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Abstract—This work examines the possibilities of increasing
the efficiency of the computation of proper edge k-coloring of
cubic graph with the use of machine learning methods. State-
of-the-art approaches related to this problem work with time
complexity of circa O(20.427|V (G)|), where |V (G)| is number of
vertices of given graph G. The main focus of the paper is use
of machine learning model of decision trees for the problem of
identification of properly edge 3-uncolorable graphs called snarks
- well known instance of NP-complete problem. Presented work
consists of creation of graph property datasets fitting for the
specified machine learning task, building of decision tree models
based on the created datasets and identification of properties
which are significant in the context of graph edge coloring and
are measurable in lower time complexity than the edge coloring
itself.

I. INTRODUCTION

Proper edge k-coloring of the cubic graphs is problem,

which is frequently computed as the part of scheduling of

tasks in the context of large computational systems, register

allocation in the compilation of source code into machine

code or pattern matching problems [1], [2]. In these problems,

algorithm needs to color number of graphs while each edge

k-coloring represents NP-complete problem. We are searching

for properties and we design methods, which could be used

to make coloring of big sets of graphs more effective.

The main objective of this work is the identification of

hidden knowledge that affects the proper edge k-colorability

of graph. In the process of this search, we used the method

of decision trees, where we projected the process of proper

coloring with the use of k colors into a classification task

while the number of used colors was fixed. In the context

of the presented paper, the objective is to correctly classify

the input graph described by its properties into one of two

classes - properly edge k-colorable graphs or improperly edge

k-colorable graphs for fixed k equal to 3 (see Section III for

reasoning).

The contributions presented in this paper are:

• Creation of graph property datasets fitting for the spec-

ified machine learning task. This type of datasets is

very hard to find, therefore we need to use number of

datasources in order to create appropriate data.

• Building of decision tree models based on the created

datasets in order to classify input graph sets into one of

two considered classes - properly edge k-colorable graphs

or improperly edge k-colorable graphs.

• Identification of properties which are significant in the

context of graph edge coloring. In the ideal case all of

these properties of given graph can be computed in lower

time complexity than edge coloring itself, therefore we

can make obtaining the information about edge colorabil-

ity of graph more effective.

The body of the presented paper is structured into three

sections. In the section titled Related Works (Section II) we

present works from various areas of computer science (data

analysis, graph theory, data mining) that are relevant to this pa-

per. In the section III, we give basic information about graphs

and the problem of edge k-coloring of graphs, we present the

datasets we created, including a description of the properties

recorded in them and simple statistical properties of the dataset

(centrality, variability and correlation analysis). Section IV of

this paper contains the results of the examination of created

datasets using decision trees methods and identification of

properties that affect the proper edge k-colorability of our sets

of graphs.

II. RELATED WORKS

The research presented in this paper is a continuation of

our previous work [3], [4]. In these publications, we focused

on using permutations of graph adjacency matrices and correct

decomposition of datasets to streamline parallel and distributed

algorithms of edge 3-coloring of large graph sets. A similar

approach was chosen by the authors of the work [5], who

analyzed a large set of data while the key concept authors

of the work focused on was partitioning of data with a

combination of indexing and parallelism.

Our previous work was mostly motivated by the approach

of Kowalik in [6], who shows an algorithm for edge-coloring

an n-vertex graph using three colors while using polynomial

space. Kowalik applies a natural approach of generating inclu-

sion–maximal matchings of the graph. Modern findings in the

area of graph theory and improperly edge k-colorable graphs

have been published in [7]. Authors of this work determine

the value of the chromatic index - number of colors needed

for proper edge coloring of a graph - for several basic graph

classes including trees, cycles, hypercubes and subdivisions
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of complete graphs. Authors also give upper bounds on the

chromatic index in terms of other graph parameters, which

brings forward the relationship between various graph proper-

ties researched in this paper.

In [8], authors use the induction of decision trees and fuzzy

decision trees in different applied areas as a relevant problem

in Data Mining. Authors of this paper focus on an algorithm

for the fuzzy decision tree induction based on Cumulative

Mutual Information Estimate. This algorithm is considered in

the context of defect detection of blades of gas turbine aircraft

engines.

