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Abstract—This paper presents a system for monitoring rail
tracks in mountainous areas by using a stationary camera system
to detect obstacles on the railbed. On-board obstacle detection
systems on trains are already used for the purpose of obstacle
detection, but due to the nature of mountainous areas these aren’t
suitable for our problem case. Our approach combines a Machine
Learning approach using Yolov5 with a traditional Computer
Vision approach to be able to detect obstacles that Yolo was not
trained for such as avalanches, mudslides, etc. The system was
tested on a single example setup which was set up with the help of
the Austrian railway track company. Our experimental test runs
already showed a promising low number of incorrect reports.
The system, however, yet does not cope with specific conditions,
such as extreme lighting or bad weather.

I. INTRODUCTION

In 2020, 1331 major railway accidents were reported by the

European Union [1]. There were 798 incidents involving unau-

thorized persons on track, along with that 412 level crossing

accidents involving pedestrians. In total, 687 individuals lost

their lives and 468 were severely injured in these accidents.

Based on those numbers, obstacle detection on railway tracks

is an important lifesaving issue.

There is promising research on both, vision- and other

sensor-based hardware placed in front of the train to mitigate

those accidents [2]–[4]. These sensors are similar to the

sensors used in the automotive industry such as LiDAR,

Ultra-sonic, Infrared and Thermal cameras, Stereo and RGB

cameras, etc. However, most of these sensors are extremely

costly, and strong computing hardware is required to interpret

all essential data in real-time. Instead of expensive sensors,

one can employ low-cost cameras with AI-based solutions.

But, research on AI-based software implemented for trains is

minimal. There is some literature available using traditional

Computer Vision (CV) based methods for railway track and

obstacle detection [5], [6].

In general, one can distinguish between two kinds of

approaches: On the one side, research is focusing on obstacle

detection based on vehicle-mounted sensors. There are various

sensors (LIDAR, visual-based, etc.) that can be used. However,

sensors mounted in front of a train have a major drawback.

Depending on a train’s length and speed it often needs to stop

several kilometers before an obstacle to avoid hitting it.

Our contribution can be summarized as follows: (A) an

overall concept for a railway track surveillance system capable

of running on an embedded device in mountain areas is

proposed (B) a combined approach consisting of ML as well

as traditional CV-based method is evaluated (C) a data set on

the real environment is introduced and challenges discussed.

The paper is organized as follows: Section 2 gives a short

overview of already existing approaches to the problems of

rail segmentation and obstacle detection. Section 3 introduces

our contribution split into three sub-sections describing (A),

(B), and (C) as mentioned previously. Section 4 details our

evaluation approach and the dataset we used for it. The paper

ends with a conclusion in Section 5.

II. RELATED WORK

This section discusses previous research on obstacle and

railway track detection. The topic of railway obstacle detection

often consists of two parts. First, the railway tracks must be

detected and then obstacle detection is performed. Sometimes

these steps happen simultaneously. The primary purpose of

object detection in railways is to detect objects (potential

obstacles) on and near railway tracks to mitigate railway track

accidents. The automotive industry has conducted a signifi-

cant amount of research in obstacle detection and enormous

advancement in AI and sensing technologies have been made.

However, studies specifically on railway tracks have been less

extensive. Some of the past work has used vision based as

well as other sensors to detect obstacles or railway tracks [2].

The method used in [7] is a traditional CV-based method

that identifies railway tracks using the Hough Transform

technique, followed by the detection of obstacles using CV

algorithms. Firstly, the Hough mechanism detects the lines

representing the railway track. This task eliminates the ir-

relevant background objects by resizing the image and ap-

plying a rectangular mask to it. Secondly, the Canny edge-
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detection algorithm analyses the obstacles on railway tracks.

The Canny algorithm first filters the image then the edge

contours are extracted from the image. Finally, the systematic

search of objects starts after filling the remaining contours.

The research in [7] is then carried on in [8], where a new

method is described for detecting dynamic objects derived

from the idea of optical flow among frames. First, the approach

finds potentially dangerous objects while ignoring unimportant

background movement elements. Then, the trajectories of

the potentially dangerous obstacles are tracked and used to

determine if they might collide with the train in the future.

