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Abstract—One of the most essential physiological indicators
for a human health is oxygen saturation level (SpO2). It is the
primary determinant of how efficiently the body transfers oxygen
from the lungs to blood cells. SpO2 is typically measured with a
pulse oximeter, however, non-contact SpO2 estimate approaches
based on face or hand videos have gained popularity in recent
years. In this paper, we proposed a novel approach based
on machine learning concepts to estimate SpO2 using facial
videos. Our approach includes exploring several pre-trained
convolutional neural networks (CNN) models to extract features
from the consecutive images of different regions of interest (ROI),
followed by the training of the XGBoost Regressor model, which
in turn predicts SpO2 for three different test sets included in
our research. We managed to determine the best three models
through multiple stages of our testing process, which took into
account three metrics: mean absolute error (MAE), Pearson’s
correlation coefficient, and the shape of the predicted samples
distribution. However, our final models achieved contactless
estimations of SpO2 with decent accuracy and high performance
according to the results of the testing process (MAE of 1.17 and
0.84 when testing the models using VIPL-HR and UBFC-RPPG
datasets, respectively).

I. INTRODUCTION

Oxygen saturation level is a vital indicator for determining

blood oxygen content and oxygen delivery. It measures the

ratio of oxygenated hemoglobin (HbO2) to total hemoglobin,

which reflects the amount of oxygen supply in the blood

[1]. For patients who suffer from medical problems that

can lower the amount of oxygen in the blood, measuring

oxygen saturation is very crucial. These conditions include

asthma, lung cancer, anemia, chronic obstructive pulmonary

disease (COPD), pneumonia, chronic bronchitis, and other

cardiopulmonary problems [1].

Pulse oximeters are typically used to assess SpO2 in a

simple, painless, and non-invasive procedure that involves

placing a probe on the fingertip or earlobe to detect the oxygen

saturation level indirectly. Contact-based pulse oximeters, on

the other hand, can be uncomfortable, and are not ideal or

suitable for continuous monitoring. Non-contact SpO2 esti-

mation techniques utilizing hand or facial recordings have

recently drawn greater interest. These video-based techniques

offer remote SpO2 monitoring in a more flexible, conve-

nient, and simple way. Video-based SpO2 estimation meth-

ods are classified according to the type of camera used:

either special cameras designed to capture certain wavelength

bands or red/green/blue (RGB) cameras such as webcams

and smartphone cameras [2]. Although special cameras can

record wavelengths adequate for SpO2 estimation, they are

not commonly employed. As a result, the approach of using

RGB camera to estimate SpO2 is preferred. Earlier RGB

camera-based approaches assessed SpO2 from facial videos

using the ratio-of-ratios (RoR) [2], a principle similar to that

implemented in pulse oximeters. The RoR approach computes

the ratio of direct current (DC) to alternating current (AC)

components of red and blue channel signals obtained from

videos. Researchers aimed to enhance this method by engaging

advanced algorithms such as Singular Value Decomposition

(SVD) [3] or particular filters for more reliable extraction of

the DC and AC components. Several authors used machine

learning and deep learning approaches in their work, such as

CNN [4], regression models, etc. Therefore, we proposed our

novel approach of accomplishing a contactless assessment of

SpO2 based on facial videos recorded by smartphone camera

in the natural lighting conditions.

Our approach does not need any other equipment such as

monochrome cameras or special lighting devices. It was con-

structed by the implementation of transfer [5] and ensemble

learning [6] together. The transfer learning part was presented

by using pre-trained CNN models to extract the features out

of the frames series, then the XGBoost Regressor model [7]

was trained using these features to output one value which is

the SpO2 for each second of the video. This methodology

is contactless and comfortable. It depends only on image

analysis, and takes into account the three channels to process

as much information as possible. This method is convenient to

use, and only requires a video that can be taken by the frontal

camera of the subject’s smartphone, which is simple and easy

procedure in most scenarios.

The rest of the paper is structured as follows. Section

II provides an overview of the proposed approaches and

techniques. Section III is divided into two subsections: the

first one contains all the details about our experiments on

building, training, and evaluating our models, and the second

one provides information about the datasets we used. The

results of the testing procedure are presented in Section IV.

