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Abstract— Although most people can communicate effectively 
through speech, some have difficulties doing so due to physical or 
mental impairments. Communication is a significant obstacle for 
individuals with these disabilities. Methods of deep learning can 
aid in the elimination of communication barriers. This article 
proposes a model based on deep learning for detecting and 
recognizing words from gestures. Deep learning models such as 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit 
(GRU) are used to recognize signs from Egyptian Sign Language 
(ESL) video frames. There are many activation functions, and 
every type has advantages and disadvantages. All these activation 
functions were applied to our dataset for ESL. To overcome the 
main disadvantage of the Relu activation function, we proposed a 
gesture recognition method for ESL using Mediapipe and modified 
GRU with a new activation function (Talu). The proposed model 
achieves approximately 94.95% accuracy across ten different 
signs. This method may assist people unfamiliar with Egyptian 
sign language in communicating with people with speech or 
hearing impairments. 

I. INTRODUCTION 

When speech is hindered, people use tactile-kinesthetic 
communication. It has been estimated by the World Federation 
of the Deaf that there are over 70 million deaf people today. The 
vast majority (over 80%) of them are in third-world countries, 
including Egypt.  They use over 300 different sign languages. 
Sign language helps people with speech and hearing 
impairments communicate—visual language. The fundamental 
aspects of sign language are hand shape, orientation, movement, 
location, and additional factors such as mouth shape and 
eyebrow movements. The use of bright gloves can give a voice 
to sign language movements. Unfortunately, people without 
knowledge of sign language tend to underestimate or disregard 
those with disabilities due to communication barriers. To 
address this issue, the authors propose a system that aims to 
eliminate communication gaps and provide equal opportunities 
for everyone. The proposed system involves analyzing a video 
of a person's hand gestures and utilizing a model to predict words 
one by one. The system generates a coherent sentence from these 
words, which can then be translated. The authors utilized 
Egyptian sign language in their system, which includes ten static 
signs such as hello, home, man, woman, etc. The system uses 
natural gesture input to produce sign language, which is then pre-
processed and analyzed to determine the exact word associated 
with the gesture. 

This study aimed to develop an offline sign-language 
recognition system. Vision-based data collection from signers 
was developed. This study focuses on the system's ability to 

recognize ESL words (10 words). The ESL dataset has ten 
words, each with 500 video samples from 5 male and female 
research participants.  

The paper continues Section 2 reviews the literature (sign 
language recognition). Section 3 describes how to implement 
sign language detection and recognition. Section 4 discusses 
ESL and analyzes experiment results. Section 5 concludes and 
proposes future research. 

II. RELATED WORK

Multiple methods have been suggested by the literature for 
recognizing ASL, including motion gloves, the Kinect Sensor, 
camera-based image processing, and leap motion controllers. 
To monitor the three-dimensional motion of 50 ASL words, an 
artificial neural network model was developed [1]. Compared 
to visual methods, using motion gloves for ASL recognition is 
more costly, requires specific hand anatomy, and is 
uncomfortable for users. Wear and tear on the gloves from 
repeated use also increases the calibration time and introduces 
the possibility of error ([2] - [4]). ASL signs are still hard to 
recognize with Kinect sensors alone because the signs are 
complicated, fingers are always in the way, there are a lot of 
similarities between classes, and there are also big differences 
between classes ([5], [6]). In addition, it is crucial that the 
sensory data be calibrated. Several research efforts have 
concentrated on angular position measurement for motion 
gesture prediction [7]. Another method is to recognize the 
sequence of glosses present in continuous video sequences ([8] 
– [10]) A user-dependent mode for developing an ASL
recognition system was proposed by [11], and a modified kNN 
approach was proposed by [12]. Extensive research has also 
been conducted on the wearable application and sensing board 
for ASL recognition ([13] - [17]). 
Image processing is a widely accessible and effective low-cost 
option for vision-based sign recognition ([18] - [21]), but it 
takes a long time to calculate the recognition of a hand and 
fingers, which delays the projection of the recognition result 
[22]. Factors such as the subject's skin tone and ambient lighting 
can also have a significant impact on the reliability of data 
collection [23]. The palm-sized leap motion controller, on the 
other hand, is a more affordable and convenient alternative to 
motion gloves or Kinect sensors [24]. In addition to its other 
benefits, the leap motion controller processes data quickly is 
highly reliable and requires little memory [25]. The controller, 
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however, samples data at irregular intervals. To mitigate its 
impact on real-time recognition systems, post-processing is 
required [26]. The authors in [28] proposed an algorithm for 
ESL recognition using Inception-v3 as CNN stage and LSTM 
as RNN stage and they achieved 90% accuracy for CNN only 
and 72% for CNN-LSTM method. 

