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Abstract—Hyperledger Fabric is an open-source project 
designed to deploy permissioned blockchains. Performance 
characteristics of Hyperledger Fabric v2.2, such as the impact of 
ordering services, bottleneck, and scalability) are difficult to 
understand due to the performance challenges of distributed 
systems. In this paper, we evaluate the performance of each phase 
in Hyperledger Fabric's new execute-order-validate architecture. 
We also assessed the performance of ordering services (Solo, 
Kafka, and Raft) on the OR and the AND endorsement policies. 
We found the execution phase was more scalable using the OR 
endorsement policy than the AND endorsement policy. While all 
three ordering services (Solo, Raft, and Kafka) performed 
relatively well, we discuss why Raft may be the best choice for 
most organizations. Last, we focus on the performance 
capabilities of theF Raft ordering service using different 
transaction settings.   This evaluation helps to understand some 
of the trade-offs in Hyperledger Fabric v2.x. 

I. INTRODUCTION 
Blockchains are immutable digital ledger systems 

implemented in a distributed fashion (i.e., without a central 
repository) and typically without a central authority. 
Blockchain networks enable trusted parties to send and receive 
ransactions in a peer-to-peer manner verifiably without a need 
for trusted intermediaries. Therefore, a blockchain allows 
parties to settle transactions more quickly, resulting in faster 
movement of goods and services [1]. 

A blockchain is an open distributed ledger hosted by 
numerous decentralized devices called nodes. Blockchain 
transactions between two or more parties (irrespective of 
whether the parties are trusted or untrusted) can be recorded in 
a verifiable and immutable manner, mitigating the risk of fraud. 
When transactions occur, additional blocks are created to 
record this information, the ledger is updated with these blocks, 
and the updated ledger is then synchronized across each node 
in a blockchain system.   

The Hyperledger project is an open-source collaborative 
effort hosted by the Linux Foundation to advance blockchain 
technologies for business enterprises. Hyperledger Fabric is 
currently deployed in over 400 proof-of-concept and 
production distributed ledger systems across different 
industries [2]. Public blockchain networks such as Bitcoin or 
Ethereum allow anyone to join the network; however, 
Hyperledger is a permissioned blockchain network in which 
participants know and can identify each other but do not 
necessarily trust each other. Therefore, organizations can 

benefit from a distributed ledger technology (DLT) without the 
requirement of a fungible currency (e.g., cryptocurrency) [3]. 

As the Hyperledger project evolves and matures, it is 
imperative to model the complex interactions between peers 
performing different yet coordinated functions. Such models 
provide a quantitative framework from which different 
configurations can be produced and trade-off decisions 
considered. A detailed understanding of each phase of 
Hyperledger Fabric is vital because system bottlenecks, when 
they occur, can be reduced. Additionally, a performance 
comparison of the ordering services available in Hyperledger is 
essential because it helps explain the distinctive performance 
characteristics of these ordering services (Solo, Kafka, and 
Raft). In our research, we conducted experiments using 
Hyperledger Fabric v2.2 to provide performance analysis on 
the ordering, verification, and endorsement phases. Our study 
contributes the following: 

An evaluation of the performance characteristics following
the Hyperledger Fabric execute-order-validate architecture
was first released with Hyperledger Fabric v.1.4.

An evaluation using decentralized governance for smart
contracts - a considerable change from earlier 1.x versions
of Fabric where one organization could influence
chaincode parameters and endorsement policies for the
entire consortium on a channel. With Fabric v2.2, multiple
organizations must agree to the chaincode parameters as
shown in the endorsement policy. There is now a much
more deliberate process to upgrade chaincode that requires
a threshold amount of organizations within a consortium to
agree before the chaincode can become active on the
channel.

An evaluation of the performance of the settings for the
different ordering services (Solo, Kafka, and Raft).

An examination of the endorsing peers and ordering
service node scalability under the OR and the AND
endorsement policies.