Section V completes the paper by outlining the conclusion,

challenges, and future scope of the proposed approach.
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II. RELATED WORK

In recent years, many researchers focused on implementing

contactless methods to predict SpO2, especially after the

pandemic, which emphasized the danger of physical contact

with people or devices that are considered ideal environ-

ments for germs, viruses, and fungi to reproduce, spread and

attack human beings. They proposed many innovative and

revolutionary methods based on machine learning algorithms

or processing of the extracted photoplethysmography (PPG)

signal. Sometimes, both concepts were used; therefore, in this

section we reviewed the recent approaches and algorithms

proposed to achieve contactless estimation of SpO2.

The authors of [8] used 1D CNN for estimating SpO2

using videos of the participant’s finger. PPG signals were

extracted from RGB frames by averaging the pixel values

from candidate regions of interest (ROIs) to obtain the final

PPG signal, which was the weighted average of the signals

extracted from different ROIs, where each weight was calcu-

lated by signal to noise ratio (SNR) of a given ROI. Next,

this signal was processed using a modified SVD to make it

more robust against large motion artifacts. The output signal

was decomposed into band-pass and low-pass filtered versions

which were interpolated and scaled to be fed into 1D CNN to

estimate SpO2.

The authors of [2] proposed a method to estimate SpO2

from facial videos using CNN. To achieve this, they came up

with two methods. The first one started with extracting the

direct current (DC) and alternating current (AC) components

by applying low-pass and band-pass filters on the spatiotem-

poral map gained from the RGB signals of facial videos.

Next, the extracted DC and AC components were input to

two ResNet18 networks which were fused via intermediate

and late fusion to predict SpO2. The second method they

proposed was an end-to-end model that predicts SpO2 directly

from the spatiotemporal map by extracting the DC and the AC

components via convolutional layers, besides two ResNet18

networks that forecasted SpO2 from the estimated AC and

DC components by CNN. The authors of [2] customized the

loss functions used, for instance, they engaged the negative

correlation with the mean square error (MSE) between the true

and the predicted values of SpO2 for the first model, whereas

for the end-to-end model, they kept the previous loss function

with adding the MSE between the DC and AC components

estimated by the convolutional layers and the components

extracted by the filters.

The authors of [9] extracted the PPG signals from three

facial ROIs (the forehead and the cheeks). Signals were ex-

tracted by separating each ROI into three channels: Red, Green

and Blue, then each channel was averaged over all pixels.

These signals were processed and underwent Power spectral

density (PSD) through Welch’s method [10] to select the most

informative ROI. The ACRED and ACBLUE components of the

selected signal were computed as the standard deviations of

the red and blue signals, while DCRED and DCBLUE components

were computed as the mean of red and blue signals values.

Finally, by using Equation. 1 , the authors managed to estimate

SpO2 according to the empirical evaluation of A and B

mentioned in [11]. However, this approach was tested later

in [12] to verify its robustness against the movement of the

subject‘s face during the recording process. This study was

performed using the PURE dataset [13], and it concluded

that there were no significant differences among the SpO2

measurements in presence of different slight head movements

and the authors believed that this was achieved due to the

ROIs tracking mechanism using Kanade-Lucas-Tomasi (KLT)

method [14].

SpO2 = A−B
ACRED/DCRED

ACBLUE/DCBLUE
(1)

Many proposed methods shared the same stages of extract-

ing the PPG signal from the videos, whether they captured

the face or some parts of the hand, like the finger, the palm,

or the back of the hand and this was achieved by spatial

averaging of the ROIs over the time. However, the authors

of [15] proposed to feed this extracted PPG signals from

videos of the palm or the back side of the hand into three

different deep learning models predicting SpO2. They tried

in the first model to combine the color channels first using

several channel combination layers followed by extracting

the temporal features using convolutional and max pooling

layers, while in the second one, they reversed the procedure

and started with extracting the features first, then the color

channel mixing was performed. The final model consisted

of convolutional and max pooling layers only to explore

the possibility of interleaving the color channel mixing and

temporal feature extraction steps.