A. Mediapipe 

MediaPipe is a hybrid open-source framework that generates 
pipelines for processing visual data such as photos, videos, and 
audio. It is a comprehensive technique that uses ML for real-
time hand detection and gesture identification. It offers 
additional hand and finger track options by identifying sign 
motions effectively. To get the landmarks (keypoints) from the 
face, hands, and body stance, we used a MediaPipe Holistic 
pipeline. 

1) Holistic pose landmarks. 
Using its BlazePose detector, the MediaPipe Holistic body 

pose model infers about 33 3D landmarks of coordinates (x, y, 
z) on input pictures of the body and extracts the person/position 
areas of interest (ROI) inside the frame. Pose landmarks and the 
cropped ROI division masks recognize postures sequentially. It 
properly localizes more critical places and SLR as shown in 
Fig.1. 

 

 
Fig. 1. Pose landmarks [27] 

2) Holistic hand landmarks. 
In a single frame, MediaPipe Holistic hands integrate two 

models the palm detection model and the hand key point 
localization model to infer around 21 hand landmarks 
consisting of (x, y, z) coordinates and to give the required 
output. The gadget originally employed a Blaze Palm single-
shot detector. 

 This model highlights stiff areas in the entire picture with a 
bounding, such as palms and fist, for palm detection. Using 
palm detection output, the model localizes hand key points as 
shown in Fig. 2. 

 

Fig. 2. Hand landmarks [27] 

3) Holistic face landmarks. 
Using a single camera and no depth sensor, MediaPipe face 

mesh creates 468 3D facial landmarks. It employs two deep 
neural network models: a detector for calculating face positions 
throughout an entire image and a 3D face landmark model. 
Precision face cropping reduces data augmentation processes 
and allows the network to concentrate on coordinate prediction 
accuracy as shown in Fig. 3. 

 
Fig. 3. Face landmarks [27] 

B. GRU 

Most computer vision issues include dealing with temporal 
connections between inputs as well as modeling short and long-
term sequences. Recurrent neural networks (RNNs) are an 
effective method for processing sequential input. Unlike 
traditional neural networks, RNNs focus on modifying state 
neurons to learn contextual relationships within and between 
sequential input. However, training RNNs can be challenging 
due to various constraints, as well as concerns about vanishing 
and exploding gradients. To address these issues, researchers 
have developed Gated GRUs, which improve on traditional 
RNNs by addressing the problem of disappearing and exploding 
gradients. LSTM networks are the most commonly used type of 
RNN due to their state-of-the-art performance on numerous 
machine learning applications. GRUs, which are a variation of 
LSTMs, operate similarly and provide satisfactory results. They 
enhance the architecture of LSTM units by combining the three 
gating units into two: an update gate and a reset gate. As a result, 
the GRU network model parameters are significantly reduced, 
preserving information dependence and shortening training 
time. Fig. 4 depicts the overall anatomy of a typical GRU cell 
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Fig. 4. GRU cell 

Following are the equations used in GRU typical cell 
 

𝑟௧ ൌ  𝜎ሺ 𝑊௫௥
்  .  𝑥௧ ൅ 𝑊௢௥

்  . 𝑜௧ିଵ ൅  𝑏௥ ሻ                (1) 

𝑧௧ ൌ  𝜎ሺ 𝑊௫௭
்  .  𝑥௧ ൅ 𝑊௢௭

்  . 𝑜௧ିଵ ൅ 𝑏௭ ሻ                (2) 

𝑜෤௧ ൌ  𝑡𝑎𝑛ℎሺ 𝑊௫௢෤
்  .  𝑥௧ ൅  𝑊௢௢෤

்  . ሺ𝑟௧  ⊗ 𝑜௧ିଵሻ ൅ 𝑏௢෤  ሻ      (3) 

𝑜௧ ൌ  𝑧௧ ⊗ 𝑜௧ିଵ ൅ ሺ 1 െ 𝑧௧ ሻ ⊗ 𝑜෤௧                    (4) 