The remainder of this paper is organized as follows. Section 
II introduces the essential components of Hyperledger Fabric 
and Hyperledger Fabric's ordering services. Section III presents 
our experimental setup on scalability; Section IV presents our 
results and provides an analysis. Last, Section V concludes our 
paper. 

 Endorsement Policies in Hyperledger Fabric 
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II. ESSENTIAL COMPONENTS OF HYPERLEDGER FABRIC

A Hyperledger Fabric network comprises (1) "Peer nodes," 
which execute chaincode, access ledger data, endorse 
transactions, and interface with applications; (2) "Orderer 
nodes," designed to ensure blockchain consistency and deliver 
the endorsed transactions to the peers of the network; and (3) 
“Membership Service Providers” (MSPs), which are typically 
implemented as a Certificate Authority, managing X.509 
certificates and usedFupd to authenticate member identity and 
roles.  

Fabric ledgers cannot fork as is possible with other 
distributed blockchains. Fabric-based applications that seek to 
update the ledger are involved in a three-phase process that 
ensures all peers in a blockchain network keep their ledgers 
consistent with each other. One mechanism featured by Fabric 
is a type of node called an orderer (or ordering node) that 
performs transaction ordering. Working with other 
contributing nodes, these form an ordering service. Fabric's 
design uses deterministic (instead of probabilistic) consensus 
algorithms, any block that is validated is then guaranteed to be 
final and correct. Once a transaction has been written to a 
block, its position within the ledger is immutably assured.    

A. Transaction Overview 
Fabric-based applications that attempt to update the ledger 

are involved in a three-phase process.  Thist ensures that all 
blockchain network peers keep ledgers that are consistent with 
each other. Initially, a client application sends a transaction 
proposal to a subset of peers that will invoke chaincode (a 
smart contract in Fabric) to produce a proposed ledger update 
and subsequently endorse the results. Endorsement is a 
mechanism in Fabric to check the validity of a transaction (see 
[4] for an overview and evaluation of various Fabric 
endorsement policies). Since transactions need to be ordered 
across multiple nodes, the endorsing peers do not apply the 
proposed update to their copy of the ledger; instead, the 
endorsing peers return a proposal response to the client 
application. The endorsed transaction proposals will ultimately 
be ordered into blocks in phase two and distributed to all peers 
for final validation and commitment in phase three.    

Fig. 1. An illustration of the eight steps used in our proposed Fabric model 
for ordering and executing chaincode-based transactions.  

  Fig. 1 illustrates how a participant (i.e., client) invokes a 
transaction request through the client application; Fig. 2 
demonstrates how these roles interrelate with each other 
depicted by a swim lane diagram. 

1) The client application broadcasts the transaction
invocation request to the endorser peer.

2) The endorser peer checks the information, such as
Certificate Authority details, necessary to validate the
transaction. Next, it executes the chaincode and the
endorsement responses are returned to the client. As part
of the endorsement response, the endorser peer provides a
transaction approval or rejection.

3) Next, the client evaluates the response from the endorser
peer, a step usually accomplished by a software
application.

4) If approved, the client now sends the approved transaction
to the orderer peer to be properly ordered and be included
in a block.

5) The orderer node creates a transaction (which consists of
key-value pairs) in a block and then forwards the block to
the anchor nodes of other member organizations of the
Fabric network. Consequently, the leader peers deliver
that block to the other peers within the organization.

6) Anchor nodes then broadcast the block to the other peers
inside their organization, providing consistency within the
organization.

7) These individual peers then update their local ledger with
this latest block. Thus, synchronization occurs across the
entire network. All nodes in the system now contain the
updated transaction information.

8) The event status is subsequently emitted back to the client
indicating success or failure. Thus, it provides a message
to the calling application indicating the success of the
upload to the block.

B. Ensuring Transaction Order 
The ordering service is an essential component in Fabric; it 

is one of this framework’s strengths and is ideal for situations 
in which the ordering of transactions must be ensured.. As 
mentioned in the previous section, special nodes called 
orderers receive transactions from different application clients 
simultaneously. These orderers work together to collectively 
form the ordering service with the role of arranging batches of 
submitted transactions into a precise sequence and packaging 
them into blocks, which become part of the blockchain [5].   