As was mentioned, machine learning concepts were used

in many pioneering approaches that accomplished many sat-

isfactory SpO2 estimation without any physical contact. For

instance, The authors of [16] came up with a new methodology

to estimate three human physiological bio-signals: heart rate

(HR), breathing rate (BR), and SpO2. Their approach con-

sisted of extracting raw time-series bio-signal data from the

green channel of facial videos. These time-series signals got

processed later to estimate the aforementioned vital signs using

three types of machine learning models: Multi-layer Percep-

tron Algorithm (MPA), Long Short-Term Memory Algorithm

(LSTM) [17], and Extreme Gradient Boosting Algorithm

(XGBoost).

Moving away from machine learning, the authors of [18]

decided to record PPG signals alternately at two specific

wavelengths (611 nm and 880 nm) using a complementary

metal–oxide–semiconductor camera (CMOS) with trigger con-

trol to record the area around the mouth. The SpO2 got

estimated by the ratio of absorbance using the AC and DC

components of the PPG signals at these wavelengths. Another

usage for monochrome cameras is what the authors of [11]

proposed in their paper, where the PPG signals at wavelengths

of 520 and 660 nm got captured using two monochrome

charge-coupled device (CCD) cameras, each of which had

narrow bandpass filters mounted to the lens. The AC com-
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TABLE I. COMPARISON BETWEEN THE PROPOSED 
METHODS

Reference number Advantages Disadvantages

Constructive combination of two models to Can be computationally expensive due to the usage
[2] create powerful loss function with productive of two/three convolutional neural networks

implementation for fusion process

Simple, straightforward with effective Not suitable to use in many contexts, e.g.,
[8], [15] artifact removal method for [8] driving, because of the recording of a portion

of the hand (finger, palm, or the back side)

Computationally complicated because of
[9], [12] Effective ROI tracking system the tracking system and the process of

choosing the most informative signal

The constants were chosen empirically according
[11] Can be implemented immediately with to specific lighting conditions, which may not

no need to process the signal work in other environments. In addition, there
was no elimination of motion artifacts

Efficient combination/comparison Only green channel was used
[16] between deep learning models with ignoring the information

of other channels

[18] The innovative usage of ROI and the wavelengths Custom illumination synchronized with
with straightforward implementation the frames acquisition is needed

Considering the biggest amount of It is computationally complicated
[19] information carried by the channels regarding the usage of SVD to find the

weights in the calibration process

ponents were calculated as the peak-to-peak values obtained

from PPG after de-noising and bandpass filtering, while the

DC components got computed as the average value of the

PPG signals at corresponding periods. On the other hand,

the authors of [19] used the ratio of the intensities measured

from the green and red channels to present their methodology,

which is based on multiple linear regression (MLR) to take

into account the deviation of the RoR caused by the change

in light scattering besides the original ratio of the AC and DC

components. SVD was used to determine the suitable weights

in the calibration process of the MLR model to estimate the

SpO2. A comparison between the proposed methods was listed

in Table I, where we mentioned the strengths and weaknesses

of each approach mentioned above.

So, based on the proposed methods and algorithms analysis

and by taking into account their drawbacks and downsides,

which were listed in Table I, we realized the need of a

novel approach that addresses the weaknesses of the presented

related work. In addition, there is a substantial increase in

interest in engaging machine learning and artificial intelligence

in our daily life. We intended to propose a completely con-

venient approach, based on machine learning concepts, has

low computational cost, and does not need any equipment

attached to the subject’s finger, special lighting conditions, or

uncomfortable scenarios to record.

III. APPROACH AND DATASETS

This section includes two main parts: the proposed approach

and the used datasets. In the Proposed Approach subsection,

we mentioned the details of constructing our models from the

basics, starting with extracting the ROIs and pre-processing the

obtained frames, followed by using pre-trained CNN models

to extract the features from the consuctive frames, on which

XGBoost regressor models were trained using VIPL-HR [20],

[21] dataset. Finally, the best models according to specific

criteria were used for further testing. Regarding the Datasets

subsection, we outlined the used datasets for training and

testing our models. We used three datasets: VIPL-HR and

UBFC-RPPG Dataset-1 [22] which provide SpO2 for each

second, and the Operators dataset which was used to test the

stability of the models.

A. Proposed Approach

As was mentioned, ensemble learning was the best option

to be included in our work, regarding the nature of the oxygen

saturation values to be mostly between 90-100. We decided to

use the XGBoost regressor model in our approach since it can

be used directly for regression predictive modeling problems
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Fig. 1. The architecture of the proposed approach

that involve predicting a numerical value [23]. But to reach

this point, we performed many stages to access the training

phase, starting with detecting the face and cropping the ROIs,

followed by pre-processing the obtained images before feeding

them into our models that had the architecture shown in Fig.

