
Identifying and Treating NULL Values in the Oracle
Database – Performance Case Study

Michal Kvet
University of Žilina

Žilina, Slovakia
Michal.Kvet@fri.uniza.sk

Abstract—Relational scheme has been created to serve data in a
precise format by accepting the structure, conditions, and
constraints. It consists of the entities and relationships between
them. Each entity is formed by the attributes defined by the data
type and various column constraints ensuring integrity and
consistency. In this environment, however, undefined values can
be present. This paper aims at identifying NULL values by
optimizing the storage capacity and data retrieval performance in
Oracle Database. Additionally, it provides new unique NULL
pointer layer for the undefined value reference. Besides, it
summarizes existing approaches by focusing on representation, 3-
valued logic, and indexing.

I. INTRODUCTION

A database is a set of data files, which are block oriented
and provide the layer for storing the data. A database is a
physical data repository and its optimization is associated with
the storage capacity and demands, as well as internal data
organization, which impacts the overall performance of
accessing and retrieving data tuples. Over the decades, various
discussions and research strategies were identified, delimited
by the physical infrastructure, data discs, interfaces, and access
rate. These factors influence the technical means in a hardware
operation manner. Alongside, data storage architectures were
evaluated, either defined by the physical data structures, or the
size of the blocks. An important aspect, in addition to physical
infrastructure and performance, is also security, persistency,
availability, durability of data, and resistance to crashes. The
database itself, however, does not have sufficient power and
an additional layer managing the data must be present [1].

An instance is mostly defined by the software – processes
of the instance operating the database and memory. These
processes are responsible for managing the instance, and
database managing, as well as ensuring data transfer, logging,
durability, memory optimization, and sanitizing [2].

The critical part during the data processing and evaluation
relates to the tuple identification, particular block memory
loading, and evaluation based on the conditions of the
statement, followed by the result set composition [2] [3]. From
the opposite side, by inserting new tuples, instance processes
must identify a free block in the memory to hold a new tuple,
followed by transaction management, logging, and finally,
transferring the changed blocks from the memory to the
database. Conversely, the approach is similar, even if there is
an attempt to update the existing data. In that case, the free
block must be identified not to hold new data tuple, but the

existing block in the first phase. Then, the update operation
can be executed, if the tuple is not locked. During the update
operation, however, the storage demands can be extended,
consequencing in the impossibility to store new data versions
in an original position. In that case, data must be migrated to
another available block, to which the data pointer will be
created and stored in the original data block. Data migration is
a significant performance problem while retrieving the data,
whereas the pre-loaded block does not store the required data,
instead, just the locator to another repository is present, which
results in the necessity to load multiple blocks, instead of only
one.

To optimize the performance and access to the data, indexes
are present, limiting the necessity to scan the data files and
related blocks sequentially [4]. Thus, the index is a specific
locator, its structure is defined by the attributes, function
results, or expressions forming the key. Typically, B+tree
indexes are present in the relational platform, whereas they
maintain efficiency with the growth of the tuple version
number. Thus, the traversing across the index is done based on
the index key, up to the leaf layer, which holds the addresses
of the data in the database storage layer. The physical address
in the Oracle Database is defined by the 10-byte value,
delimited by the data file identifier, block, and position of the
tuple inside the block. Thus, the ROWID access is the fastest
access to the data, based on the pre-condition, that the
addresses are accurate and the data migrations are not present,
negatively influencing the I/O operation number [4].

The database index is associated with the traverse path to
locate particular key index values on the leaf. It is based on
value comparison to identify, which element covers the
defined range. The limitation is just the NULL value, which
does not hold any value and thus, cannot be mathematically
compared and evaluated, resulting in refusing NULL value
indexing. Therefore, an additional index layer is proposed in
this paper, to ensure the proper performance and index usage,
even for the undefined values, or general values, which could
contain NULLs. It is based on a specific index extension
stored physically in the database, pointed from the root node
[5].