Solo, Raft, and Kafka are the most prominent ordering 
services in Fabric. Solo involves only a single ordering node, 
Kafka is a more challenging ordering service to implement 
than Raft, but does not provide namy advantages over a Raft-
based implementation. Kafka is not designed to be run across 
large networks and is more suitable as an ordering service 
among a tight group of hosts. This limits a Kafka cluster to a 
single organization and consequently making it a poor choice 
for most ordering models that operate across organizations [6].  

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 64 ----------------------------------------------------------------------------



Orderer peers maintain the central communication channel 
for Fabric. As a result, the orderer peer ensures a consistent 
ledger state across the entire network. The orderer peer is 
responsible for creating the block and delivering the block to 
all peers within the same network. In addition to promoting 
finality, separating the endorsement of chaincode execution 
from ordering gives Fabric advantages in scalability and 
performance, eliminating crucial bottlenecks which may occur 
when the same nodes perform both execution and ordering.   

The choice of consensus algorithm is critical in the Fabric 
system. For example, suppose a Fabric system consisted of a 
single orderer node, and that orderer node fails. Consequently, 
blocks that were not yet committed would be lost prior, and 
the integrity of the Fabric system would be lost. Thus, 
consensus algorithms replicate the blocks to cope with 
failures. The nodes used to perform data replication are 
different for each consesnus algorithm. For Kafka, broker 
nodes perform the block replication, whereas in Raft, these are 
done by the orderer nodes. The consensus algorithms replicate 
blocks across all the orderer nodes (broker nodes for Kafka). If 
the number of replicated blocks in the Fabric system is 
denoted as n and the minimum number of data replications is 
denoted as m, the parameter m indicates the fault-tolerable 
range, or the maximum number of crashed nodes that Fabric 
can continue to operate, is denoted as n-m. If the number of 
faulty nodes exceeds the fault-tolerable range, the consensus 
algorithm stops the data replication of blocks or transactions, 
and Fabric ceases to operate.  

The consensus algorithms determine m differently. Solo 
consists of a single ordering node and is not meant for 
applications where lost data can be tolerated, and therefore m 
is not applicable. When using Kafka, m is a configurable 
parameter, whereas with Raft, m is not configurable. 

Ordering notes also enforce basic access control for 
channels, limiting which nodes can read and write data and 
which nodes can make these requests. In addition to ordering 
transactions, orderers also maintain the list of organizations 
that are permitted to create channels. This list is known as the 

consortium and is kept in the configuration of the orderer 
system channel. Due to their central role in access control, 
configuration transactions are processed by the orderer to 
ensure that the requestor holds the proper administrative 
rights. If so, the orderer validates the update request against 
the existing configuration, produces a new configuration 
transaction, and packages the transaction into a block that is 
relayed to all peers within the channel.  

The peers then process these transactions to verify that the 
modifications approved by the orderer satisfy the defined 
channel policies. For example it can be used to keep track of 
the provenance of goods in a supply chain. Each of these 
properties can ensure information integrity in the block.   

III. BENCHMARKING SCALABILITY

Regrettably, the performance of both permissionless and 
permissioned/federated blockchain systems lags well behind 
that of a typical database. The primary bottleneck is the 
consensus protocol used to ensure node consistency [7] and we 
investigate this further in this section.   

Introduced in Fabric,version v1.1, a new transaction model 
called the execute-order-validate model is used. Mimicking 
the optimistic concurrency control mechanisms in advanced 
database systems, this execute-order-validate model consists 
of three phases. In the first phase, transactions are 
speculatively executed (or simulated). The global state of the 
ledger is not affected by this simulation. In the second phase, 
the transactions are ordered and grouped into blocks. In the 
third phase, validation or commit, the transcations are checked 
for conflicts between the order and the execution results. Last, 
transactions without conflicts are committed to the ledger. By 
allowing parallel transaction execution, Fabric can achieve a 
higher transaction throughput than systems that execute 
transactions sequentially.  

