

Control flow among DFAs at the postponed pass is 
consistent and occurs when a return state is accepted. At this 
moment, a new local context is formed from the values of 
postponed attributes and the values of respective two-way 
attributes are restored from the respective records. 

CONCLUSION 

Most of the programming languages have the feature that a 
set of words has no predetermined meaning. The meaning of 
these words is rather determined by the actual program. The 
rules regarding the consistent use of these words is called static 
semantics in this paper. 

All 4 considered methods of syntax parsing are based on the 
idea that the necessary attributes of program elements are 
collected, registered and checked. There is a great difference 
between the methods, how correspondence between these 
elementss and attributes is established, represented, and 
handled. Anyway, each method assumes recursive functions to 
be used, which results in generating or accepting enumerable 
recursive sets. 

Similarly, it was demonstrated that in each of the 4 methods 
three types of attributes are used (this fact was not mentioned 
explicitly in the literature): the literal, the integer and the 
pointer-type. The literal-type attribute denotes presence or 
absence of an attribute, the integer-type attribute has an integer 
value. The pointer-type attribute is the name of another word 
with attributes; in practice, it is usually implemented through 
pointers). 

We can classify the definitional methods into two groups. 
In the first group, the methods are more suitable to create 
programs, we can call them user-oriented methods. These are 
the generative synchronous models. The other class of methods 
is more suitable for checking existing programs, which can be 
denoted as implementer-oriented methods.  

For the first time the attribute technique was applied 
explicitly to regular expressions in context-free grammar rules 
when building a language processor, taking the following 
translation algorithm features into account: 1) attributes are 
computed in the process of building the inference tree, taking 
into account the context determined by these attributes; 2) 

attributes are used for context-dependent resolution of semantic 
ambiguity of translation. The obtained results further develop 
the technique of syntax-directed data processing with the 
SynGT tool, improving the development environment.. A 
prototype of the attributed system is planned to be developed 
on the .NET platform and derived from the SynGT code 
developed at SPCRAS. 
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