
Performance Evaluation of Ordering Services and

Christopher Harris
University of Northern Colorado

Greeley, USA
Christopher.harris@unco.edu

Abstract—Hyperledger Fabric is an open-source project
designed to deploy permissioned blockchains. Performance
characteristics of Hyperledger Fabric v2.2, such as the impact of
ordering services, bottleneck, and scalability) are difficult to
understand due to the performance challenges of distributed
systems. In this paper, we evaluate the performance of each phase
in Hyperledger Fabric's new execute-order-validate architecture.
We also assessed the performance of ordering services (Solo,
Kafka, and Raft) on the OR and the AND endorsement policies.
We found the execution phase was more scalable using the OR
endorsement policy than the AND endorsement policy. While all
three ordering services (Solo, Raft, and Kafka) performed
relatively well, we discuss why Raft may be the best choice for
most organizations. Last, we focus on the performance
capabilities of theF Raft ordering service using different
transaction settings. This evaluation helps to understand some
of the trade-offs in Hyperledger Fabric v2.x.

I. INTRODUCTION
Blockchains are immutable digital ledger systems

implemented in a distributed fashion (i.e., without a central
repository) and typically without a central authority.
Blockchain networks enable trusted parties to send and receive
ransactions in a peer-to-peer manner verifiably without a need
for trusted intermediaries. Therefore, a blockchain allows
parties to settle transactions more quickly, resulting in faster
movement of goods and services [1].

A blockchain is an open distributed ledger hosted by
numerous decentralized devices called nodes. Blockchain
transactions between two or more parties (irrespective of
whether the parties are trusted or untrusted) can be recorded in
a verifiable and immutable manner, mitigating the risk of fraud.
When transactions occur, additional blocks are created to
record this information, the ledger is updated with these blocks,
and the updated ledger is then synchronized across each node
in a blockchain system.

The Hyperledger project is an open-source collaborative
effort hosted by the Linux Foundation to advance blockchain
technologies for business enterprises. Hyperledger Fabric is
currently deployed in over 400 proof-of-concept and
production distributed ledger systems across different
industries [2]. Public blockchain networks such as Bitcoin or
Ethereum allow anyone to join the network; however,
Hyperledger is a permissioned blockchain network in which
participants know and can identify each other but do not
necessarily trust each other. Therefore, organizations can

benefit from a distributed ledger technology (DLT) without the
requirement of a fungible currency (e.g., cryptocurrency) [3].

As the Hyperledger project evolves and matures, it is
imperative to model the complex interactions between peers
performing different yet coordinated functions. Such models
provide a quantitative framework from which different
configurations can be produced and trade-off decisions
considered. A detailed understanding of each phase of
Hyperledger Fabric is vital because system bottlenecks, when
they occur, can be reduced. Additionally, a performance
comparison of the ordering services available in Hyperledger is
essential because it helps explain the distinctive performance
characteristics of these ordering services (Solo, Kafka, and
Raft). In our research, we conducted experiments using
Hyperledger Fabric v2.2 to provide performance analysis on
the ordering, verification, and endorsement phases. Our study
contributes the following:

An evaluation of the performance characteristics following
the Hyperledger Fabric execute-order-validate architecture
was first released with Hyperledger Fabric v.1.4.

An evaluation using decentralized governance for smart
contracts - a considerable change from earlier 1.x versions
of Fabric where one organization could influence
chaincode parameters and endorsement policies for the
entire consortium on a channel. With Fabric v2.2, multiple
organizations must agree to the chaincode parameters as
shown in the endorsement policy. There is now a much
more deliberate process to upgrade chaincode that requires
a threshold amount of organizations within a consortium to
agree before the chaincode can become active on the
channel.

An evaluation of the performance of the settings for the
different ordering services (Solo, Kafka, and Raft).

An examination of the endorsing peers and ordering
service node scalability under the OR and the AND
endorsement policies.

The remainder of this paper is organized as follows. Section
II introduces the essential components of Hyperledger Fabric
and Hyperledger Fabric's ordering services. Section III presents
our experimental setup on scalability; Section IV presents our
results and provides an analysis. Last, Section V concludes our
paper.