In [9], a CNN-based rail area detection method is presented.

This method consists of two parts: extracting the railway area

and further optimization. In the first part, a CNN was proposed

for the pixel-level classification of the railway track area. The

main improvement in their architecture was extracting the

information from the rail line and their surroundings or even

from the full image, thus achieving multi-scale feature extrac-

tion. In the second part, the author proposed an optimized

polygon fitting method to refine the rail region further. The

experimental results indicate that the model can perform well

in different conditions, such as tunnels, shadows, reflections

and rail switch scenes. This research covers the railway track

detection part but lacks the obstacle detection problem in front

of the train.

Jin Wang et al. [10] proposed a DL-based segmentation

model named RailNet. This model consists of two networks,

the segmentation network and the feature extraction network.

The feature extraction network employs a pyramid design to

generate a hybrid feature vector by spreading features from top

to bottom. The segmentation network maps the railway track

pixel by pixel using a convolutional network. To evaluate the

RailNet model, the author created a Railroad Segmentation

Dataset (RSDS). The dataset contains 3000 images, of which

2500 are for training, 200 are for validation, and 300 are for

testing. The proposed method performed well on the dataset

and accurately detected the railroad. This research covers the

railway detection part but does not focus on obstacle detection.

Peng Yang et al. [11], in their paper, presented a DL-based

method specific to object detection. In their research, a Faster

R-CNN model [12] is used for detecting objects. The model is

trained using 20,000 images of outdoor railroad track scenes.

The dataset was divided into three classes: trains, people, and

animals. Their research also handles the alert system (e.g.

Warning and Normal). The proposed model detects people

or animals who appear beside the train and, if it is, issues

an alert. The method is capable of detecting multiple objects

along with their confidence scores. However, the railway-track

detection part is missing here.

In [13], a method named DisNet is proposed, which operates

with an onboard RGB camera and detects the obstacles from

the driver-eye view of the train. The method performs two

tasks: the first task is the detection of possible obstacles using

a DL-based model called YOLOv3 [14], and the second task

is the distance estimation of obstacles from the camera using

a multi-hidden layered neural network. YOLO was refined

using a transfer learning technique and retrained on a custom

dataset of 998 images in which 2238 objects are labeled with 4

different classes such as humans, cars, bicycles, and animals.

An RGB SMART camera captured the images mounted on

the Serbia Cargo train. The research results indicate that the

model is functional for long and mid-range real-time obstacle

detection. In contrast, we are developing a system by merging

two fast methods that identify risk categories using the pixel-

wise overlapping technique.

The main difference of our approach according to the

presented related work can be summarized as follows. First,

our approach also uses a CNN based network (YOLO [15])

for detecting well known objects (COCO [16]) and one for

segmenting the target area (BiSeNet V2 [17]) similar to

approaches such as [10]. In addition to that, we are focusing

on monitoring rail tracks for obstacles such as mud, stones,

trees, etc. where not enough data sets are available (for transfer

learning). Therefore, computer vision approaches are evaluated

and combined within an overall algorithm.

III. ARCHITECTURE OF MONITORING SYSTEM

A. Overall Architecture

As defined in the introduction, our approach aims on

monitoring specific rail tracks in mountainous areas, where

the probability of natural disasters is high. In Fig. 1, such a

rail track is shown with the estimated camera systems that

need to be installed. The different colors (green == 200m,

yellow == 150m, orange == 100m) specify the line of sight

that is observable according to the geologic environment.

Fig. 1. Estimated camera positions and line of sight

Overall monitoring is established per camera, which reports

binary status information (free/obstacle detected).

In the following subsections, the individual components of

the overall architecture (see Fig. 2) are discussed. The overall

architecture represents all algorithms that are executed on the

individual cameras. This means, that every camera reports

every specified time period (can be defined) about the status

of the observed area.