𝑡𝑎𝑛ℎሺ𝑡ሻ ൌ  ଵି ௘షమ೟

ଵା ௘షమ೟                               (5) 

𝜎 ൌ  ଵ

ଵା ௘ష೟                                        (6) 

Where 𝑊௫௥ ,  𝑊௫௭ , 𝑊௫௢෤   are the weights of the matrices for 
the corresponding connected input vector, 𝑊௢௥ , 𝑊௢௭ , 𝑊௢௢෤  
represent the weight matrices of the previous time step and 𝑏௥ , 
𝑏௭ , 𝑏௢෤  are bias 

III. METHODOLOGY 

We divided the proposed algorithm into two main parts, CNN 
and RNN. The CNN stage is used for features extraction from 
each frame and then goes to RNN to recognize and predict the 
word. Before these two main parts, a pre-processing stage is 
necessary to prepare the data. 

A. Data pre-processing and feature extraction 

For this stage, we used MediaPipe Holistic as MediaPipe's 
multistage pipeline, for data preprocessing and feature 
extraction from the image. Each input frame was processed by 
the MediaPipe Holistic, which used region-specific image 
resolution to handle separate models for the hands, face, and 
pose components. The first stage process is outlined briefly 
below: 

1) The pose detector in BlazePose was used to estimate 
both the human pose and the resulting landmark model. 
Following that, the estimated landmarks were used to crop 

three regions of interest (ROIs) for the face and hands. A 
recrop was then used for ROI improvement. 

2) This was accomplished by cropping the input 
coordinates for task-specific hand and face models to the ROIs 
from the original, high-resolution input coordinates. 

3) When everything was added up, we had more than 540 
landmarks 

B. Gesture recognition 

In this stage, after extracting the futures, we use a modified 
GRU as an RNN model to recognize the gesture from the video. 
The learning rate for the network is debending on which 
activation function is used, and each one has its usage: 

1) Sigmoid function: The sigmoid function is commonly 
used in GRU models to control the update and reset gates, 
which are used to regulate the flow of information through the 
network. The sigmoid function has the range (0,1) and is 
defined as 

𝑓ሺ𝑥ሻ  ൌ  1 / ሺ1 ൅  𝑒𝑥𝑝ሺെ𝑥ሻሻ                           (7) 

2) Hyperbolic tangent function (tanh): The tanh function 
is another common activation function used in GRU models. 
It is similar to the sigmoid function but has a range of (-1,1). 
The tanh function is often used in the output gate of the GRU 
to regulate the output values. It is defined as 

𝑓ሺ𝑥ሻ  ൌ  ሺ𝑒𝑥𝑝ሺ𝑥ሻ  െ  𝑒𝑥𝑝ሺെ𝑥ሻሻ / ሺ𝑒𝑥𝑝ሺ𝑥ሻ  ൅  𝑒𝑥𝑝ሺെ𝑥ሻሻ  (8) 

3) Rectified Linear Unit (ReLU): ReLU is a popular 
activation function in deep learning models. It has been shown 
to perform well in many applications, including image 
recognition and natural language processing. ReLU is defined 
as 

 𝑓ሺ𝑥ሻ  ൌ  𝑚𝑎𝑥ሺ0, 𝑥ሻ                                 (9) 

which means that it returns zero for negative inputs and the 
input value for positive inputs. 

4) Softmax function: The softmax function is commonly 
used in the output layer of the GRU to produce a probability 
distribution over the output classes. It maps the input values to 
a range of (0,1) and normalizes them so that they sum to 1. The 
softmax function is defined as 

 𝑓ሺ𝑥_𝑖ሻ  ൌ  𝑒𝑥𝑝ሺ𝑥_𝑖ሻ / 𝑠𝑢𝑚_𝑗ሺ𝑒𝑥𝑝ሺ𝑥_𝑗ሻሻ                (10) 

for the i-th element of the input vector. 
 

5) Swish function: The swish function is a recently 
proposed activation function that has shown to improve the 
performance of deep neural networks. It is defined as 

 𝑓ሺ𝑥ሻ  ൌ  𝑥 ∗  𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑏𝑒𝑡𝑎 ∗  𝑥ሻ                         (11) 
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 where beta is a hyperparameter that controls the shape of the 
function. The swish function is similar to the ReLU function, 
but it has a smooth curve and allows negative input values to 
produce nonzero outputs. 