When comparing the three types of ordering services, 
namely Solo, Kafka, and Raft, we note that Solo does not have 
a consensus algorithm and is only used during the 
development of blockchain systems, whereas Kafka and Raft 

Fig. 2. A swim lane diagram illustrating the order each of the components of our proposed Fabric model interact in order to write a transaction to the block  
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are crash fault tolerant (CFT). We evaluate the throughput and 
latency of transactions using Fabric v2.2 in a local cluster of 
32 nodes running with the Raft ordering service. Our work 
makes use of an internally designed tool.  This differs from 
Blockbench [7], a benchmarking tool that works with earlier 
versions of Fabric which contained the less robust order-
execute transaction model. Many benchmarking studies, such 
as [8], did not consider the effect of scaling the cluster on 
performance. Similarly, other studies (e.g., [9], [10]) fix the 
size of the ordering cluster and use fewer than ten nodes. In 
contrast, we examine the impact of scaling ordering clusters 
on the overall performance, using up to 32 nodes in a cluster, 
which is likely to occur in a majority of more recent Fabric 
implementations.  

In [11], Surjandari et. al. found Raft was superior to Kafka 
in terms of its transaction success and throughput rates when 
invoking transactions due to its less complex framework.  Raft 
employs the Raft consenter which was created directly from 
ordering service nodes whereas Kafka requires Kafka brokers 
and an elaborate Zookeeper Ensemble. Indeed, most other 
performance benchmarking studies (e.g. [12]) examine Kafka, 
whereas the focus of our study is to benchmark Raft.  

Although Hyperledger Caliper [13] is the official 
benchmarking tool for Fabric, it offers little documentation 
and support on how to benchmark real distributed Fabric 
ordering services such as Kafka or Raft. Most of the 
documentation and scripts are considering the Solo orderer 
and a single client limiting its external validity. To 
accommodate benchmarking at scale, we use a set of scripts to 
invoke a Raft-based Fabric network across several cluster 
nodes, launch additional benchmarking tools, and benchmark 
performance across distributed clients.  

We apply different endorsement policies – sets of 
transaction validation rules that define necessary and sufficient 
conditions for a valid transaction endorsement [14]. A 
validation rule usually contains two parts: target endorsing 
peers and the Boolean operators. The first part dictates the 
required endorsements from a subset of peers. The second part 
supports Boolean conditional logic, including AND, OR, and 
OUTOF. For example, a typical endorsement policy could 
specify a validation rule requiring at least k endorsements from 
target p endorsing peers. We focus on the AND and the OR 
endorsement policies in our study and leave OUTOF 
operations for a future study. 

A. Benchmarking Setup 
A Fabric network topology is defined by the number of 

endorsing peers N, the number of clients, C, maintaining a 
mutual transaction send rate, T, number of Fabric orderers, O, 
number of Raft consenters, R. All the peers belong to different 
organizations and serve as endorsing peers, P. As with [27], 
the block size is set to 100 transactions/block, the timeout is 
set to 3 seconds and the number of clients, C, is fixed at 1.  

We use Smallbank [15], a widely used OLTP database 
benchmark workload tester. Simulating a typical transfer 
scenario and a large class of transactional workloads allow us 
to test Fabric at scale. These experiments were run on a 32-

node commodity cluster. Each server node has an Intel Xeon 
E5-1603 with a processing speed of 2.80GHz, 16 GB of RAM, 
a Gigabit Ethernet card, and a 1 TB hard drive. Our nodes are 
running Ubuntu 20.04.3 (Focal Fossa).   

As was done in [16], we proposed several designs and 
principles to avoid potential bottleneck issues. First, we 
separated endorsing nodes and ordering service nodes, and ran 
these nodes on different machines. Second, we invoked 
multiple transactions per client since setting up a client 
requires time-consuming MSP configurations. In the worst-
case scenario, if one client is set up per transaction, it would 
require significant computing overhead. Third, we invoked 
transactions asynchronously, starting new transactions without 
waiting for responses from other transactions, which 
replicates a real-world scenario. Last, to double-check load 
generation and reception information, we implemented a 
transaction logging system. 