Besides, the NULL value representation is discussed,
delimited by the 3-valued logic and reflection in the temporal
database systems, whereas they are a bit specific. Namely, a
NULL value represents a completely undefined value, not
applicable value or value, which is not obtained, stated,

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 161 --

relevant for the processing, or is delayed, caused by various
reasons, like non-reliable network, improper measurement,
precision ranges, etc. However, for the temporal systems, how
to refer to the unlimited validity? Although the NULL value is
used, representing an undefined value, it is clear, that such an
event has not occurred yet and will be present in the future (if
ever). Thus, in the temporal systems definition of the duration
frame, the NULL value reflects only a partially undefined
value, from the timeline reference, only future timepoints can
be associated [5], [6].

To serve the complexity of the NULL value management in
relational systems, the proposed paper is structured as follows:
Section 2 deals with the meaning and representation of the
NULL values by forming the 3-valued logic. Section 3 deals
with the sorting techniques by extending order by clause of the
Select statement to handle undefined values. Section 4
provides an evaluation study of the default value management
using a clause or trigger, followed by handling conversion
errors (section 5). Section 6 deals with the indexing and
undefined value reference in the temporal systems using
B+tree index enhancements. Finally, section 7 provides a
NULL pointer layer extension to serve undefined values to be
part of the indexing.

For the performance computational study, the Oracle Cloud
environment located in the Frankfurt data region was used.
Provisioned Autonomous Transaction Database version was
Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 –
Production Version 21.2.0.0.0. The storage capacity was 20
GB for internal data management. Backups were part of the
Object storage outside the database itself. The used data set
consisted of 5 000 000 of the sensor-based data provided by
the air transport systems. It was spatio-temporal database
oriented using group granularity. The precision of the date
value processing was one second.

In this paper, we focus on the Autonomous Transaction
Database provisioned in Oracle Cloud. There are several
reasons for selecting it with no further references and
comparisons to other database systems. Firstly, it provides
advanced ML (machine learning) and AI (artificial
intelligence) techniques to provide sel-driving, tuning and
optimizing database, which does not require additional
specific administration intervence. Moreover, it allows fast,
reliable and robust worldwide access, supervised by the huge
scalability. Thirdly, Oracle Database is the most powerful and
provides various enhancements and improvements, so the
provided solution can be compared to the latest trends and the
best offers. Fourtly, Oracle Database is a the best player for
the commercial database storage with high data flow, in which
the data streaming can be anhanced by the reliability,
undefined values and NULL reference treatment. And finally,
this contribution is part of the Erasmus+ project EverGreen
dealing with data analytics, in which the Oracle Corporation is
the associative partner.

II. NULL VALUE REPRESENTATION AND MEANING

NULL notation represents undefined value, which can,

however, arise from various causes, like inapplicable value,
not stated, out of precision, value delivered late or
undelivered, at all, etc. But the NULL value itself has only one
representation and internal meaning is hidden. Thus, without
any additional rules and records source and origin cannot be
identified. Therefore, undefined values are in some cases
modeled by the specific value part of the domain. This results
in additional storage costs, as well as additional demands
ensuring proper representation. Namely, the obtained value
must always be processed and evaluated. The original value
does not have to express the domain membership, but rather
a specific symbol expressing the cause of the undefined value.
The approach defined in this way has four main disadvantages.
Firstly, the domain must be able to provide specific values
allocated for the undefined values clearly distinguishable from
the correct data. Secondly, by changing the precision and
ranges over time, originally reserved values do not need to be
proper later on. Thirdly, the types of undefined values can
originate from various sources, and categories can be added
and altered dynamically. Last but not least, there are the
additional costs of storage and indexing. Users must be aware
of the internal representation, otherwise, improper data can be
obtained by the querying.

Thus, original NULL values are more feasible and
representation effective, however, some performance
drawbacks should be stated. The main limitation is the
impossibility to compare the NULL value mathematically by
limiting the opportunity to sort the values and place them in an
ordered list. Whereas they cannot be compared, nor sorted, it
is impossible to set a unique constraint for the attribute
ensuring, that only one NULL value would be present. The
only solution is to set column constraint type UNIQUE and
NOT NULL column definition constraint. It would, however,
require a specific representation for holding the undefined
value.

