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Abstract—Simultaneous Localization and Mapping (SLAM) is a 
fundamental challenge in robotics, enabling autonomous 
navigation for robots in unknown environments. This article 
explores various approaches and methods for solving SLAM in 
both 2D and 3D cases.  This article aims to show the importance of 
uncertainty measurement and control and suggest possible 
solutions and discuss future research directions in extending 
algorithms like VinySLAM [1] to the 3D domain. 

I. INTRODUCTION 

Localization is one part of the robot's navigation challenge. 
Localization is the determination of a robot's position in its 
environment. Autonomous navigation can allow robots to 
navigate in an unknown environment and perform tasks without 
human intervention. The solution of the SLAM (Simultaneous 
Localization and Mapping) problem will allow the robot to 
accurately determine its position on the map, and as a 
consequence, it would provide the means to make a robot truly 
autonomous [2]. 

There are different approaches to solving this problem, none of 
which is optimal. The choice of a particular SLAM algorithm, 
the choice of map representation, and the robot's representation 
of its belief about its position on the map affect the accuracy 
and speed of the final solution, as well as the amount of 
resources required. 

The purpose of this paper is to show the importance of 
uncertainty measurement and control in the SLAM problem and 
its crucial influence in the 3D case. This article describes the 
beginning of the research of creating a 3D SLAM algorithm 
using implementation of Dempster-Shafer Theory. 

II. PROBLEM STATEMENT 

At the moment there are many different approaches for SLAM 
in the 2D case.  

The 3D case differs from the 2D case by adding one more 
dimension and, as a consequence, by increasing the amount of 
memory for storage and processing time of the map. This 
creates additional technical difficulties, which require the 
development of new algorithms and methods to effectively 
solve the problem of 3D SLAM. Consider some existing 
approaches. 

A. Graph-based SLAM 

Graph SLAM represents the map and robot locations as a sparse 
graph. A graph is constructed with nodes representing robot 
poses or landmarks, and edges between nodes encoding sensor 

measurements that constrain the connected poses. However, 
due to noise in observations, these constraints may be 
contradictory. The main challenge in graph-based SLAM is to 
find a configuration of the nodes that is maximally consistent 
with the measurements, which involves solving a large error 
minimization problem. [3] 

In Graph SLAM, loops often occur when the robot passes 
through the same area several times. These loops can lead to an 
accumulation of errors in the evaluation of the robot's trajectory 
and the environment map. 

The method called Loop Closure Detection is used to solve this 
problem. This method detects when a robot passes through the 
same area multiple times and includes this information in the 
graph.  

This algorithm requires comparing two nodes in the graph, but 
since it is unknown which nodes need to be compared, the worst 
case SLAM without optimizations requires to compare all 
nodes with all nodes. This operation is already expensive in the 
two-dimensional case, so is not done at every iteration of the 
algorithm. In the three-dimensional case, this operation 
becomes even more expensive. The 2D case uses three degrees 
of freedom: x, y, and rotation angle. In the 3D case, the number 
of degrees of freedom increases to six, including x, y, z 
coordinates and three rotation angles in each axis. This 
complicates the graph matching and optimization process, and 
may require additional computational resources and time to 
efficiently solve the problem. 

B. Particle filter 

The particle filter is another way to solve the SLAM problem. 
In general, in the particle filtering algorithm, the posterior 
density of the distribution function is represented by a set of 
random particles with weights, each of which specifies a 
hypothetical position of the robot in space.  Each such particle 
is evaluated for correspondence between the measurements 
from the sensors and the expected values that the robot should 
have received while in the given position and orientation. Based 
on the weight of the particles, the particle filter determines the 
most likely location of the robot. Particles that turn out to be 
less likely are discarded, and the most likely particles are 
multiplied. 

There are several varieties of the particle filtering algorithm.  

One of these families of algorithms, Rao–Blackwellized 
particle filters has a problem that lies in algorithmic complexity, 
measured in terms of the number of particles required to learn 
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an accurate map. Either reducing this quantity or improving the 
algorithm so that it is able to handle larger sample sets [4]. 

C. Map Representation 

One of the ways to represent the environment is using grid- 
based maps. The Probability Grid Map for the 2D case is a two-
dimensional array of cells, each of which represents the 
probability that a given area of space is occupied by an obstacle. 
One of the variations of the grid-maps, Occupancy Grid Map, 
stores in every cell  0 or 1 in case this cell has an obstacle or 
not. 