 Endorsement Policies in Hyperledger Fabric

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 63 --

II. ESSENTIAL COMPONENTS OF HYPERLEDGER FABRIC

A Hyperledger Fabric network comprises (1) "Peer nodes,"
which execute chaincode, access ledger data, endorse
transactions, and interface with applications; (2) "Orderer
nodes," designed to ensure blockchain consistency and deliver
the endorsed transactions to the peers of the network; and (3)
“Membership Service Providers” (MSPs), which are typically
implemented as a Certificate Authority, managing X.509
certificates and usedFupd to authenticate member identity and
roles.

Fabric ledgers cannot fork as is possible with other
distributed blockchains. Fabric-based applications that seek to
update the ledger are involved in a three-phase process that
ensures all peers in a blockchain network keep their ledgers
consistent with each other. One mechanism featured by Fabric
is a type of node called an orderer (or ordering node) that
performs transaction ordering. Working with other
contributing nodes, these form an ordering service. Fabric's
design uses deterministic (instead of probabilistic) consensus
algorithms, any block that is validated is then guaranteed to be
final and correct. Once a transaction has been written to a
block, its position within the ledger is immutably assured.

A. Transaction Overview
Fabric-based applications that attempt to update the ledger

are involved in a three-phase process. Thist ensures that all
blockchain network peers keep ledgers that are consistent with
each other. Initially, a client application sends a transaction
proposal to a subset of peers that will invoke chaincode (a
smart contract in Fabric) to produce a proposed ledger update
and subsequently endorse the results. Endorsement is a
mechanism in Fabric to check the validity of a transaction (see
[4] for an overview and evaluation of various Fabric
endorsement policies). Since transactions need to be ordered
across multiple nodes, the endorsing peers do not apply the
proposed update to their copy of the ledger; instead, the
endorsing peers return a proposal response to the client
application. The endorsed transaction proposals will ultimately
be ordered into blocks in phase two and distributed to all peers
for final validation and commitment in phase three.

Fig. 1. An illustration of the eight steps used in our proposed Fabric model
for ordering and executing chaincode-based transactions.

 Fig. 1 illustrates how a participant (i.e., client) invokes a
transaction request through the client application; Fig. 2
demonstrates how these roles interrelate with each other
depicted by a swim lane diagram.

1) The client application broadcasts the transaction
invocation request to the endorser peer.

2) The endorser peer checks the information, such as
Certificate Authority details, necessary to validate the
transaction. Next, it executes the chaincode and the
endorsement responses are returned to the client. As part
of the endorsement response, the endorser peer provides a
transaction approval or rejection.

3) Next, the client evaluates the response from the endorser
peer, a step usually accomplished by a software
application.

4) If approved, the client now sends the approved transaction
to the orderer peer to be properly ordered and be included
in a block.

5) The orderer node creates a transaction (which consists of
key-value pairs) in a block and then forwards the block to
the anchor nodes of other member organizations of the
Fabric network. Consequently, the leader peers deliver
that block to the other peers within the organization.

6) Anchor nodes then broadcast the block to the other peers
inside their organization, providing consistency within the
organization.

7) These individual peers then update their local ledger with
this latest block. Thus, synchronization occurs across the
entire network. All nodes in the system now contain the
updated transaction information.

8) The event status is subsequently emitted back to the client
indicating success or failure. Thus, it provides a message
to the calling application indicating the success of the
upload to the block.

B. Ensuring Transaction Order
The ordering service is an essential component in Fabric; it

is one of this framework’s strengths and is ideal for situations
in which the ordering of transactions must be ensured.. As
mentioned in the previous section, special nodes called
orderers receive transactions from different application clients
simultaneously. These orderers work together to collectively
form the ordering service with the role of arranging batches of
submitted transactions into a precise sequence and packaging
them into blocks, which become part of the blockchain [5].

Solo, Raft, and Kafka are the most prominent ordering
services in Fabric. Solo involves only a single ordering node,
Kafka is a more challenging ordering service to implement
than Raft, but does not provide namy advantages over a Raft-
based implementation. Kafka is not designed to be run across
large networks and is more suitable as an ordering service
among a tight group of hosts. This limits a Kafka cluster to a
single organization and consequently making it a poor choice
for most ordering models that operate across organizations [6].

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 64 --

Orderer peers maintain the central communication channel
for Fabric. As a result, the orderer peer ensures a consistent
ledger state across the entire network. The orderer peer is
responsible for creating the block and delivering the block to
all peers within the same network. In addition to promoting
finality, separating the endorsement of chaincode execution
from ordering gives Fabric advantages in scalability and
performance, eliminating crucial bottlenecks which may occur
when the same nodes perform both execution and ordering.