B. Metrics 
We focused on transaction throughput and transaction 

latency using the definition used in Hyperledger Fabric's white 
paper. 

Throughput - the rate at which transactions are committed 
to the ledger in transactions per second (tps). 

Latency - the committing timestamp of a transaction minus 
the submission timestamp of a transaction, where the 
committing timestamp means the timestamp when a 
transaction is committed to the ledger. Following this 
approach, we can calculate the transaction latency for each 
transaction and the average latency. 

IV. RESULTS AND ANALYSIS

We examined transactions to each of the three ordering 
services separately. We applied the AND and the OR 
endorsement policies and calculated the overall throughput 
and overall latency. Our goal is to best replicate the conditions 
in [17], which examined these types of transactions using 
Fabric v1.4.3. 

A. Overall Throughput. 

Fig. 3 and Fig 4 illustrate the overall transaction throughput 
under different ordering services and endorsement policies. 
We used an OR endorsement policy requiring 17 (a majority) 
of the 32 participating nodes, or all 17 nodes that were pre-
specified for the AND endorsement policy.   

There are two findings related to the throughput and the 
chosen endorsement policy.  

First using the OR endorsement policy and a transaction
size of 1 byte (Fig 3), the maximum throughputs are
nearly 300 tps. There was no significant difference in the
maximum performance achieved by each of the ordering
services (Solo, Raft and Kafka).

The AND endorsement policy (Fig. 4) achieved a
maximum throughput of 200 tps, a significant drop from
the OR endorsement policy for the same number of
required nodes.
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B. Overall Latency. 

Fig 5 and Fig 6 illstrate an overall transaction latency under 
different ordering services and endorsement policies. One 
observation is that when the system reaches peak performance, 
the transaction latency will increase rapidly. In particular, the 
transaction latency with the endorsement policy AND (Fig. 6) 
increases more significantly with the OR endorsement policy 
(Fig 5). Since the maximum throughput of AND is 
considerably lower than OR, the performance bottleneck 
comes earlier than OR. In our experiment, we used Nodejs and 
set the maximum transaction latency for the ordering service at 
3 seconds – if our client failed to receive a response from the 
ordering service nodes within 3 seconds, the client would 
reject the response. In a worst-case scenario – in which 
transactions have an ordering latency of 3 seconds or greater – 
the  client rejects those transactions. Therefore, the overall 

transaction latency will increase rapidly when the transaction 
arrival rate surpasses the peak system performance, since 
many subsequent transactions will be rejected. 

C. Evaluation of Performance using Raft 

Next, we focus on the most implemented ordering service, 
Raft, and examine the effects of increasing the number of 
orderers and peers. We chose Raft since it was the easiest of 
the CFT policies to implement, is widely used, and Solo and 
Kafka have been deprecated beginning with Fabric 2.0). 

Overall, as the number of Fabric orderers increases, system 
throughput performance significantly degrades due to elevated 
communication overhead – in Fig 7 (a)), we increase the 
number of orderers from O = 4 to O = 12. In our subsequent 
experiments, we fix the number of Fabric orderers to O = 4 
and vary the number of Raft consenters, R, to assess the 

Fig 3. Comparison of the transaction latency of the “order and validate” phases (red) with the “execute” phase (black) for the three different ordering 
services using the OR endorsement policy 

Fig 4. Comparison of the transaction latency of the “order and validate” phases (red) with the “endorse” phase (black) for the three different ordering 
services using the AND endorsement policy 

Fig 5. Overall transaction throughput using the “OR” endorsement policy (red) with the “AND” endorsement policy (black) for the three different 
ordering services

Fig 6. Overall latency using the “OR” endorsement policy (red) with the “AND” endorsement policy (black) for the three different ordering services.
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impact on scaling Fabric. 

