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Abstract—In this paper, we describe and present the first
dataset of source code plagiarism specifically aimed at contest
plagiarism. The dataset contains 251 pairs of plagiarized solutions
of competitive programming tasks in Java, as well as 660 non-
plagiarized ones, however, the described approach can be used
to extend the dataset in the future. Importantly, each pair comes
in two versions: (a) “raw” and (b) with participants’ repeated
template code removed, allowing for evaluating tools in different
settings. We used the collected dataset to compare the available
source code plagiarism detection tools, including state-of-the-art
ones, specifically in their ability to detect contest plagiarism.
Our results indicate that the tools show significantly worse
performance on the contest plagiarism because of the template
code and the presence of other misleadingly similar code. Of the
tested tools, token-based ones demonstrated the best performance
in both variants of the dataset.

I. INTRODUCTION

In recent years, competitive programming contests have

become increasingly popular [1]. In such contests, participants

solve different algorithmic problems, constrained by certain

time and memory limits, and are judged by the speed of solv-

ing and the operation time of their solutions. Unfortunately,

as the popularity of programming contests grows, so does the

number of cases of plagiarism [2]. To ensure the fairness of

the contest and to enforce the rules of contest platforms, such

cases need to be detected.

Unlike other semantic clones [3], plagiarized code often

reuses particular popular transformations to hide the similari-

ties [4]. Currently, there exist several tools based on different

approaches to detect plagiarism in the source code [5]–[10],

however, the majority of them are developed for detecting

plagiarism in programming homeworks. At the same time,

contest plagiarism has specific features that distinguish it from

other kinds of plagiarism, the most important feature being the

reuse of templates. Template code in the context of competitive

programming is the code that is written by the participant

before the contest and copied between tasks in order to save

time during the competition.

Because of this, existing tools may perform worse on

competitive plagiarism in comparison to other kinds. However,

to the best of our knowledge, there is no single benchmark

to compare the existing approaches in the setting of contest

plagiarism. In this work, we strive to bridge the existing gaps

in research, provide the community with the first version of

curated dataset of specifically contest plagiarism, and compare

available source-code plagiarism detection tools.

In the first part of our work, we curated the dataset. To

do this, firstly, we selected 21 problems from the CodeForces

platform [11] and collected all 4,695 accepted Java submis-

sions for them. We chose the Java language because it is

the only programming language supported by the majority

of plagiarism detection tools, thus allowing us to compare

them in equal settings. For each problem, we constructed a

set of all pairs from the submissions for this task. However,

manually labelling a sample directly from all of the pairs will

result in a lot of simple non-plagiarized examples, because

the vast majority of submissions are not actually plagiarized.

To overcome this problem, we decided to use the existing

plagiarism detection tools based on different approaches [5]–

[10] to filter out trivially non-plagiarized pairs.

The manual labeling demonstrated that five out of six tools

sometimes give very low scores for actual plagiarism. Thus,

we used the sixth tool, BPlag [10], which demonstrated no

plagiarized pairs below the similarity of 60%. We filtered

out all pairs below this threshold, leaving only “interesting”

pairs, from which we selected a sample that was once again

labeled manually. This resulted in a dataset called CONPLAG

that contains 251 plagiarized pairs and 660 non-plagiarized

ones. Since an important feature of the contest submissions is

template code, to have the opportunity to compare the tools

in different settings, we manually removed templates from all

the submissions, and share CONPLAG in two versions — with

and without them. CONPLAG is available online [12].

In the second part of our work, we carry out the first

pilot comparison of the existing approaches on both versions

of CONPLAG. In this comparison, we used the same six

main available tools as in filtering, since the final dataset

only contained manually curated pairs: Sherlock [5], SIM [6],

MOSS [7], Dolos [8], JPlag [9], and BPlag [10]. On the raw

version of the dataset, the best results were obtained using

token-based tools: JPlag, MOSS, and SIM. The analysis of

the results demonstrates that some of their errors occurred due

to the matching of the I/O code, similar in form between so-

lutions. Also, unexpectedly low results were demonstrated by

BPlag, the only graph-based algorithm. Finally, the approaches

demonstrated better results when tested on the version of

CONPLAG without templates, indicating that their removal is

an integral part of developing further approaches.