The choice of consensus algorithm is critical in the Fabric
system. For example, suppose a Fabric system consisted of a
single orderer node, and that orderer node fails. Consequently,
blocks that were not yet committed would be lost prior, and
the integrity of the Fabric system would be lost. Thus,
consensus algorithms replicate the blocks to cope with
failures. The nodes used to perform data replication are
different for each consesnus algorithm. For Kafka, broker
nodes perform the block replication, whereas in Raft, these are
done by the orderer nodes. The consensus algorithms replicate
blocks across all the orderer nodes (broker nodes for Kafka). If
the number of replicated blocks in the Fabric system is
denoted as n and the minimum number of data replications is
denoted as m, the parameter m indicates the fault-tolerable
range, or the maximum number of crashed nodes that Fabric
can continue to operate, is denoted as n-m. If the number of
faulty nodes exceeds the fault-tolerable range, the consensus
algorithm stops the data replication of blocks or transactions,
and Fabric ceases to operate.

The consensus algorithms determine m differently. Solo
consists of a single ordering node and is not meant for
applications where lost data can be tolerated, and therefore m
is not applicable. When using Kafka, m is a configurable
parameter, whereas with Raft, m is not configurable.

Ordering notes also enforce basic access control for
channels, limiting which nodes can read and write data and
which nodes can make these requests. In addition to ordering
transactions, orderers also maintain the list of organizations
that are permitted to create channels. This list is known as the

consortium and is kept in the configuration of the orderer
system channel. Due to their central role in access control,
configuration transactions are processed by the orderer to
ensure that the requestor holds the proper administrative
rights. If so, the orderer validates the update request against
the existing configuration, produces a new configuration
transaction, and packages the transaction into a block that is
relayed to all peers within the channel.

The peers then process these transactions to verify that the
modifications approved by the orderer satisfy the defined
channel policies. For example it can be used to keep track of
the provenance of goods in a supply chain. Each of these
properties can ensure information integrity in the block.

III. BENCHMARKING SCALABILITY

Regrettably, the performance of both permissionless and
permissioned/federated blockchain systems lags well behind
that of a typical database. The primary bottleneck is the
consensus protocol used to ensure node consistency [7] and we
investigate this further in this section.

Introduced in Fabric,version v1.1, a new transaction model
called the execute-order-validate model is used. Mimicking
the optimistic concurrency control mechanisms in advanced
database systems, this execute-order-validate model consists
of three phases. In the first phase, transactions are
speculatively executed (or simulated). The global state of the
ledger is not affected by this simulation. In the second phase,
the transactions are ordered and grouped into blocks. In the
third phase, validation or commit, the transcations are checked
for conflicts between the order and the execution results. Last,
transactions without conflicts are committed to the ledger. By
allowing parallel transaction execution, Fabric can achieve a
higher transaction throughput than systems that execute
transactions sequentially.

When comparing the three types of ordering services,
namely Solo, Kafka, and Raft, we note that Solo does not have
a consensus algorithm and is only used during the
development of blockchain systems, whereas Kafka and Raft

Fig. 2. A swim lane diagram illustrating the order each of the components of our proposed Fabric model interact in order to write a transaction to the block

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 65 --

are crash fault tolerant (CFT). We evaluate the throughput and
latency of transactions using Fabric v2.2 in a local cluster of
32 nodes running with the Raft ordering service. Our work
makes use of an internally designed tool. This differs from
Blockbench [7], a benchmarking tool that works with earlier
versions of Fabric which contained the less robust order-
execute transaction model. Many benchmarking studies, such
as [8], did not consider the effect of scaling the cluster on
performance. Similarly, other studies (e.g., [9], [10]) fix the
size of the ordering cluster and use fewer than ten nodes. In
contrast, we examine the impact of scaling ordering clusters
on the overall performance, using up to 32 nodes in a cluster,
which is likely to occur in a majority of more recent Fabric
implementations.

In [11], Surjandari et. al. found Raft was superior to Kafka
in terms of its transaction success and throughput rates when
invoking transactions due to its less complex framework. Raft
employs the Raft consenter which was created directly from
ordering service nodes whereas Kafka requires Kafka brokers
and an elaborate Zookeeper Ensemble. Indeed, most other
performance benchmarking studies (e.g. [12]) examine Kafka,
whereas the focus of our study is to benchmark Raft.