1. In this subsection, we are going to talk about our approach

step by step to achieve a contactless estimation of SpO2 for

VIPL-HR dataset subjects. We should mention that the training

and testing processes were run using NVIDIA T4 Tensor Core

GPU provided by Google Colab.

1) Extracting the ROIs: At the beginning of the task, we

needed to determine the best ROIs we can extract from the

subject’s face, since the proposed methods used different ROIs

like forehead, cheeks, mouth area, or the lower part of the face,

hence, we decided to extract the whole face, the forehead, and

the cheeks out of the frames and implement our experiments

to conclude which ROI is better to use for this task. We

used 3D Dense Face Alignment (3DDFA) proposed in [24]

for detecting the face and obtaining the facial landmarks that

enabled us to crop the forehead, and the cheeks out of the

consecutive images.

2) Pre-processing the images: The purpose of our work is

to estimate SpO2 at each second, hence, we needed to feed 30

frames into our models for each estimation. We did not exclude

any frame because we wanted to keep as much information as

we can. We resized all the images of ROIs to 32x32x3, where

the height and the width are equal to 32 and 3 is the number of

the channels, we did not neglect any channel to preserve all the

information provided by the changes of the pixels values over

time. All the images underwent per-channel standardization of

pixels by subtracting the mean from each pixel followed by

division by the standard deviation.

3) Extracting the features: In our proposed approach that

includes XGBoost Regressor, there was one huge obstacle,

which was the fact that XGBoost Regressor requires structured

or tabular datasets, so it can be used for classification and

regression tasks [23]. On the other hand, we have images to

input into the models, and they are considered nonstructural

data. To get over this problem, we decided to extract the

features out of each image in the sequence using a pre-trained

model and stacking the output features over time, so each

second of the video was represented by a stack of features ex-

tracted from 30 consecutive frames, so it can be considered as

tabular data. However, there were many candidate pre-trained

models to try in this stage, therefore, we tested the models,

which have acceptable depth and number of parameters in

addition to low time (ms) per inference step and high top 5

accuracy according to Keras official website [25]. The used

models in this research were VGG16, VGG19, DenseNet169,

Resnet50V2, EfficientNetV2B0, and EfficientNetV2B1. As

shown in Fig. 1, the features extraction part consisted of 4

main blocks. It starts with feeding the images one by one to

the pre-trained model using the default weights, which are

imagenet weights. Next, the output of the pre-trained model

is passed into the Global Average Pooling layer to reduce

the computational cost. The operation continues to the Time

Distributed layer. It is a wrapper that applies a layer to every

temporal slice of the input, so the output of this layer would

present the features extracted from 30 consecutive images.

The process ends with a flatten layer to convert the output

of each 30 frames (1 second) into a one-dimensional array,

which is considered an acceptable input shape for the XGBoost

Regressor.

4) Training the XGBoost Regressor model: XGBoost is

a highly scalable decision tree ensemble based on gradient
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boosting. It minimizes a loss function to provide an additive

expansion of the objective function [26]. Trees are added one

at a time to the ensemble and fit to correct the prediction

errors made by prior models [23]. However, XGBoost has

many technological advantages, for instance, it provides more

direct path to the lowest error, faster convergence with fewer

steps, and simplified operations to enhance speed and reduce

computational costs. These advantages motivated us to use it

in our research, therefore, after extracting the features out of

the consecutive frames of the train set, we fed them into the

XGBoost Regressor, which required the number of estimators,

and the depth of the decision trees. We chose the number

of estimators and the depth from the intervals [50, 100] and

[5,7], respectively. However, the models that achieved the best

MAE for the different ROIs and pre-trained models were kept

for further comparison to determine which models to test on

UBFC-RPPG dataset-1 and Operators dataset.