The following code snippet shows, that the unique
constraint definition does not ensure using only one NULL
value, because the checking is done using B+tree index with
an unique flag, however, NULL values are not indexed, so
excluded from the consideration and checking process:

create table null_man_tab(id integer unique);
insert into null_man_tab values(null);
‐‐ 1 row inserted.
insert into null_man_tab values(null);
‐‐ 1 row inserted.

By treating NULL values, they cannot be mathematically
compared using equality and non-equality sign, resulting in
forming 3-valued logic. Next subsection introduces 3-valued
logic by summarizing AND, OR and NOT operation results.

A. 3-valued logic

The NULL values management extends the conditional
processing of the TRUE (T) and FALSE (F) values by the
NULL (N) as the result, forming 3-valued logic. Fig. 1 shows
the matrix for the evaluation, defined by the logical sum,
logical product, and negation [5].

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 162 --

OR T F N AND T F N NOT
T T T T T T F N T F
F T F N F F F F F T
N T N N N N F N N N

Fig. 1. 3-valued logic

The performance study related to the condition evaluation
was based on holding 10% of undefined values (500 000
records). The rest values were uniquely identifying the flight
and sequence number. The study evaluated the following
conditions by focusing on processing time and costs. Note,
that there was no explicitly specified index to be used, forcing
the system to perform sequential data block scanning. The
identifier itself required 7808 blocks and 61 MB (the size of
the block was set to the default option – 8KB. Performance
study and impacts of the various block size to the loading can
be found in [6]).

The following code block shows the query to get the size of
the stored data objects. It is stored in the bytes, by
transforming the value into MB precisions in the output:

select blocks, bytes/1024/1024 as MB
 from user_segments

 where segment_name = 'AIR_MONITORING';

The results of the query evaluation can be found in Fig. 2
by considering various conditions dealing with the undefined
values, represented by the NULL notation. ECTRL_ID is the
flight identifier, sequence number (SN) references the
timepoint, during which the state of the airplane has been
provided.

ECTRL_ID = 10 526 ROWCOUNT
provided

COSTS Result
set SIZE

SN = 1 1 2 140 1 092 B
SN != 1 4 499 999 2 140 40 MB
not(SN=1) 4 499 999 2 140 40 MB
SN is null 500 000 2 132 4 084 KB
SN = 1 or SN is null 500 001 2 145 4 084 KB
SN <> 1 or SN is null 4 999 999 2 145 3 619 KB
no condition 5 000 000

Fig. 2. Condition performance evaluation

As evident from the results, the number of rows part of the
result set has a strong impact on the result set size and the
direct proportion can be identified. However, from the
processing costs point of view, only the evaluation strategy
falls into consideration. In all cases, sequential block scanning
operation was performed, so each data block was moved to the
memory for the evaluation, which brings significant demands
on the I/O operations, system sources, and activity of the
background processes.

Besides, dynamic statistics sampling (level=2) was used.
Dynamic sampling is an optimization strategy to improve the
ability of the optimizer to make a good execution plan. It
indicates, that the data statistics the optimizer attempts to use
are not sufficient and should be extended. Thus, it does not
substitute existing statistics, rather it extends them. During the

Select statement evaluation by the database optimizer,
statistics are considered. If they are not sufficient to produce a
relevant and performance-effective execution plan, dynamic
sampling is activated. Note, that dynamic sampling statistics
are not so complex and exact, it is rather the fast estimation
produced very quickly. Oracle database uses 12 levels of
dynamic sampling, level 2 disables it, while level 1 defines at
least one non-partitioned table that lacks the statistics. The
default option is 2, applied in this case, as well means, one
table referenced in the statement does not have the proper
statistics, like a histogram of the values present for the
attributes. A sample size (blocks) in this case is 64. More
about dynamic sampling can be found in [2], [8], [9].

During the evaluation, no active transactions were present,
all expired tuple locks were removed [10]. Thus, no sort
strategy and DB block get were necessary. Consistent gets
value takes 341 027 expressing the metric of the number of
logical RAM buffer I/O reads to get data from a data block.
SQL*Net message to the client and SQL*Net message from
the client define waiting events, whereas the client process can
be busy to accept the message delivery immediately.