Other applied use of decsion trees is described in [9], where

authors propose a novel optimization approach to interpretable

reinforcement learning that builds decision trees. Proposed

approach is based on a two-level optimization scheme that

combines the advantages of evolutionary algorithms with the

benefits of Q-learning. This method allows decomposing the

problem into two sub-problems: the problem of finding a

meaningful decomposition of the state space, and the problem

of associating an action to each subspace.

III. GRAPHS, GRAPH DATA AND GRAPH PROPERTIES

Graph G is described as pair of sets V (vertices) and E
(edges), where [10]

G = (V,E), E ⊆ V 2

This work considers strictly so called cubic graphs, where

number of edges, which are incident to any given vertex is

equal to 3. We call this property of vertex the degree of vertex

denoted by deg(V ) while max(deg(V )) is denoted by Δ(G).
Since cubic graphs are smallest non-trivial graphs, they are

fitting starting point for making the computation of edge k-

coloring of graphs more effective [10].

Proper edge k-coloring of graph is an NP-complete problem

[6], which consists of assignment of colors to edges of graphs

in such a way, that no adjacent edges are colored with the

use of same of the k considered colors (see Fig.1). The Fig.

1 presents improperly colored graph on the left (there is

problematic coloring of the edges incident to the A vertex)

and same graph colored properly on the right.

Fig. 1. Example of improperly (left) and properly (right) edge 3-colored
graph

Since Vizing’s theorem [11] for graph G, formulated as

Δ(G) ≤ χ′(G) ≤ Δ(G) + 1

where χ′(G) is so-called chromatic index (number of colors

needed in order to properly edge color the graph G), holds

true, we consider two possibilities of edge coloring of cubic

graphs - either with the use of 3 or 4 colors. This problem

can be solved by edge 3-coloring of graph where:

• In the case the graph is edge 3-colorable, we are talking

about a standard cubic graph.

• Otherwise, we talk about the so-called snark. However,

finding out whether a graph is snark is time-consuming

- in the worst case, it is necessary to verify all possible

edge 3-colorings of the graph [6].

In this work, we focus on creating a machine learning model

that will be able to identify a snark based on properties other

than the experimental edge coloring of the graph itself.

A. Graph Datasets for Machine Learning Methods
For the purposes of the aforementioned objective of training

a machine learning model of decision trees, which will be

able to identify snarks or standard cubic graphs, we need to

collect appropriately structured graph datasets. The appropriate

structure of the dataset is reflected in the horizontal and

vertical aspect of the data:

• it is necessary to create datasets composed of an evenly

distributed sample of snarks and cubic graphs,

• it is necessary that we measure a large number of

properties about each of the graphs.

Based on these requirements, we created mixed datasets of

snarks and standard cubic graphs for 30, 32, 34 and 36 vertex

graphs. Each dataset contains 500 graphs in even distribution

of 250 snarks and 250 standard cubic graphs. The source

of data for the creation of our datasets is the House of
Graphs portal [12], the graphFilter tool [13] and the SageMath
software [14].

The properties and their description, which were measured

for our four datasets are presented in the following list [10]:

• Average degree of graph G is arithmetic mean of degrees

of all vertices in G.

• Graph G is bipartite in the case we can divide the set

of vertices of the graph V (G) into two subsets A and B
in such a way, that each edge of G conects one or more

vertices from A with one or more vertices from B.

• Graph G is claw-free in the case it does not contain K1,3

(also called claw) as an induced subgraph.

• Clique number is size of largest complete graph that can

be made of the input graph G.

• Chromatic index of graph G is minimal number of

colors needed in order to color the edges of the graph G
properly. Therefore, this property is the key to defining

whether the cubic graph is snark (chromatic index of 4)

or standard cubic graph (chromatic index of 3). From the

point of view of this work, this is the property we want

to be able to predict the value for.

• Chromatic number of graph G is minimal number of

colors needed for proper coloring of vertices of G.