FastSLAM, one of the implementations of Particle filter,  
uses Occupancy Grid Map. One of graph-based  
SLAM, Cartographer [5], uses Probability Grid when building 
submaps. 

Correspondingly, when using an Occupancy Grid Map or 
Probability Map for a 3D map, such a map is already a three-
dimensional array. In [6] it is pointed out that at each step of 
prediction and correction of the robot's position all cells of grid-
map are updated, and if the number of cells in the map is too 
large, the calculations may become too heavy to work in real 
time. As an example, the authors consider a 30x30 m 
environment with a cell size of 0.1mx 0.1mx1°. In this case, the 
number of cells that need to be updated at each step would be 
30x30x100x360=32.4 million cells. 

One possible solution in this case is to sacrifice accuracy and 
choose a larger mesh size. Another proposed solution is to use 
adapted cell decomposition, that is, cells of different sizes 
depending on the robot's confidence in its position. This 
implementation is more complex than cell size is fixed and, 
depending on the environment, can also be computationally 
demanding. 

When creating grid-maps, there can be uncertainty about the 
state of the cell. For example, if a lidar beam pierced a cell the 
same number of times and encountered an obstacle, it is 
impossible to say unambiguously whether the cell in question is 
free or not. Another example, when a lidar beam cannot reach 
some space in the environment and cannot provide information 
about it. 

D. VINYSLAM 

VinySLAM is a modification of the one-hypothesis tinySLAM 
[7] algorithm that uses the Transferable Belief Model (TBM) 
[8] which is the interpretation of the Dempster-Shafer Theory 
[9] to represent cell states in the Occupancy Grid Map. A cell 
can be in one of four states: occupied, empty, unknown, and 
conflict. 

The algorithm is less robust than Grid-based FastSLAM 
(GMapping) and Graph SLAM (Cartographer) 
implementations. At the same time, based on measurement 
results, vinySLAM has accuracy close to Cartographer, as well 
as a much simpler implementation. VinySLAM can be found 
here [1]. 

Future research intends to extend VinySLAM to the three-
dimensional case. 

III. APPLYING THE TBM AND THE DEMPSTER-SHAFER THEORY 

TO MAP REPRESENTATION 

In the classical Bayesian approach of the occupancy grid, each 
cell contains a probability of being occupied, whereas 
Dempster-Shafer theory allows multiple masses to be stored in 
a single cell and offers formulas for updating these masses. 

The basic idea of the DST (Dempster-Shafer Theory) is that 
uncertainty in knowledge can be represented as a mass function 
(a set of probabilities) that indicates what possible outcomes 
exist and how likely each of them is. This mass function can be 
used to estimate the degree of confidence in conclusions based 
on fuzzy and uncertain data. 

The DST allows us to express ignorance, which means that 
some mass can be attributed to the set of all possible hypotheses. 
This ability to model uncertainty, including both aleatoric 
(inherent randomness) and epistemic (due to lack of 
knowledge) uncertainty, allows for better decision making in 
SLAM applications. 

Also, DST is effective in combining evidence from multiple 
sources because it considers the reliability of each source when 
updating belief functions, which can be useful when using 
multiple sensors to estimate robot position and map. 

In the Bayesian approach, conflicting evidence can lead to a 
weakening of the overall belief. Dempster-Shafer theory, on the 
other hand, allows contradictory evidence to be treated 
explicitly, resulting in a more nuanced representation of 
uncertainty. 

Dempster-Shafer theory can in some cases be computationally 
more efficient than Bayesian methods because they do not 
require estimating the full joint probability distribution. Instead, 
they work with belief functions that can be updated using local 
computation. This makes them more suitable for real-time 
SLAM applications where computational resources may be 
limited and updates must be performed quickly. 

IV. CONCLUSION  

In conclusion, solving the Simultaneous Localization and 
Mapping (SLAM) problem is crucial for autonomous robot 
navigation in unknown environments. This article presented 
various approaches and methods for addressing this challenge 
in both 2D and 3D cases, highlighting the unique advantages 
and limitations of each method. In particular, the application of 
Dempster-Shafer theory and Transferable Belief Model in 
SLAM algorithms, such as VinySLAM, has demonstrated 
potential for providing a more robust representation of cell 
states in an Occupancy Grid Map compared to traditional 
Bayesian probability approaches. 
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