Fig. 3 shows the executed Select statement statistics.

Fig. 3. Select statement statistics

III. SORTING DATA

As the NULL values are not comparable and sortable,
ordering the data in the result set requires additional clauses or
specific functions to convert undefined values and place them
in the sorted set. In this section, several approaches are
evaluated to identify the performance impacts and costs. The
environment and used data strategies are the same as already
described in the previous section.

By default, NULL values are considered the maximal value
in the range, so by ordering the data in an ascending manner,
such values are placed at the end. It can be optionally
enhanced by using NULLS FIRST and NULLS LAST clauses.
Thus, based on the defined preconditions, the first and second
evaluated solutions provide the same result set content.
However, as evident from the results, although the total
processing costs are almost the same, explicit clause definition
brings additional demands for sorting, which takes 1% of the
CPU for the SORT ORDER BY operation execution. The
obtained results are shown in Fig. 4. Among the ORDER BY
clause extensions, also user-controlled sorting operations have
been used to evaluate performance impacts.

Statistics
5 recursive calls
0 db block gets
341 027 consistent gets
0 physical reads
0 redo size
115 611 644 bytes sent via SQL*Net to client
3 666 715 bytes received via SQL*Net from client
333 335 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
5000000 rows processed

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 163 --

processing
time

no ORDER BY clause 00:01:00.85
order by value 00:01:03.89
order by value NULLS FIRST 00:01:04.91
order by value NULLS LAST 00:01:04.34
order by
 case when value is null

 then -1
 else null

 end

00:01:05:12

order by nvl(value, -1) 00:01:06:78
order by transform_null(value) 00:01:08:24

Fig. 4. Processing time demands of Order by clause

Based on the results, it can be concluded, that the user
definition brings additional demands, due to the necessity to
compile the code. Moreover, if it is done in a PL/SQL
function, processing time demands are significantly higher.
Note, that even using NULLS LAST clause, which provides
the same results as the ordinary ascending definition, requires
additional demands.

Fig. 5. Performance of the Order by clause

Fig. 5 shows the results in a graphical form. The reference
solution does not sort the data and provides them as a heap. It
requires 60.85 seconds. Ordinary ORDER by clause requires
additional 3.04 seconds, which reflects 5% increase. Forcing
the system to put the undefined values first requires additional
1.02 seconds. An interesting solution is provided by using the
explicit NULLS LAST clause. Although the results are the
same as an ordinal solution, the additional processing time is
0.45 seconds, just for the evaluation and order selection.
Explicit management does not provide sufficient power. Three
functions were evaluated – CASE, NVL, and explicit user
function. The case provided the best results, internally
optimized for SQL usage, while NVL is primarily used for the
PL/SQL and requires a shift between SQL and PL/SQL
environment processing. Finally, the own function
(transform_null) requires parsed form loading in the memory
for the shared function content. It requires 68.24 seconds,
which represents a 7.39 second increase (12.14%). Compared
to ordinary sorting, additional demands are 4.35 seconds,
expressing 7.15%.

IV. MANAGING NULLS AS DEFAULT VALUES

This section aims at evaluating NULL values and replacing
them with the default value. The default value definition
depends on the application and attribute domains. In the past,
it was necessary to distinguish between value, which was not
specified, and value, which was explicitly marked as
undefined. Oracle database used to offer default clause for the
attribute. The following code block shows the default value
definition using attribute reference.

create table air_monitoring
 (ectrl_id integer,
 sn integer default ‐1);
insert into air_monitoring(ectrl_id)
 values(1);
insert into air_monitoring(ectrl_id, sn)
 values(2, null);
select * from air_monitoring;

The result of the above Select statement is depicted
in fig. 6.

ECTRL_ID SN
1 ‐1
2 (null)

Fig. 6. Select statement result

Prior to Oracle Database version 12c released in 2012 –
explicit NULL value for a column bypassed the default value.
This version introduced the DEFAULT ON NULL clause. In
this section, the performance of the default value clause
extension and explicit management using a trigger is
evaluated, referring to the processing time. The results for 50
000 tuples are in Fig. 7. A significant performance difference
can be identified. Inside the trigger, IF condition and default
value assignment is present, if the condition is evaluated as
TRUE meaning, the NULL value is identified. The evaluation
has been associated with the Insert operation.