Although Hyperledger Caliper [13] is the official
benchmarking tool for Fabric, it offers little documentation
and support on how to benchmark real distributed Fabric
ordering services such as Kafka or Raft. Most of the
documentation and scripts are considering the Solo orderer
and a single client limiting its external validity. To
accommodate benchmarking at scale, we use a set of scripts to
invoke a Raft-based Fabric network across several cluster
nodes, launch additional benchmarking tools, and benchmark
performance across distributed clients.

We apply different endorsement policies – sets of
transaction validation rules that define necessary and sufficient
conditions for a valid transaction endorsement [14]. A
validation rule usually contains two parts: target endorsing
peers and the Boolean operators. The first part dictates the
required endorsements from a subset of peers. The second part
supports Boolean conditional logic, including AND, OR, and
OUTOF. For example, a typical endorsement policy could
specify a validation rule requiring at least k endorsements from
target p endorsing peers. We focus on the AND and the OR
endorsement policies in our study and leave OUTOF
operations for a future study.

A. Benchmarking Setup
A Fabric network topology is defined by the number of

endorsing peers N, the number of clients, C, maintaining a
mutual transaction send rate, T, number of Fabric orderers, O,
number of Raft consenters, R. All the peers belong to different
organizations and serve as endorsing peers, P. As with [27],
the block size is set to 100 transactions/block, the timeout is
set to 3 seconds and the number of clients, C, is fixed at 1.

We use Smallbank [15], a widely used OLTP database
benchmark workload tester. Simulating a typical transfer
scenario and a large class of transactional workloads allow us
to test Fabric at scale. These experiments were run on a 32-

node commodity cluster. Each server node has an Intel Xeon
E5-1603 with a processing speed of 2.80GHz, 16 GB of RAM,
a Gigabit Ethernet card, and a 1 TB hard drive. Our nodes are
running Ubuntu 20.04.3 (Focal Fossa).

As was done in [16], we proposed several designs and
principles to avoid potential bottleneck issues. First, we
separated endorsing nodes and ordering service nodes, and ran
these nodes on different machines. Second, we invoked
multiple transactions per client since setting up a client
requires time-consuming MSP configurations. In the worst-
case scenario, if one client is set up per transaction, it would
require significant computing overhead. Third, we invoked
transactions asynchronously, starting new transactions without
waiting for responses from other transactions, which
replicates a real-world scenario. Last, to double-check load
generation and reception information, we implemented a
transaction logging system.

B. Metrics
We focused on transaction throughput and transaction

latency using the definition used in Hyperledger Fabric's white
paper.

Throughput - the rate at which transactions are committed
to the ledger in transactions per second (tps).

Latency - the committing timestamp of a transaction minus
the submission timestamp of a transaction, where the
committing timestamp means the timestamp when a
transaction is committed to the ledger. Following this
approach, we can calculate the transaction latency for each
transaction and the average latency.

IV. RESULTS AND ANALYSIS

We examined transactions to each of the three ordering
services separately. We applied the AND and the OR
endorsement policies and calculated the overall throughput
and overall latency. Our goal is to best replicate the conditions
in [17], which examined these types of transactions using
Fabric v1.4.3.

A. Overall Throughput.

Fig. 3 and Fig 4 illustrate the overall transaction throughput
under different ordering services and endorsement policies.
We used an OR endorsement policy requiring 17 (a majority)
of the 32 participating nodes, or all 17 nodes that were pre-
specified for the AND endorsement policy.

There are two findings related to the throughput and the
chosen endorsement policy.

First using the OR endorsement policy and a transaction
size of 1 byte (Fig 3), the maximum throughputs are
nearly 300 tps. There was no significant difference in the
maximum performance achieved by each of the ordering
services (Solo, Raft and Kafka).

The AND endorsement policy (Fig. 4) achieved a
maximum throughput of 200 tps, a significant drop from
the OR endorsement policy for the same number of
required nodes.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 66 --

B. Overall Latency.

Fig 5 and Fig 6 illstrate an overall transaction latency under
different ordering services and endorsement policies. One
observation is that when the system reaches peak performance,
the transaction latency will increase rapidly. In particular, the
transaction latency with the endorsement policy AND (Fig. 6)
increases more significantly with the OR endorsement policy
(Fig 5). Since the maximum throughput of AND is
considerably lower than OR, the performance bottleneck
comes earlier than OR. In our experiment, we used Nodejs and
set the maximum transaction latency for the ordering service at
3 seconds – if our client failed to receive a response from the
ordering service nodes within 3 seconds, the client would
reject the response. In a worst-case scenario – in which
transactions have an ordering latency of 3 seconds or greater –
the client rejects those transactions. Therefore, the overall

transaction latency will increase rapidly when the transaction
arrival rate surpasses the peak system performance, since
many subsequent transactions will be rejected.