• Graph G is connected in the case, that each pair of

vertices of G is conected by a path.
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TABLE I. BASIC STATISTICAL FEATURES OF RELEVANT (NON-CONSISTENT) PROPERTIES OF GRAPH DATA FOR 30 AND 32 VERTEX 
GRAPHS

30-vertex graphs 32-vertex graphs
Property of graph min max avg sd min max avg sd
Bipartite 0 0 0 0 0 1 0,002 0,045
Claw-free 0 0 0 0 0 0 0 0
Clique number 2 3 2,188 0,391 2 3 2,026 0,159
Density 0,103 0,103 0,103 0,0002 0,0967 0,0970 0,0969 0,0001
Diameter 4 10 6,41 1,3196 5 11 6,657 1,031
Edge connectivity 1 3 2,722 0,487 1 3 2,846 0,427
Eulerian 0 0 0 0 0 0 0 0
Matching number 14 15 14,982 0,133 15 16 15,974 0,159
Number of triangles 0 0 0 0 0 0 0 0
Planar 0 0 0 0 0 0 0 0
Radius 3 8 4,748 1,089 4 7 4,922 0,498
Regular 1 1 1 0 1 1 1 0
Vertex connectivity 2 3 2,998 0,0447 1 3 2,846 0,427
Largest L-eigenvalue 5,361 6 5,627 0,136 5,478 6 5,729 0,108
AS Second largest Eigenvalue 2,181 2.961 2,649 0,094 2,236 2,961 2,754 0,094
AS smallest Eigenvalue -3 -2 -2,626 0,139 -3 -2,478 -2,729 0,108
Laplacian spectrum 0,043 0,819 0,351 0,228 0,039 0,764 0,245 0,094
Chromatic number 3 3 3 0 2 4 3 0,063
Girth 3 7 4,74 1,389 3 6 4,279 0,508
Domination number 8 10 8,474 0,504 8 10 9,008 0,167
Independence number 10 15 12,764 0,559 13 16 13,844 0,433
Chromatic index 3 4 3,5 0,5005 3 4 3,497 0,5004

TABLE II. BASIC STATISTICAL FEATURES OF RELEVANT (NON-CONSISTENT) PROPERTIES OF GRAPH DATA FOR 34 AND 36 VERTEX 
GRAPHS

34-vertex graphs 36-vertex graphs
Property of graph min max avg sd min max avg sd
Bipartite 0 0 0 0 0 0 0 0
Claw-free 0 0 0 0 0 0 0 0
Clique number 2 2 2 0 2 2 2 0
Density 0,0909 0,091 0,09095 0,00005 0,0857 0,086 0,0858 0,0001
Diameter 4 11 6,315 1,554 5 8 5,788 0,762
Edge connectivity 2 4 0,489 0,489 3 3 3 0
Eulerian 0 0 0 0 0 0 0 0
Matching number 17 17 17 0 18 18 18 0
Number of triangles 0 0 0 0 0 0 0 0
Planar 0 1 0,002 0,045 0 0 0 0
Radius 4 8 4,711 0,814 4 6 4,746 0,445
Regular 1 1 1 0 1 1 1 0
Vertex connectivity 2 3 2,621 0,486 3 3 3 0
Largest L-eigenvalue 5,416 5,97 5,664 0,079 5,414 5,841 5,677 0,075
AS Second largest Eigenvalue 2,2 2,946 2,611 0,251 2,272 2,912 2,574 0,147
AS smallest Eigenvalue -2,858 -2,416 -2,663 0,0778 -2,841 -2,414 -2,676 0,075
Laplacian spectrum 0,054 0,799 0,388 0,251 0,196 0,614 0,425 0,145
Chromatic number 3 3 3 0 3 3 3 0
Girth 4 7 5,776 1,272 5 7 6 1,001
Domination number 9 10 9,667 0,472 10 11 10,002 0,0447
Independence number 14 16 14,497 0,504 15 17 15,456 0,503
Chromatic index 3 4 3,501 0,50447894 3 4 3,5 0,501

• Density of graph G is ratio between the edges present

in G and the maximum number of edges that the G can

contain.