5) Choosing the best models: Based on the results of testing

the models using the test set from VIPL-HR dataset, we

decided to consider three criteria to evaluate them to find out

which models performed better than the others. We decided

to pick, for each ROI, the model that had the lowest MAE, or

the highest Pearson’s correlation coefficient [27], or the model

that predicted SpO2 with similar distribution to the test set

distribution. The selected models were tested using the UBFC-

RPPG dataset-1. However, we picked the top three models

that achieved the lowest MAE and tested their performance

on the Operator dataset to make sure that the models are

well-grounded and able to estimate SpO2 with good accuracy

and reasonable values even with different environment and

dissimilar skin colors to what they were trained on.

B. Datasets

In this subsection, we included different datasets to train and

test our models to verify their robustness against the changes

in the lighting conditions or the subject’s skin color. The first

dataset is the VIPL-HR dataset, which we used to train and test

our models using different ROIs cropped from the facial videos

to determine the best models to be used in the further stage.

The second dataset is the UBFC-RPPG dataset-1, which was

used to test the best models from the previous step to prove

that our models can estimate SpO2 regardless of the changes in

lighting or the shades of the subject’s facial skin. However, we

tested the generated models using our Operators dataset, which

does not provide the true SpO2, but the experiments were run

to confirm the validity of the models by analyzing the output

SpO2 to make sure that the models would predict values from

the normal range (usually above 95% [8]), considering that

the subjects are healthy, young, and sitting on a chair without

any exhausting exercises that may affect on SpO2 values.

1) VIPL-HR Dataset: The VIPL dataset was developed by

the Key Laboratory of Intelligent Information Processing of

the Chinese Academy of Sciences. It contains nine scenarios

recorded by three distinctive devices for 107 subjects. There

are a total of 2,378 visible light videos (VIS) and 752 near-

infrared (NIR) videos. This dataset provides the SpO2, HR,

and blood volume pulse (BVP) signals for all the videos.

Since we intended to facilitate the usage of our approach with

available devices and usual lighting conditions, our research

was limited to the videos recorded by the frontal camera of

a HUAWEI P9 smartphone. The frame rate was 30 fps with

a resolution of 1920*1080. The face area only was retained.

The distribution of the samples in this dataset is shown in Fig.

2 which was taken from [16].

Fig. 2. Distribution of the samples in VIPL-HR dataset

Considering the huge dataset and the long time of process-

ing and cropping the ROIs from all the videos, we included 55

subjects (2 or 3 videos for each) in our current research to have

in total 162 videos. We split these videos into 136 videos for

training and 26 videos regarding the testing process. However,

we made sure that the distribution of our training set samples

is similar to the distribution of the whole dataset samples. The

distribution of our training set is shown in Fig. 3 In addition,

Fig. 4 represents the distribution of the test set samples.

Fig. 3. Distribution of the samples in the training set

Majority of the samples’ SpO2 values are concentrated

between 95% to 98%, which was not helpful to use traditional

deep learning terms like CNN and LSTM due to the high

probability of creating models that generate a constant optimal

value that achieves minimal error for all the samples. We run

many experiments and implemented our proposed approach

in [28], and our concerns did occur, hence, ensemble learning

was used in our approach due to its flexibility with this kind

of issues with datasets [29].
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Fig. 4. Distribution of the samples in the test set

2) UBFC-RPPG Dataset-1: This dataset was created using

a Logitech C920 HD Pro webcam at around 30 fps and

640x480 resolution in uncompressed 8-bit RGB format. It con-

tains eight videos for six different subjects with distinctive skin

colors, which we found useful to test our models subjectively.

A basic Matlab implementation was provided to read ground

truth data acquired with a pulse oximeter since the true values

were saved in files of format .xmp. The whole 8 videos were

used in the second stage of the testing process after training

and testing the models using the VIPL-HR dataset. As we

mentioned before, we believed that it would be a challenge

for the models to be tested using videos with different lighting

circumstances and new shades of facial skin since the majority

of VIPL-HR dataset subjects had light pale skin color.
3) Operator Dataset: We present our dataset, which in-

cludes 60 videos of operators sitting in front of their comput-

ers, either reading or working. The videos were shot on almost

consecutive days, twice or three times a day. They cover the

morning and evening hours (sometimes, the afternoon period

got included). The videos last from 16 to 20 minutes and have

a resolution of 640x480. The fps is 30 for all the videos except

one video has an fps of 7, and another has 15 frames per

second. We handled the 7 fps video by duplicating the first and

last frame from each second five times and four times for the

other five frames. The other video was operated by repeating

each frame one time so we get 30 frames in a second instead

of 15.