Insert processing time
default on null +00 00:00:03.031000
trigger +00 00:00:04.751000

Fig. 7. Default on null performance – Insert statement

The trigger definition brings an additional increase of more
than half (56.75%) compared to the DEFAULT ON NULL
clause. It is due to the necessity of passing between the SQL
language and the PL/SQL functionality defined in the trigger
body.

When dealing with the Update statements, the
difference reflects 16.89% (Fig. 8).

Update processing time
default on null +00 00:00:03.673000
trigger +00 00:00:04.294000

Fig. 8. Default on null performance – Update statement

Results in the form of a chart are presented in Fig. 9.
The difference for the Update operation is lowered,

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 164 --

whereas the size of the tuple after the change operation cannot
be extended, so no data migration can be present.

Fig. 9. Handling default value – performance results

V. TREATING DATA CONVERSIONS

External bulk loading is commonly associated with the
character strings, which must be converted to a particular data
type. The possibility of conversion needs to be verified and if
any problem occurs, the NULL value should be used, instead
of the original value, by recording it in the log. This section
deals with three architectural solutions. The first solution is
based on using an exception handler coded inside the block
content body. Generally, no checking is done and conversion
attempts to be performed. Any issue is covered by the
exception handler, using the row granularity. The principle is
shown in the following code snippet. The block content takes
the Insert operation. If it fails, it is encapsulated by the
exception handler inserting NULL.

begin
 insert into air_monitoring
 values(to_date('15.13.2000', 'DD.MM.YYYY'));
exception when others
 then insert into air_monitoring values(null);
end;
/

The second evaluated solution places the checking directly
to the conversion operation by introducing the DEFAULT
NULL ON CONVERSION ERROR clause. In this case, no
explicit exception handler is used, because it is implicitly
associated with the conversion operation itself. The following
code block shows an example of th usage in PL/SQL data
block.

insert into air_monitoring
 values(to_date('15.13.2000'

 default null on conversion error,
 'DD.MM.YYYY'));

The last solution uses the validate_conversion function.
Thus, before the operation itself, it is verified that the
conversion can be successfully performed. If not, the original
value is replaced by NULL. Thanks to this, no exception can
occur, and therefore there is no need to process the exception,

define a handler, etc. The snippet of the code in the procedural
language reference is stated in the following code block (for
the readability and simplicity, we omit the declaration plasem
as well as the whole block encapsulation):

select validate_conversion('15.13.2000' as date,
 'DD.MM.YYYY')

 into result from dual;
if result=1 then
 insert into air_monitoring
 values(to_date('15.13.2000', 'DD.MM.YYYY'));
else
 insert into air_monitoring values(null);
end if;

Fig. 10 shows the results. The best solution was provided
by using a conversion error clause, which required 5.45
seconds. The validate_conversion function takes the input,
format, and output data type and checks, whether the
conversion can be done, by getting value 1 (if possible) or 2 (if
removed). The total demands are 8.61 seconds, which is also
delimited and caused by the shift between the SQL and
PL/SQL languages. Thus, it requires an additional 57.98% of
the processing time. The worst solution uses PL/SQL code, as
well. But the exception handler is defined, covering any
unsuccessful attempts for the conversion. 50 000 values are
incorrectly specified, resulting in getting a NULL value. The
total processing time demands of the explicit exception
management were 11.42 seconds. Compared to the
validate_conversion usage, it requires an additional 32.66%.
By taking the conversion error clause as a reference, additional
processing time demands reflect more than 109%.

processing time
exception handler +00 00:00:11.422000
conversion error
clause

+00 00:00:05.453000

validate_conversion +00 00:00:08.610000

Fig. 10. Performance – treating conversion errors

A graphical representation of the conversion
technique management is shown in Fig. 11.