• Diameter of graph G is length of longest path in the

graph G.

• Domination number of graph G with the value of n is

smallest set of vertices such that every vertex not in the

set is adjacent to at least n vertices of the set.

• Graph G is eulerian in the case it contains eulerian cycle

(graph cycle which uses each edge of G exactly once).

• Girth of graph G is length of shortest cycle (in the case

there is a cycle in the graph) in G.

• Group size of graph G is size of automorphism class for

G.

• Independence number of graph G is number of an

independent set of vertices in G. Vertices are independent

when there is no edge between them.

• Laplacian largest eigenvalue is largest eigenvalue of

Laplacian matrix L of the graph G, while L = D − A,

where A is adjacency matrix of G and D is diagonal
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matrix containg degree of the vertex i on each possition

Di,i.

• Laplacian spectrum or algebraic connectivity of graph

G is second smallest eigenvalue of Laplacian matrix L
for the graph G.

• Matching number of graph G is a number of edges that

do not have a set of common vertices.

• Number of components of graph G is number of

connected subgraphs contained in the graph G.

• Number of edges of the graph G is the number of

connections between the vertices in G.

• Number of triangles of the graph G is number of

triangles (3 vertex, 3 edge) subgraphs in G. For example

of triangle see Fig. 1.

• Number of vertices of the graph G.

• Graph G is planar in the case, we can draw the graph

on plane without any edge crossing.

• Radius of the graph G is the minimum graph eccentricity

of any graph vertex in a graph. Eccentricity of graph

vertex is maximal number of edges between the vertex

and any other vertex of G.

• Regularity of graph G is graph property which is true
in the case all of the vertices of the graph are of the same

degree.

• Second largest eigenvalue of graph G is second largest

eigenvalue of adjacency matrix of G.

• Smallest eigenvalue of graph G is smallest eigenvalue

of adjacency matrix of G.

• Vertex connectivity of graph G is smallest number of

vertices, whose deletion causes G to be cut into several

disconnected components.

B. Properties of Collected Graph Datasets

For each of the graph properties in the datasets we created,

we measured the minimum (min), maximum (max), average

value (avg) and standard deviation (sd) of the property. The

values we measured on the given datasets are presented in the

Table I for the 30 and 32 vertex datasets and in Table II for

the 34 and 36 vertex datasets.

We also measured Pearson correlation and Spearman rank

correlation coefficients as a metric for determining the pre-

dictive potential of the graph data. The values of correlation

coefficient measured for individual graph datasets are visual-

ized on the Figs. 2 and 3.

The Fig. 2 contains the visualization of correlation matrices

of the Pearson type which is used for measuring of linear

correlation between the values of input and output variables. In

the Fig. 3 we offer a visualization of Spearman rank correlation

matrices. This correlation coefficient is used for measuring the

monotonicity of the relationship between the values of input

and output variables.

As evindent from the visualization of the correlation ma-

trices for our datasets, there are clear relationships between

the properties of the graph structures. The most significant

of these relations for all created datasets are those pairs of

properties between which we measured one of the computed

types of correlation coefficients in the conventional range

of < 0.8, 1 > or < −1,−0.8 >. In the list below, we

present strongest Pearson correlation coefficient measurements

for created datasets:

• For the 30-vertex graph dataset the most significant

relationships measured by correlation analysis are: Sec-

ond largest Eigenvalue and Diameter = 0,932; Laplacian

spectrum and Diameter = -0,932; Girth and Diameter

= -0,881; Domination number and Diameter = -0,880;

Smallest Eigenvalue and Largest Eigenvalue = -0,992;

Laplacian spectrum and Second largest Eigenvalue = -

0,999; Girth and Second largest Eigenvalue = -0,903;

Dominaiton number and Second largest Eigenvalue = -

0,902; Girth and Laplacian spectrum = 0,904; Domination

number and Laplacian spectrum = 0,903; Domination

number and Girth = 0,999.