We believe that CONPLAG and our pilot comparison is a

valuable first step in solving the problem of plagiarism in

programming contests that can be continued further.
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II. BACKGROUND

1) Plagiarism in Programming Contests: Source code pla-

giarism is a well-researched area of studies [13], however, the

developed solutions are usually focused on finding plagiarism

in homework assignments [14], [15], there are only a few

works devoted to plagiarism in competitive programming [2],

[16]. Even then, they are mainly focused on integrating a

particular plagiarism detection tool into the online judging

system, and not on comparing different existing tools.

Unlike some other cases, source code in programming

contests has its own specifics that directly relate to finding

plagiarism in it. In addition to the usual plagiarism hiding

techniques [4], the solutions will have a lot of similar code

that is natural for contests. Firstly, there is template code, i.e.,
some common implementations of popular algorithms that the

contestant copies into every solution. Secondly, there is code

that will be almost the same in every solution to the given

problem but not actually plagiarized, e.g., reading the input

or printing the answer. Currently, active research is underway

on how to find similar code and reduce its influence on the

similarity [17], [18].

The template code is particularly difficult to take into

account, because it can be completely different for different

contestants in both size and implementation. Also, functions

from the template code can be actively used or ignored

completely by the contestant, depending on a particular task,

making it very difficult to automatically preprocess all sub-

missions by simply removing all template code from them. It

is clear that template code can easily become a weak spot for

many algorithms, and this must be taken into account when

using plagiarism detection tools on the contest code and when

building a benchmark for their comparison.

2) Source Code Plagiarism Detection Tools: Many dif-

ferent tools were developed aimed at detecting source code

plagiarism [15]. Text-based algorithms treat a program as

a simple text, without taking into account its programming

language. The advantages of such approaches are language-

independence and high performance [4], however, this comes

at the expense of lower accuracy. A popular text-based tool

is Sherlock [5]. This tool converts the file into a sequence of

string tokens, hashes it, and extracts a subsample of hashes. To

determine the similarity of two programs, Sherlock calculates

the similarity of the sequences of hashes.

Token-based algorithms run a specific lexer on the program

and compare token streams. Such approaches are still fast

but consider a deeper representation of the program. One of

the earliest plagiarism detection tools, SIM [6], applies an

algorithm for finding the maximum sequence alignment to the

resulting token sequence of given programs. The similarity of

two programs is then defined as their alignment score. Another

popular token-based tool, JPlag [9], defines the similarity as

the percent of tokens from the first sequence that can be

covered by tokens from the second one. A different token-

based tool, MOSS [7], is based on comparing the fingerprints

of programs. A fingerprint is constructed in three steps: (1) all

the n-grams for the token stream are built, (2) these n-grams

are hashed, and (3) to avoid comparing big sets of hashes,

MOSS uses a winnowing algorithm to select a certain subset

of hashes for each program. The idea of winnowing has got

popular, and several tools appeared that are based on it. One

such tool is Dolos [8]. Unlike MOSS, Dolos is open-source,

supports more programming languages, and provides powerful

visualizations of the results.

Finally, graph-based algorithms build a graph (usually, a

program dependence graph) of the program, which shows

the dependencies of the data within the program. To avoid

the naive solving of an NP-hard problem, they use certain

heuristics. For example, BPlag [10] uses the idea of a Greedy-

String-Tiling algorithm to find similar parts in the graphs of

two programs.

Overall, it can be seen that there exist a lot of approaches

for finding plagiarism in the source code, however, given

the specifics of programming contests, it is not clear how

well they perform in such a setting. To evaluate the existing

tools, to help researchers further improve them for competitive

programming, as well as to provide a benchmark for future

solutions, in this work, we aim to collect the first dedicated

dataset of programming contest plagiarism.

III. DATASET

When comparing source code plagiarism detection tools,

researchers use (a) solutions to student assignments [9], (b)

synthetic augmentations of the programs [10], or (c) manually

changed code [6]. To compare the tools in programming

competitions, we decided to collect a dataset of pairs consist-

ing exclusively of solutions to problems from real contests.

The overall pipeline for collecting CONPLAG is presented in

Figure 1, let us now describe each step in greater detail.

1) Gathering Data: CodeForces [11] is an online platform

that hosts competitive programming contests. The solution to

the problem is a single-file program written in any popular

language (C++, Python, Java, etc.). We chose CodeForces

because it was used in previous research [19], [20].

To create our dataset, we selected tasks on the platform

based on the following two criteria: (a) the solutions must be

large enough so that there are not many false positives when

comparing them, and (b) there must be at least a hundred Java

solutions for this task, otherwise the probability of plagiarism

is very low. We collected a dataset of Java submissions because

Java is the most popular language in plagiarism research and

is the only language supported by all the tools available to us.