B. Combined Approach: Track detection and Object classifi-
cation

The approach is split into 5 sub-tasks, an overview of which

can be seen in Fig. 2.
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Fig. 2. Components of the overall process

1) Track Detection: The first part of our approach focuses

on railway segmentation and the identification of the track and

its surrounding. This is realized by first using the BiseNetv2

model [17] to get the left and right rails as well as the railbed

and subsequently adding some additional pixels to the left and

right of the tracks to define a Region of Interest (ROI) which

is then used as a mask for further steps, see Fig. 3

Fig. 3. (a) shows an image that is used to extract rails from (b) shows rail
track detected by BiseNetv2 (c) shows final ROI after adding pixels to each
side

2) Object Detection & Classification: The YOLOv5 model

[18] is used to detect and classify known objects (known

related to the COCO classes) in order to enable a binary

classification in allowed and disallowed objects. For instance, a

train that is detected on a track is an allowed object and should

not end in sending an alarm. Whereas a person at a specific

distance to the track or on the track is a disallowed object and

needs to result in an alarm. Note, that our approach aims not

in optimizing the track or object detection models as this is

open for further research and can be exchanged easily in our

overall architecture. In this proposal, the overall architecture

of the system is the focal point.

3) Obstacle Detection: The main idea of the algorithm is

to check for differences between the reference image and an

image taken at the current time using an approach we dubbed

Pixel4Pixel. In short, the difference is calculated by getting

the absolute difference between the two frames and as an end

result we receive one or more bounding boxes that show us

the location of detected obstacles, as can be seen in Fig. 4.

There are several requirements that need to be fulfilled in

order for the obstacle detection method to work. First of all, a

masked ROI needs to be supplied, which can be taken from the

track detection step that BiseNetv2 is used for. Additionally,

a reference image of the tracks being empty is required which

will be updated as the algorithm runs.

After receiving a current image of the track from the camera

and having access to a saved reference image the algorithm can

start. As a first step, we investigate both images for potential

lens obstructions, examples of which can be seen in Fig. 6,

which are often caused by bad weather. We use an algorithm

that checks for blur in the image [19], if an image is too blurry,

we assume that the lens is obstructed by something and stop

the process. In the case of both images having been found

clear of lens obstruction, we continue with the following steps.

Because of lighting changes due to the movement of the sun

and weather influence both images need to undergo several

preprocessing steps at first such as greyscaling, adjusting

contrast and brightness, and histogram matching. Afterward

blur kernels with a differing radius are applied to sub-parts

of the tracks to get rid of small changes we don’t want to

account for, so-called noise. The size of the kernel is changed

depending on how close to the camera the part of the track

is. Parts of the track closer to the camera are blurred with a

wider kernel because small changes we don’t want to account

for are more visible closer to the camera. In contrast, a small

kernel radius is used for the far end of the track. After the

preprocessing steps, a pixel-for-pixel comparison between the

image in question and the reference image takes place which

results in an image that shows us the difference between the

two images. Next, we try to enlarge possible obstacles as

sometimes only rough outlines are detected. This happens

by applying dilation kernels of different sizes on the image

result from the previous step, here obstacles further from the

camera are dilated with a smaller kernel. As a next step, the

area of detected obstacles is calculated, if the result is bigger

than a certain predefined size the obstacles’s bounding box is

calculated and passed onto the next step, which merges the

results from the two different approaches we used.

Choosing a proper reference image is challenging because

only images without obstacles in them are suited for that job

as otherwise false positive alarms would be sent out. There are

currently two ways we propose to get a new reference image,

(a) taking the last non-obstacle image as a new reference

image, (b) creating an average image from the last Y frames

where newer frames are more important than older frames.

4) Merging: This step is meant to merge the results from

the two methods that we used. From the Object Detection and

Classification part (2.) we receive classification information on
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Fig. 4. Example images of obstacles that were detected highlighted by a red
bounding box

the type of obstacle and bounding box coordinates whereas

from the Obstacle Detection Method (3.) we only receive

bounding box coordinates of a detected obstacle. We now

combine these two results by checking whether the bounding

boxes overlap, which can also be seen in the flowchart in Fig.

5. In the case of an overlap, we check whether the classified

obstacle is detected as allowed (e.g. train) or disallowed (e.g.

human) to be on the tracks. Disallowed obstacles result in

a report, whereas allowed obstacles will be ignored. In the

case of the Object Detection and Classification method not

detecting any obstacles but the Obstacle Detection Method

detecting something we still send a report, as we must assume

that an obstacle that Yolo was not trained for (e.g. stones,

avalanches, mudslides) is blocking the track.