C. Evaluation of Performance using Raft

Next, we focus on the most implemented ordering service,
Raft, and examine the effects of increasing the number of
orderers and peers. We chose Raft since it was the easiest of
the CFT policies to implement, is widely used, and Solo and
Kafka have been deprecated beginning with Fabric 2.0).

Overall, as the number of Fabric orderers increases, system
throughput performance significantly degrades due to elevated
communication overhead – in Fig 7 (a)), we increase the
number of orderers from O = 4 to O = 12. In our subsequent
experiments, we fix the number of Fabric orderers to O = 4
and vary the number of Raft consenters, R, to assess the

Fig 3. Comparison of the transaction latency of the “order and validate” phases (red) with the “execute” phase (black) for the three different ordering
services using the OR endorsement policy

Fig 4. Comparison of the transaction latency of the “order and validate” phases (red) with the “endorse” phase (black) for the three different ordering
services using the AND endorsement policy

Fig 5. Overall transaction throughput using the “OR” endorsement policy (red) with the “AND” endorsement policy (black) for the three different
ordering services

Fig 6. Overall latency using the “OR” endorsement policy (red) with the “AND” endorsement policy (black) for the three different ordering services.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 67 --

impact on scaling Fabric.

At the networking level, we find that the client, peers,
Fabric orders, and Raft consenters exhibit the highest traffic
both when sending and receiving. The increased traffic of the
Fabric orderer is explained by its double role as a receiver of
requests from the client and as a dispatcher of requests to Raft.

 Next, we fix the request rate and investigate the impact of
increasing the number of peers. We set the total request rate to
C T = 300 and C T = 400, representing the points before
and after saturation. We vary the number of Raft consenters
from R= 4 to R = 16 in multiples of 4. We increase the number
of peers to P = 32. The average throughput and latency of each
experimental setting are shown in Fig 7(b) and Fig 7(c),
respectively.

D. Raft Performance Results and Analysis
Increasing the number of peers has a strong negative impact

on the system's throughput and it limits scalability. We
examine the system logs and observe that scaling the number
of peers produces significant overhead in both the
endorsement and ordering phases of the transaction. As the
number of endorsing peers grows, each client must wait for a
more extensive set of endorsements from a larger group of
peers to prepare the endorser transaction.

From the logs, we observe that the clients return numerous
timeout errors while collecting the endorsements from peers
and discard those transaction proposals accordingly.
Consequently, clients send endorser transactions to the
orderers at a decreased rate due to dropped transactions and
the time overhead for collecting endorsements. Unlike our
findings when scaling the peers, we find that scaling the Raft
consenters does not impact the throughput pattern or
scalability of the system, which is similar to what [12] found
performing a similar benchmark with the Kafka brokers.

We note the following observations:

The Raft ordering service is not a limitation on our
system, thus providing the ability to conduct transactions
across different agencies or offices (peers)

Given our node configurations, when the number of peer
nodes engaging in transactions approaches 32, we notice a
strong performance decrease; we would need to set the

timeout to greater than 3 seconds, particularly when
network latency can be anticipated.

Fabric v.2.2 can attain a better throughput than previous
versions of Fabric, especially with the newer
decentralized governance for smart contracts. However, it
is still unable to achieve OLTP levels of performance;
however, using a blockchain allows us to ensure tamper-
proof transactions.

Of the three phases, we found the validation phase was the
bottleneck due to the larger time required to validate blocks
(and transactions) – while v2.2 improves this slightly from
earlier versions of Fabric, it remains an area for improvement.

V. CONCLUSION
We presented a performance evaluation and analysis of

latency and throughput on version 2.2 of Hyperledger Fabric.
We examined the performance characterization of each phase
of the transaction life cycle and have made a comparison of
different ordering services. The execute phase showed good
performance scalability under the OR endorsement policy but
far worse performance under the AND endorsement policy.
The validation phase was the system bottleneck, not only
because the speed of transaction and block validation is
relatively low, but also because there is a high computational
burden on the validation node.