At the networking level, we find that the client, peers, 
Fabric orders, and Raft consenters exhibit the highest traffic 
both when sending and receiving. The increased traffic of the 
Fabric orderer is explained by its double role as a receiver of 
requests from the client and as a dispatcher of requests to Raft.  

 Next, we fix the request rate and investigate the impact of 
increasing the number of peers. We set the total request rate to 
C  T = 300 and C  T = 400, representing the points before 
and after saturation. We vary the number of Raft consenters 
from R= 4 to R = 16 in multiples of 4. We increase the number 
of peers to P = 32. The average throughput and latency of each 
experimental setting are shown in Fig 7(b) and Fig 7(c), 
respectively.  

D. Raft Performance Results and Analysis 
Increasing the number of peers has a strong negative impact 

on the system's throughput and it limits scalability. We 
examine the system logs and observe that scaling the number 
of peers produces significant overhead in both the 
endorsement and ordering phases of the transaction. As the 
number of endorsing peers grows, each client must wait for a 
more extensive set of endorsements from a larger group of 
peers to prepare the endorser transaction.  

From the logs, we observe that the clients return numerous 
timeout errors while collecting the endorsements from peers 
and discard those transaction proposals accordingly. 
Consequently, clients send endorser transactions to the 
orderers at a decreased rate due to dropped transactions and 
the time overhead for collecting endorsements. Unlike our 
findings when scaling the peers, we find that scaling the Raft 
consenters does not impact the throughput pattern or 
scalability of the system, which is similar to what [12] found 
performing a similar benchmark with the Kafka brokers.  

We note the following observations: 

The Raft ordering service is not a limitation on our
system, thus providing the ability to conduct transactions
across different agencies or offices (peers)

Given our node configurations, when the number of peer
nodes engaging in transactions approaches 32, we notice a
strong performance decrease; we would need to set the

timeout to greater than 3 seconds, particularly when 
network latency can be anticipated.    

Fabric v.2.2 can attain a better throughput than previous
versions of Fabric, especially with the newer
decentralized governance for smart contracts. However, it
is still unable to achieve OLTP levels of performance;
however, using a blockchain allows us to ensure tamper-
proof transactions.

Of the three phases, we found the validation phase was the 
bottleneck due to the larger time required to validate blocks 
(and transactions) – while v2.2 improves this slightly from 
earlier versions of Fabric, it remains an area for improvement. 

V. CONCLUSION 
We presented a performance evaluation and analysis of 

latency and throughput on version 2.2 of Hyperledger Fabric. 
We examined the performance characterization of each phase 
of the transaction life cycle and have made a comparison of 
different ordering services. The execute phase showed good 
performance scalability under the OR endorsement policy but 
far worse performance under the AND endorsement policy. 
The validation phase was the system bottleneck, not only 
because the speed of transaction and block validation is 
relatively low, but also because there is a high computational 
burden on the validation node. 

We have investigated the performance as the number of 
nodes, orderers, and Raft consenters increased using 
Smallbank and a modified version of Hyperledger Caliper as 
our benchmarking tools. Although increasing the number of 
orderers degrades the system performance; also, an increase in 
the number of peers negatively affects system throughput and 
limits scalability as we approach 32 nodes, while additional 
stress on the Raft ordering service does not have a comparable 
decrease in performance. We note while the benefits of our 
proposed model provide for tamper-proof transactions, it is not 
meant to, nor does it need to, be transaction intensive.  

Blockchain technology is still a nascent technology, with its 
vast potential understood but to date there have only been 
limited endeavors in solving real-world problems. In future 
work, we plan to investigate different ways transactions can be 
run concurrently and its effects, as well as explore some of the 
more advanced settings in Fabric v2.x.  

Fig. 7. Changes in performance as (a) we increase the number of orderers from O = 4 to 12; we increase the number of Raft consenters, R, from 4 to 16 and 
we increase the number of peers, P, from 4 to 32 for (b) C*T = 300 and (c) C*T = 400.  
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