IV. RESULTS

In this section, we included the results obtained through

the testing process, which consisted of three stages, starting

with testing the models using the test set from VIPL-HR

dataset, followed by using UBFC-RPPG dataset-1 to test the

best models from previous step and determining the top three

models according to the lowest MAE to test them on Operators

dataset in the final stage to analyse the robustness of our

models.
1) Testing the models using the VIPL-HR dataset: Several

XGBoost Regressor models were trained on the extracted

features from the training set obtained from the VIPL-HR

dataset. Each model was trained using one of the ROIs, which

were the face, the forehead, the left cheek, and the right

cheek. In addition, we used in each model one pre-trained

model from the following list: VGG16, VGG19, DenseNet169,

Resnet50V2, EfficientNetV2B0, and EfficientNetV2B1. We

tested the models using three criteria, MAE, Pearson’s correla-

tion coefficient, and the shape of the estimated SpO2 distribu-

tion. We listed the MAE and Pearson’s correlation coefficients

of the models in Table II and Table III, respectively.

TABLE II. RESULTS OF TESTING THE MODELS USING 
VIPL-HR TEST SET / MAE

Model Face Forehead Left cheek Right cheek
VGG16 1.21% 1.28% 1.30% 1.28%
VGG19 1.17% 1.22% 1.29% 1.27%

Resnet50V2 1.27% 1.27% 1.40% 1.43%
DenseNet169 1.36% 1.29% 1.47% 1.37%

EfficientNetV2B0 1.65% 1.75% 1.29% 1.71%
EfficientNetV2B1 1.68% 1.72% 1.35% 1.75%

TABLE III. RESULTS OF TESTING THE MODELS USING VIPL-HR 
TEST SET /PEARSON’S CORRELATION COEFFICIENT

Model Face Forehead Left cheek Right cheek
VGG16 0.24 0.22 0.17 0.40
VGG19 0.016 0.16 -0.007 0.64

Resnet50V2 0.60 0.009 0.38 0.47
DenseNet169 0.15 0.28 0.17 0.35

EfficientNetV2B0 0.001 0.36 0.23 -0.038
EfficientNetV2B1 0.13 0.31 0.20 0.15

For each ROI, we marked the best model according to the

standards. Regarding Table III, all the marked models achieved

p-value<0.05, which indicates that there is a relationship

between the real and expected values. We should note that

no model with left cheek as ROI could achieve p-value<0.05,

hence, we did not include any model from left cheek column

in the following experiments. However, we also took the

averaged estimations of left cheek and right cheek models that

share the same pre-trained model to explore if using multiple

ROIs would improve the results, then we tested the output

according to the same standards mentioned in Section III-A5.

We also implemented the same procedure for left cheek, right

cheek, and forehead models. The results of this operation are

listed in Table IV and Table V. Similarly to the previous

tables, we marked the best models according to the MAE and

Pearson’s correlation coefficient.

TABLE IV. RESULTS OF TESTING THE AVERAGED MODELS USING 
VIPL-HR TEST SET / MAE

Model Cheeks Cheeks + Forehead
VGG16 1.27% 1.24%
VGG19 1.26% 1.20%

Resnet50V2 1.38% 1.31%
DenseNet169 1.40% 1.34%

EfficientNetV2B0 1.46% 1.53%
EfficientNetV2B1 1.52% 1.55%
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Fig. 5. The Distributions of the best models have similar distribution to the VIPL-HR test set distribution

TABLE V. RESULTS OF TESTING THE AVERAGED MODELS USING VIPL-HR 
TEST SET / PEARSON’S CORRELATION COEFFICIENT

Model Cheeks Cheeks + Forehead
VGG16 0.39 0.41
VGG19 0.2 0.23

Resnet50V2 0.51 0.47
DenseNet169 0.38 0.38

EfficientNetV2B0 0.06 0.21
EfficientNetV2B1 0.21 0.27

Regarding the best distributions, we decided to show the

models that achieved the best results according to this criterion

only in Fig. 5, rather than including the distribution of all the

models, which would take much space.

2) Testing the models using the UBFC-RPPG dataset-1:
From the previous stage, we obtained the best models that

performed well according to one of the three standards.