Based on these criteria, we downloaded all successful Java

submissions for 21 different problems and left only those that

were successfully parsed by all the six studied tools [5]–[10],

for a total of 4,695 submissions. Finally, for each problem, we

built a set of all possible pairs of its solutions. This resulted

in a total of 125,481 pairs.

2) Excluding Trivial Non-plagiarized Code: The con-

structed set of pairs is not feasible to manually label, and

even more importantly, on the vast majority of these pairs, all

plagiarism detection tools will return small values of similarity,
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Fig. 1. The pipeline of the proposed approach for collecting the dataset

which is true because the majority of contestants actually do

not cheat. To overcome these difficulties, we decided to use the

existing plagiarism detection tools, not to label the data (since

the idea is to obtain a manually-curated dataset) but to filter
out “trivially” non-plagiarized pairs. In particular, we used six

plagiarism detection tools: Sherlock [5], SIM [6], MOSS [7],

Dolos [8], JPlag [9], and BPlag [10]. The motivation behind

using all the tools at once is to minimize the bias of the

resulting dataset towards any one algorithm.

We took a sample of 1,000 random pairs and manually

labeled them as either plagiarism or not. The labeling in

this pilot work was carried out by the first author, who has

5 years of experience in competitive programming. In the

future editions of the dataset, we plan to update it with more

examples labeled by multiple experts. When the sample was

labeled, we ran all the selected tools on these pairs. This way,

for each tool, the minimum similarity for the plagiarized pair

was found. This threshold does not indicate that all the pairs

above it are actually plagiarized, it merely indicates that all
pairs below this threshold are not. This resulted in 60% for

BPlag, 17% for Dolos, and 0 for other four, meaning that there

exists actual plagiarism, for which these tool show a score of

0. From these results, one can see that only BPlag can be used

for effective filtering.

To ensure the reliability of the obtained threshold, we took

another 1,000 random pairs, and the first author manually

labeled them. Among the selected pairs, only 3 plagiarized

pairs were detected, for which BPlag demonstrated less than

60%, which indicates that this threshold allows us to success-

fully filter out simplistic cases. Having obtained and evaluated

the threshold, we ran BPlag on all the pairs and filtered out

trivially non-plagiarized code. This removed approximately

57% of the pairs, and left us only with “interesting” pairs.

3) Building the Dataset of Pairs: Next, we carried out the

final manual labeling of the dataset. We took 1,700 pairs from

the remaining set, and they were once again labeled by the

first author. Overall, the labeling resulted in 251 cases of

plagiarism and 660 cases of non-plagiarism. For the remaining

789 pairs, it was problematic to label them unambiguously, so

we excluded such pairs.

4) Dealing with Templates: As discussed in Section II,

templates are an important and difficult feature of contest

plagiarism. Therefore, for a more informative comparison, we

decided to create a separate version of the dataset without the

template code. Such a comparison would be further away from

the real-world scenario, but would allow us to see which tools

suffer the most from the templates.

After manually investigating many submissions, we found

that all the template code can be generally classified into two

groups: (a) fast input-output (I/O) and (b) the implementation

of popular algorithms. We noticed that most of the algorithmic

template code in the solutions is not used, so such code can

be safely removed. However, the code for fast I/O is actually

used by the contestant, so it can not be simply deleted, because

some tools require the code to be compilable. In particular,

this is important for graph-based tools like BPlag [10], which

requires the declaration of all the used functions. To deal with

this, we generated a separate JAR-file with all such classes

present, and in which BPlag could see the declarations of

fast I/O methods. After this, we could safely remove the code

responsible for fast I/O from each solution. The deletion of

template code, both algorithmic and responsible for fast I/O,

was done manually for each solution in each pair.

5) Dataset Characteristics: Finally, we obtained a dataset

of source code plagiarism in programming contests called

CONPLAG that has a total of 911 pairs that were all man-

ually labeled: 251 plagiarized pairs and 660 non-plagiarized

pairs. Additionally, CONPLAG is presented in two different

versions, meaning that there are two different versions of

each solution: (a) raw — each program in its original form,

and (b) template-free — with most template code removed.