We have investigated the performance as the number of
nodes, orderers, and Raft consenters increased using
Smallbank and a modified version of Hyperledger Caliper as
our benchmarking tools. Although increasing the number of
orderers degrades the system performance; also, an increase in
the number of peers negatively affects system throughput and
limits scalability as we approach 32 nodes, while additional
stress on the Raft ordering service does not have a comparable
decrease in performance. We note while the benefits of our
proposed model provide for tamper-proof transactions, it is not
meant to, nor does it need to, be transaction intensive.

Blockchain technology is still a nascent technology, with its
vast potential understood but to date there have only been
limited endeavors in solving real-world problems. In future
work, we plan to investigate different ways transactions can be
run concurrently and its effects, as well as explore some of the
more advanced settings in Fabric v2.x.

Fig. 7. Changes in performance as (a) we increase the number of orderers from O = 4 to 12; we increase the number of Raft consenters, R, from 4 to 16 and
we increase the number of peers, P, from 4 to 32 for (b) C*T = 300 and (c) C*T = 400.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 68 --

REFERENCES
[1] D. Tapscott and A. Tapscott, Blockchain Revolution : How the

Technology behind Bitcoin is Changing Money, Business, and
the World. `New York: Portfolio Penguin, 2016.

[2] E. Androulaki et al., "Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains," in
EuroSys,2018, pp.30:1–30:15.,

[3] M. Vukoli'c, "Rethinking Permissioned Blockchains," in ACM
Workshop on Blockchain, Cryptocurrencies, and Contracts
(BCC), 2017, pp. 3–7.

[4] M. Soelman, V. Andrikopoulos, J. A. Pérez, V. Theodosiadis,
K. Goense, & A. Rutjes, (2020). Hyperledger Fabric:
Evaluating Endorsement Policy Strategies in Supply Chains. In
2020 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPS) (pp. 145-152).
IEEE.

[5] C. G. Harris (2021). Using Hyperledger Fabric to Reduce
Fraud in International Trade. 2021 IEEE International
Conference on Artificial Intelligence and Blockchain
Technology (AIBT) IEEE.

[6] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C.,
Christidis, K., De Caro, A., ... & Yellick, J. (2018).
Hyperledger fabric: a distributed operating system for
permissioned blockchains. In Proc thirteenth EuroSys
conference 1-15.

[7] Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., & Tan,
K. L. (2017). Blockbench: A framework for analyzing private
blockchains. In Proceedings of the 2017 ACM Int’l
Conference on Management of Data (pp. 1085-1100).

[8] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C.,
Christidis, K., De Caro, A., ... & Yellick, J. (2018,).
Hyperledger fabric: a distributed operating system for
permissioned blockchains. In Proc thirteenth EuroSys
conference 1-15.

[9] Baliga, A., Solanki, N., Verekar, S., Pednekar, A., Kamat, P.,
& Chatterjee, S. (2018). Performance characterization of
hyperledger Fabric. In 2018 Crypto Valley conference on
blockchain technology (CVCBT) (pp. 65-74). IEEE.

[10] Thakkar, P., Nathan, S., & Viswanathan, B. (2018).
Performance benchmarking and optimizing hyperledger fabric
blockchain platform. In 2018 IEEE 26th International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS) (pp.
264-276). IEEE.

[11] Yusuf, H., & Surjandari, I. (2020). Comparison of
performance between kafka and Raft as ordering service nodes
implementation in hyperledger Fabric. International Journal of
Advanced Science and Technology, 29(7s), 3549-3554.

[12] Nguyen, M. Q., Loghin, D., & Dinh, T. T. A. (2021).
Understanding the scalability of Hyperledger Fabric. arXiv
preprint arXiv:2107.09886.

[13] Hyperledger Caliper.
https://www.hyperledger.org/projects/caliper

[14] F. Benhamouda, S. Halevi, and T. Halevi, "Supporting private
data on Hyperledger fabric with secure multiparty
computation," IBM Journal of Research and Development,
vol. 63, no. 2/3, pp. 3–1, 2019.

[15] Cahill, M. J., Röhm, U., & Fekete, A. D. (2009). Serializable
isolation for snapshot databases. ACM Transactions on
Database Systems (TODS), 34(4), 1-42.

[16] Wang, C., & Chu, X. (2020, November). Performance
characterization and bottleneck analysis of hyperledger Fabric.
In 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS) (pp. 1281-1286). IEEE.

[17] Wang, C., & Chu, X. (2020, November). Performance
characterization and bottleneck analysis of hyperledger fabric.
In 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS) (pp. 1281-1286). IEEE.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 69 --