However, we tested these models using UBFC-RPPG dataset-

1 to determine the best three models among the others to be

tested on the Operator dataset. We only chose the models that

had the lowest MAE to reduce the complexity in general since

we need to test the candidate models from this stage on 60

videos in the next step. The results were shown in Table VI.

3) Testing the models using the Operators dataset: Our

goal in testing the best models we obtained from the previous

step on Operators dataset is to make sure that our models

would predict plausible values even with the differences

in the recording conditions and the subjects’ skin shades.

Fig. 6 shows the histogram of the estimated SpO2 values

for the whole dataset by Left cheek–DenseNet169, Right

cheek–ResNet50V2, and Face-VGG19 models. As we can see,

the majority of the predicted values are concentrated above

TABLE VI. RESULTS OF TESTING THE BEST MODELS FROM PREVIOUS 
STAGE USING UBFC-RPPG DATASET-1/ MAE

Model MAE
Right cheek - VGG19 1.1%

Right cheek - ResNet50V2 0.97%
Left cheek - DenseNet169 0.89%

Left cheek - VGG19 1.12%
Forehead - VGG19 1.23%
Forehead - VGG16 1.26%
Face - ResNet50V2 1.07%

Face - VGG19 0.84%
Face - EfficientNetV2B1 1.58%

Cheeks - VGG19 1.06%
Cheeks - ResNet50V2 1.08%

Cheeks + Forehead - VGG19 1.1%
Cheeks + Forehead - ResNet50V2 1.03%

95%, which looks normal and expected since the subjects

are young, healthy, and sitting on a chair with no exhausting

activities. By these results, we can say that Face–VGG19

model has achieved good performance on the three datasets

used in this research, therefore, it is valid to be used to estimate

SpO2 of people who are not able to check their Oxygen

saturation level in the clinic for any reason.

V. DISCUSSION

This approach started with detecting the face and cropping

the selected ROIs. We considered in our experiments four

regions: face, forehead, left cheek, and right cheek. After

obtaining the ROIs, we fed them into the pre-trained models

after excluding the fully connected layers with preserving the

default weights, since the goal of this process was to extract the

spatial features, we believed that the ImageNet weights were

qualified to cover this step, because of the diversity and size
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Fig. 6. The estimated SpO2 distributions by the best three models using the Operators dataset

of ImageNet, which enabled the models to learn from many

variations that may include camera angles, lighting conditions,

and so on [30].

After extracting the features of the consecutive frames of

the train set, we organized them as time series presenting

the features over each 1 second (30 frames). These arranged

features were input to the XGBoost Regressor model, which

required the number of estimators and the max depths of

the learners. However, after many experiments, we picked

the most accurate models according to their performance on

the VIPL-HR test set. The standards we used to evaluate

our models in this stage were MAE, Pearson’s correlation

coefficient, and the shape of the estimated SpO2 distribution.

The selected models were tested further using the UBFC-

RPPG dataset-1, which contained subjects with distinctive skin

color, in addition to the changes in the lighting conditions.

By testing our models on this dataset, we found out which

models are more well-founded and reliable to use according to

the lowest MAE. Finally, these candidate models were tested

using our Operators dataset, which does not provide the true

SpO2. Instead, we considered the performance on the latter

dataset as proof that these models keep predicting reasonable

and convincing values, regardless of the skin shade or the

recording circumstances. Nevertheless, by taking into account

the fact that the subjects of the Operators dataset did not

include any health condition, we found that the final models

performed in very convincing ways, which led us to consider

all of them reliable to be employed for the task of contactless

estimation of SpO2. However, the biggest challenge was that

there were not enough samples that present SpO2 <85, which

would create an obstacle for the models when the subject is

suffering from a special health condition associated with low

SpO2.

VI. CONCLUSION

In this paper, we introduced a novel, low-cost, and time-

efficient approach to estimate SpO2 using only a smartphone

camera. It combined transfer and ensemble learning and em-

ployed these two important machine learning concepts in order

to accomplish an accurate estimation of SpO2 that requires

only a recorded video for the facial area.

In the future, we would try to extend the training set with

subjects/samples that have unfamiliar SpO2 values due to

some medical conditions that the VIPL-HR dataset did not

cover. In addition, our approach can be easily modified into

an application for SpO2 monitoring anywhere and anytime

people need it.
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