CONPLAG is available online [12], and comes with an easy-

to-use CLI wrapping and detailed instructions. The evaluation

of any tool can be done in two simple steps. Firstly, a special

Python class should be created that will run the tool on each

pair of the desired version of the dataset. Secondly, after the

results are obtained, a separate script will compare them with

the labeling and output the report, containing different metrics

for the evaluated tools.

IV. COMPARING DIFFERENT TECHNIQUES

The second part of our work consists in taking both versions

of CONPLAG and comparing the existing tools on them. This

can show us which tools work the best specifically in the
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setting of a programming contest, and also point the way to

possible further improvements.

1) Metrics: Firstly, we need to select the metrics for the

comparison. As the basics, we can use precision and recall,
two of the standard metrics used in software engineering

research. At the same time, we need some other metric that

would take into account the balance of precision and recall.

One single main metric is necessary not only to make some

conclusions about the performance of the tools, but also to be

used for training the parameters of the tools.

To find the best trade-off between precision and recall,

researchers typically use F1 score, i.e., the harmonic mean

between their values. However, in our task, these two metrics

are not actually completely equal. In real contests, declaring

the solution as being plagiarized is a very serious decision,

since this inevitably leads to severe consequences. Therefore,

any cases of automatic plagiarism detection will be necessarily

checked manually, and so finding all potential cases is more

important. Luckily, F-score is actually a more general metric:

Fβ = (1 + β2) · Precision ·Recall

β2 · Precision+Recall

where β = 1 corresponds to the traditional F1 metric, β < 1

favors precision, and β > 1 favors recall. Since in our case, the

recall is more important, we decided to use β = 1.5. Further

on, we will denote this metric as F1.5.

2) Approaches: In our comparison, we used the same six

main tools that were tested for the preliminary filtering of

the dataset and that were described in Section II. Since these

tools are of different types, this comparison can show us which

perform the best for programming contests and how much the

template code affects them.

Each tool under investigation has its own parameters that

can be tuned. A lot of research in the adjacent area of clone

detection indicates that the default parameters of clone detec-

tion tools are not actually the best ones [21], [22]. Therefore,

to ensure the best performance for each tool, its different

configurations were considered. The chosen configurations are

similar to those used in the recent comparison [8], there was a

total of more than 400 configurations. You can find their full

list, as well as the best ones, in the replication package [12].

3) Methodology: In order to choose the best configuration

for each tool, the dataset was divided into train (230 pairs) and

test (681 pairs) sets. This division of the dataset is motivated

by the fact that with the smaller size of the test dataset, it

will be more difficult to find significant differences in the

performance of the source code plagiarism detection tools.

Firstly, we ran all the tools on the train set. This means

running each tool in each of the configurations with all

possible similarity thresholds from the range [0, 100]. The

best configuration of each tool was deemed the one that

reached the maximum value of F1.5. This search was carried

out independently for two versions of the dataset, obtaining

the best configurations separately for them.

Then, we compared the best configurations of tools on the

test set, also separately for the “raw” and the “template-free”

versions of the dataset, thus allowing us to see the differences

between them. We used bootstrapping [23] to build confidence

intervals for the used metrics. Specifically, for each tool, we

built 10,000 sub-samples with the same size as the test set,

ran the tool on all of them, and then used the distribution of

the metric to build a 95% confidence interval.

4) Results: Table I shows the results for both versions of

CONPLAG. Firstly, we can see that the best results on both

datasets are demonstrated by token-based tools. On the raw

version of the dataset, JPlag demonstrated the best results in

terms of the F1.5 metric (0.77), however, MOSS and SIM

are close to it (0.72 and 0.72, respectively). On the template-

free dataset, JPlag also won (0.80), and all the four token-

based tools demonstrate good results. As for the text-based tool

Sherlock, in both versions of the dataset, it demonstrated good

recall (0.76 and 0.81, respectively), but very low precision

(0.34 and 0.39, respectively). While recall is in general more

important to us than precision, such an extreme difference

ceases to be useful. Interestingly, the graph-based tool BPlag

also demonstrated results worse than token-based tools (F1.5

of 0.55 on the raw dataset). Our investigation showed that it

is too sensitive for programming contests — a lot of pairs that

have large similar chunks of code get counted as plagiarized.