• 32-vertex graph dataset contains following correlations:

Matching number and Clique number = -1; Second largest

Eigenvalue and Diameter = 0,889; Laplacian spectrum

and Diameter = -0,877; Vertex connectivity and Edge

connectivity = 1; Smallest Eigenvalue and Largest Eigen-

value = -0,998; Laplacian spectrum and Second largest

Eigenvalue = -0,987.

• The number of significant correlations in the 34-vertex

graph dataset is highest of created datasets: Diameter and

Density = 0,881; Second largest Eigenvalue and Density

= 0,866; Laplacian spectrum and Density = -0,859; Girth

and Density = -0,941; Group size and Density = 0,897;

Chromatic index and Density = 0,999; Edge connectivity

and Diameter = -0,874; Vertex connectivity and Diameter

= -0,880; Second largest Eigenvalue and Diameter =

0,890; Laplacian spectrum and Diameter = -0,883; Girth

and Diameter = -0,910; Group size and Diameter = 0,872;

Chromatic index and Diameter = 0,876; Vertex connec-

tivity and Edge connectivity = 0,989; Second largest

Eigenvalue and Edge connectivity = -0,835; Laplacian

spectrum and Edge connectivity = 0,829; Girth and Edge

connectivity = 0,829; Group size and Edge connectivity

= -0,868; Second largest Eigenvalue and Vertex connec-

tivity = -0,840; Laplacian spectrum and Vertex connec-

tivity = 0,835; Girth and Vertex connectivity = 0,841;

Group size and Vertex connectivity = -0,875; Smallest

Eigenvalue and Largest Eigenvalue = -0,992; Laplacian

spectrum and Second largest Eigenvalue = -0,992; Girth

and Second largest Eigenvalue = -0,864; Group size and

Second largest Eigenvalue = 0,852; Chromatic Index and

Second largest Eigenvalue = 0,863; Girth and Laplacian

spectrum = 0,857; Group size and Laplacian spectrum

= -0,847; Chromatic index and Laplacian spectrum = -

0,857; Group size and Girth = -0,889; Chromatic index

and Girth = -0,939; Chromatix index and Group size =

0,894.

• For the 36-vertex graph dataset the most significant

correlations are the following: Smallest Eigenvalue and

Largest Eigenvalue = -0,989; Laplacian spectrum and
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Fig. 2. Correlation matrices for Pearson correlation coefficient for (a) 30 vertex graph dataset, (b) 32 vertex graph dataset, (c) 34 vertex graph dataset and
(d) 36 vertex graph dataset

Second largest Eigenvalue = -0,981; Girth and Second

largest Eigenvalue = -0,855; Chromatic index and Second

largest Eigenvalue = 0,855; Girth and Laplacian spectrum

= 0,855; Chromatic index and Laplacian spectrum = -

0,855; Chromatic index and Girth = -1.

Based on these relationships found in the data, we should be

able to create decision trees that will be suitable for predicting

the values of graph properties - especially the chromatic index

of the graph.

IV. DECISION TREES FOR GRAPH DATA

In this paper, we use the method of decision trees, where we

projected the process of proper edge coloring with the use of

three colors into a classification task. For each of the created

datasets of cubic graphs, we assembled a separate decision

tree (Figs. 4 - 7), by which we classify the input set of graphs

into two groups:

• improperly edge 3-colorable cubic graphs - snarks,

• properly edge 3-colorable cubic graphs.

We reflected this task in the created decision trees into the

question ”Is input graph G a snark?”. Therefore, the value

”yes” or ”no” is indicated in the decision trees as the answer

to this question. On the figs. 4 - 7 answer ”yes” is denoted

by dark gray, the answer ”no” by light gray.

To build decision trees, we used 80% of graphs for training

and 20% of graphs as testing sets from each dataset.
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Fig. 3. Correlation matrices for Spearman rank correlation coefficient for (a) 30 vertex graph dataset, (b) 32 vertex graph dataset, (c) 34 vertex graph dataset
and (d) 36 vertex graph dataset

In the figs. 4 - 7 we present decision trees constructed on

the created datasets. Each node of the decision tree contains

property used in decision process with the p-value. Each

edge incident with the node contains border for value of

this property. Leaves of created decision trees contain the

classification of graph data into properly edge 3-colorable

cubic graphs and improperly edge 3-colorable cubic graphs.