 The primary modification to the standard GRU cell is an 
enhancement to the update gate, which involves replacing the 
tanh activation function with the TALU activation function. Our 
proposed RNN model, called EGRU, improves the update gate 
by multiplying the original input 𝑥௧ with 𝑟௧ This modification 
leads to better learning efficiency, faster convergence, and 
reduced computational cost, as well as the ability to remove 
irrelevant information in a single screening of the complex time 
series data. The reset gate's output is utilized as feedback to 
fine-tune the update gate. By limiting the input information 𝑥௧ 
using the reset gate, faster convergence and more efficient 
learning can be achieved, even when the data volume is 
excessive. The suggested EGRU cell structure is shown in 
Fig.5. 

Fig. 5. EGRU cell 

We applied a red dashed box which represents the standard 
tanh activation function that replaced with the TALU activation 
function. the equations remain the same as in the typical GRU 
except for (3), and (5). The new equations for the EGRU cell 
are as follows:  

𝑜෤௧ ൌ  𝑇𝐴𝐿𝑈ሺ 𝑊௫௢෤
்  .  𝑥௧ ൅ 𝑊௢௢෤

்  . ሺ𝑟௧  ⊗ 𝑜௧ିଵሻ ൅ 𝑏௢෤  ሻ    (12) 

𝑇𝐴𝐿𝑈ሺ𝑥ሻ ൌ ቊ
𝑥, 𝑥 ൐ 0

ଵି ௘షమೣ

ଵା ௘షమೣ , 𝑥 ൑ 0
  (13) 

Fig 6 shows the network architecture for gesture recognition 
stage with the input and output for each step ending with the 
softmax layer in the final classification step with 10 classes. 

IV. EXPERIMENT RESULTS

A. Experimental Setup 

We used our own dataset which consists of ten classes acted 
by 5 actors each one with 100 clips. These classes represent the 

words (hello, good morning, good night, home, phone, thanks, 
bye, friend, man, and woman). We split the data set into 75% 
for training, and 25% for validation. 

The experiments of this paper were carried out with the 
following setup: 11th Gen Intel core i7 processor @2.30 GHz 
with 32 GB ram, and Nvidia Geforce RTX 3060 with 6 GB 
memory. The platform was Jupyter Notebook and python 3.8 
on windows 11. 

Fig. 6. Architecture of the network 

B. Results 

The results show that the proposed algorithm achieves better 
accuracy when compared with the standard GRU, GRU with 
RELU activation function, standard SLTM, and simple RNN. 
Table I summarize the accuracy of all networks. 
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TABLE I.  NETWORKS ACCURACIES AND LOSSES 

Network Accuracy Losses 

Standard GRU 91.23 0.32 

GRU with RELU 92.51 0.35 

Standard LSTM 90.97 0.38 

Simple RNN 87.53 0.45 

Proposed EGRU 94.95 0.25 

Fig. 7 shows samples of the good morning class, marked with MediaPipe 
holistic for hand, pose, and face

Fig. 7. Good morning class 

Fig. 8 and Fig. 9 show the accuracies and losses charts 
respectively. The accuracy in the first 3 epochs are under 
expectations but in the next four epochs it gets better and from 
epoch 8 it starts to slightly increase 

Fig. 8. Networks Accuracies 

Fig. 9. Networks Losses 

Table II shows the precession, recall, and accuracy results for 
the proposed algorithm 

TABLE I I.  ACCURACY RESULTS FOR PROPOSED EGRU 

The confusion matrix is shown in Fig.10 for the proposed 
network with 10 words (good morning, good night, friend, 
home, phone, bye, man, woman, hello, and thanks). The 
network gives an accuracy of 97% for words (woman, man, and 
good morning), while the word bye has the least accuracy of 
83%. 

V. CONCLUSION 

In our study to simulate the human brain performance in 
recognition of all actions and objects and to help deaf peoples 

Network Precision Recall Accuracy 

Proposed 
EGRU

94.94 95.06 94.95 
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communicate with the community, we proposed a modified 
GRU model with Mediapipe Holistic to recognize Egyptian 
Sign Language, and the results show that the proposed 
algorithm gives an efficient model for with an accuracy of 
94.95. In future work, we want to apply the algorithm to a 
complete dataset for Egyption sign Language and develop an 
android version to operate on mobile phones.  

Fig. 10. Proposed network confusion matrix 
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