Fig. 5. Flow Chart showing merging decisions and results

5) Report: As a last step in the process, a report needs to

be made. An image of the current obstacle with its bounding

box as an overlay is sent to be checked by a human as a last

step, who then needs to decide how to react. An example of

what the results might look like can be seen in Fig. 4. We do

not want to automate this step of the process as different steps

need to be taken for different problems.

C. Challenges

Throughout the process of creating the system and eval-

uating approaches, we came upon several difficulties and

challenges.

• Obstruction of the camera lens: Due to bad weather

(e.g. snow, rain, ...) one difficulty we face is obstruction

of the lens. While this might be solvable by physical

constructions that avoid the obstruction to happen in

the first place, for that purpose we use a blur detection

approach as mentioned in 3) Obstacle Detection [19].

• Shadows: Because of the angle of the stationary camera

it is difficult to distinguish between 2d and 3d objects,

therefor shadows which ”move” onto the tracks due to sun

movement could be falsely classified as obstacles. While

there are some approaches to identifying and removing

those shadows (e.g. [20]) we have not yet been able to

evaluate the effect of such methods.

• Night Setting: Our approach has currently only been

tested with images taken in a daylight setting, images

taken at night might be difficult evaluate due to too little

lighting.

Fig. 6. Example images of the camera lens being obstructed

IV. EVALUATION

For our evaluation, we used different kinds of images. For

2) Object Detection & Classification we used images from

the RailSem19 data set [21] and some images downloaded

from the internet (Youtube videos). We annotated 50 images

manually and classified them into two classes (allowed/not

allowed).

For the CV-approach images of our test environment, which

has been set up with the Austrian railway transportation

company, were used. We received 101 images showing the rail

track in normal conditions and 186 images showing snowy

conditions, see Fig. 7, from a camera that takes an image

roughly every minute. We separated these 101 and 186 images

into images containing obstacles in the ROI (69 and 136) and

images not showing any obstacles in the ROI (32 and 50).

Afterward, we simulated a video stream, evaluating the

images in chronological order but assuming that the first image

is always free of obstacles. We then compared the results from

that simulations to our labeling, resulting in the Confusion

Matrices in Fig. 8, 0 meaning no obstacle and 1 meaning

obstacle. The first image of each of the datasets is missing in
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the confusion matrix as we used it as a first reference image

and therefore did not count it in the evaluation.

The confusion matrix shows false negatives for both of our

approaches. We discovered that these errors occur when the

contrast between obstacles and the background is too low,

resulting in obstacles blending in with the background.

Fig. 7. Selection of images we received as test data

Fig. 8. Confusion Matrix of our simulation, top shows normal images, bottom
shows snowy images

V. CONCLUSION

In this text, the authors present an approach for monitoring

rail tracks in mountain areas using camera systems to detect

obstacles. The approach is split into five sub-tasks, including

(i) track detection, (ii) object detection and classification,

(iii) obstacle detection, (iv) merging, and (v) alarming. The

authors propose an overall architecture where all sub-tasks

are executed on the individual cameras, with each camera

reporting the status of the observed area. Obstacle detection

is based on a Pixel4Pixel approach, which calculates the

difference between the reference image and the current image

to detect obstacles. The authors propose two methods for

choosing the reference image, and they discuss the challenges

associated with this step.
The presented work’s contribution is not related to track and

object detection itself, but rather to the overall architecture

and the orchestration of sub-tasks. In addition to that, the

presented research combines state-of-the-art ML techniques

with traditional CV approaches. Currently, this approach lacks

thorough testing in multiple real-world scenarios. So far, this

approach has only been used in a stationary setup with dummy

obstacles. Also, there is yet no data on how well this approach

works under different lighting and vision conditions (e.g.

in case of bad weather, very bright sunlight, or darkness).

Overall, the authors present a comprehensive, yet applied

approach for monitoring rail tracks in mountain areas that can

be further optimized in future research.
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