When studying the decision trees closely, we can see, that in

each of the datasets, property of edge 3-colorability of a graph

depends on similar set of graph properties, specifically density,

second largest eigenvalue, girth, diameter, smallest eigenvalue,

radius, group size, vertex connectivity, independence number

and largest eigenvalue. It is critical to note, that all of these

properties are computable in lower time complexity compared

to proper edge coloring of graph [6], [15], [16]. For the

comparison of time complexities of computations see Table

III.

The results of the classficiation of graph data by decision

trees are presented in the confusion matrix in the Table IV.

Accuracy of the classification into the two chosen groups is

computed based on standard accuracy metric [8]:

accuracyS =
tn + tp

tn + tp + fp + fn

where S is number of vertices of input graphs, tn is number

of true negative samples, tp is number true positive samples,

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 26 ----------------------------------------------------------------------------



Fig. 4. Decision tree for identification of properly/improperly edge 3-colorable graphs for the dataset of 30 vertex cubic graphs

Fig. 5. Decision tree for identification of properly/improperly edge 3-colorable graphs for the dataset of 32 vertex cubic graphs

fp is number of falsely positive samples and fn is number of

falsely negative samples.

Therefore accuracy of graph classification with the use of

created decision trees is:

accuracy30 = 93.269%

accuracy32 = 92.857%

accuracy34 = 96.825%

accuracy36 = 92.857%

with average accuracy of correct identificaiton of snark in

the mixed set of standard cubic graphs and snarks equal to

93.702%.

V. CONCLUSION

With the use of the methods of statistical and predictive

analysis, we have shown that within the data set of graph

structures, it is possible to measure the predictive potential

between individual properties of given graphs. Since most of
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Fig. 6. Decision tree for identification of properly/improperly edge 3-colorable graphs for the dataset of 34 vertex cubic graphs

Fig. 7. Decision tree for identification of properly/improperly edge 3-colorable graphs for the dataset of 36 vertex cubic graphs

the algorithms that are used in the measurement of graph prop-

erties do not use artificial intelligence methods, this potential

can be used in optimizing the measurement of graph property

values.

The results presented in this work point to the possibility of

applying prediction analysis techniques to accurately estimate

the values of graph properties. From the research presented,

we can conclude that the value of the chromatic index of a

graph, which indicates the number of colors for a regular

edge 3-coloring of a cubic graph, is influenced by density,

second largest eigenvalue, girth, diameter, smallest eigenvalue,

radius, group size, vertex connectivity, independence number

and largest eigenvalue (see Fig. 4 - 7).

Future work in this area involves creating a new large

dataset (approximately 800 million graphs) containing only

relevant graph properties and using the findings obtained in

this paper on this dataset, or modification of the created models

according to the results. Another direction for future work

could be a use of a neural network approach to identify snarks

in a set of cubic graphs.
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TABLE III. TIME COMPLEXITY OF ALGORITHMS FOR RELEVANT GRAPH PROPERTY COMPUTATIONS [6], 
[15], [16]

Graph property Time complexity
Density of graph O(V E)
Girth of graph O(V E)
Radius of graph O(V E)

Diameter of graph O(V
√
E)

Edge connectivity of graph O(E + k2V ln(V
k
) for k edges

Matching number of graph O(V E)
Eigenvalues of graph O(V )

Edge coloring - naive backtracking O(2|E(G)|)

Edge coloring - Beigel & Eppstein O(2
|V (G)

2 )

Edge coloring - Kowalik O(20.427|V (G)|)

TABLE IV. CONFUSION MATRIX FOR ALL FOUR CREATED GRAPH 
DATASETS

30 vertex graphs 32 vertex graphs 34 vertex graphs 36 vertex graphs
Predicted value False True False True False True False True

False 48 2 49 7 59 4 51 5
True 5 49 1 55 0 63 3 53
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