TABLE I. RESULTS OF COMPARING THE BEST CONFIGURATIONS OF TOOLS 
ON THE TEST SET OF CONPLAG, IN TWO VERSIONS. NUMBERS IN THE 

BRACKETS INDICATE 95% CONFIDENCE INTERVALS

Tool Precision Recall F1.5

Raw dataset
Sherlock 0.34 (±0.05) 0.76 (±0.06) 0.55 (±0.05)

SIM 0.69 (±0.06) 0.74 (±0.06) 0.72 (±0.05)
MOSS 0.77 (±0.06) 0.71 (±0.06) 0.72 (±0.05)
Dolos 0.68 (±0.06) 0.65 (±0.07) 0.66 (±0.06)
JPlag 0.66 (±0.06) 0.83 (±0.05) 0.77 (±0.05)
BPlag 0.45 (±0.06) 0.61 (±0.07) 0.55 (±0.06)

Template-free dataset
Sherlock 0.39 (±0.05) 0.81 (±0.05) 0.60 (±0.05)

SIM 0.73 (±0.06) 0.75 (±0.06) 0.74 (±0.05)
MOSS 0.66 (±0.06) 0.81 (±0.06) 0.75 (±0.05)
Dolos 0.72 (±0.06) 0.83 (±0.05) 0.79 (±0.04)
JPlag 0.75 (±0.06) 0.83 (±0.05) 0.80 (±0.04)
BPlag 0.52 (±0.06) 0.87 (±0.05) 0.72 (±0.04)

Finally, the results show that the removal of the template

code increases the performance of the studied tools. The

difference is especially noticeable for Dolos (from F1.5 of

0.66 to 0.79) and BPlag (from F1.5 of 0.55 to 0.72). Without

templates, both Dolos and BPlag greatly improve their recall,

because they get less triggered by large similar pieces of code.

These results indicate that the presence of the template code

is indeed a serious challenge in correctly detecting plagiarism

in programming contests.

5) Discussion & Implications: Performance of tools. The

study of the existing tools on CONPLAG demonstrated that

different tools show very different results. The most prominent

result is that the graph-based tool BPlag turned out to be

too sensitive for contest data, and demonstrated worse perfor-

mance than simpler token-based tools. However, BPlag was
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able to detected certain non-trivial plagiarism cases that other

tools missed. Future approaches might benefit from combining

different kinds of code representation.

Template code. Another noticeable and expected result is

that the performance of the tools improved on the version

of the dataset without templates. For some tools, this change

was very significant. This means that the automatic removal of

templates can be considered as one of the most important tasks

that can turn state-of-the-art plagiarism detection techniques

into state-of-the-practice tools employed in real contests.

Repeating code. Apart from the template code, solutions to

the same task might have general repeated code, like reading

or writing. A very important step in improving the quality of

plagiarism detectors for contest code is being able to pay less

attention to such code and more — to the actual solution. A

promising direction for further research would be automized

ways of processing several solutions to the same task and

marking the similar parts of the solution.

Metric. A traditional approach of locking a single threshold

for the tool may not represent the real-life tool usage, where

experts usually run the tool for each problem, get a list of

pairs sorted by its similarity, and check pairs from the top of

this list. This can be more representative when the tool has

its own threshold for each problem. Ranking metrics from the

information retrieval field might be a possible area of research.

V. LIMITATIONS & FUTURE WORK

1) Language: Our dataset is based on the Java language,

even though it is not the most prominent one in competitive

programming. The choice of the language was dictated by the

fact that it is the only one supported by all the prominent

tools for detecting source code plagiarism. Future techniques,

developed specifically for programming contests, may target

more programming languages, such as C++. Our dataset

cannot claim generalizability, however, the described approach

can be used to collect similar datasets for other languages.

2) Labeling: The labeling of the dataset was carried out by

the first author of the paper and cannot be perfect. The author

has a lot of experience with competitive programming, and we

used several rounds of labeling to mitigate possible biases. At

the same time, we view CONPLAG as the first step towards

a fully fledged benchmark, and consider broadening it in the

future as the main next step. For this reason, our major future

plan is to conduct an extensive labeling with multiple experts.

VI. CONCLUSION

In this paper, we collected CONPLAG [12], the first dataset

of source code plagiarism consisting specifically of solutions

to competitive programming contest tasks, and used this

dataset to compare the existing plagiarism detection tools.

The manually labeled dataset contains 251 pairs of plagiarized

solutions and 660 pairs of non-plagiarized ones, and comes

in two versions: “raw”, as well as with removed templates.

The comparison of the existing tools for detecting software

plagiarism showed that token-based tools demonstrate the

best results, and that the presence of templates hinders the

performance of all the tools.
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