Fig. 11. Graphical representation – treating conversion errors - DATE

For the conversion to the numerical format, the obtained
results are analogous, however, for the validate conversion,

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 165 --

date mapping format does not need to be treated, so the total
processing costs are lowered to the value 6.86 seconds,
compared to the DATE value processing, which requires
8.61 seconds. Concluding, format mapping for the specified
environment required 1.75 seconds. Results are graphically
presented in Fig. 12.

Fig. 12. Graphical representation – treating conversion errors - NUMBER

VI. INDEXING

Index as a structure of enhancing data path gives the
optimized way to access the data blocks, compared to the
sequential scanning necessity. By default, the B+tree index
structure is created and defined implicitly for each primary key
or unique constraint. The B+tree index is characterized by
walking from the top (root node) to the leaf node-set, which
contains the pointers to the data. Thus, at least one header
block and one leaf block always exist. Each block, which is
not marked as a leaf, has several descendants, forming the
balanced tree. Moreover, the keys in the leaf layer are
interconnected, so the data on the leaf layer are automatically
sorted based on the key values. Besides the implicit indexes,
the user can specify any index explicitly. However, the
limitation of the B+tree is covered by the traversing, which is
done by the mathematical comparisons to locate relevant tuple
references [11] [12]. Whereas NULL values cannot be
mathematically compared and evaluated, tuples, which have
NULL value as an index key, are excluded, resulting in the
necessity to scan the whole data block set sequentially, if the
result set can potentially contain such rows. The limitation of
the NULL value management, processing, and index coverage
is shown in the following execution plans. Even though there
are no undefined values in the table, the database optimizer
cannot guarantee this, because it only refers to statistics that do
not change with each data update, but only in defined time
frames, or on request. Thus, in the case of defining a query
that may contain a NULL value, a sequential search of the
entire structure is used. Fig. 13 shows the execution plan of the
ordinary solution.

Fig. 13. Execution plan (1)

By limiting undefined values by the additional condition,
significant performance improvement can be identified
(Fig. 14 representing the execution plan). However, note, that
many times, undefined, non-reliable, or delayed data need to
be identified and reflected. That would cause additional
processing demands, whereas they are commonly represented
by the NULL notation.

Fig. 14. Execution plan (2)

Fig. 15 shows the results dealing with the undefined values.

Fig. 15. Execution plan (3)

In the next section, the proposed solution extending the
B+tree index by the NULL handler layer is discussed.

VII. IDENTIFYING UNDEFINED VALUES INSIDE THE INDEX

As evident from the results stated in Section VI., undefined
values cannot be efficiently referenced by the index structures
forcing the system to scan block-by-block sequentially. That
results in various performance limitations, whereas data
fragmentation can be present. Moreover, in dynamic systems,
even empty blocks can be present. This section prepares a
strategy for undefined value identification. The first approach
relates to extending database table statistics by introducing a
NULL value counter for each attribute, which can hold it, as
expressed as SOL_DD_COUNT. This solution stores the
number of NULL values in the data dictionary. However,
unlike standard statistics, this value is updated directly when
the transaction is approved. This ensures that the stored data is
valid and accurate at any moment. Thus, even if the query
does not limit undefined values and it is clear from the
extended statistics that undefined values are not present, the
optimizer can choose to use the index. Naturally, with an
emphasis on constructing a consistent data image over time.
And here we come to the limitation of the proposed solution.
In an environment supporting huge parallelism, it would be
necessary to store these extended statistics for each data image
with the possibility of tracking the evolution over time based
on transaction identification. It would require moving these
extended statistics to a separate repository and associating
them with the transaction-oriented log. So, if the transaction
log expires, particular statistics would be vacuumed and
original sequential data block scanning would be necessary to
be performed.
The above solution is depicted by the following code block
expressed by a trigger in a logical scheme:

Create or replace trigger update_data_dictionary
 before transaction approval
begin
 ‐‐ recalculate statistics for the used objects
 ‐‐ in the transaction;

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 166 --

 null_man.update_null_in_DD(changed_table_set);
 ‐‐ optionally
 for i in changed_table_set
 loop
 dbms_stats.gather_table_stats
 (tabname => 'i.table_name', cascade => true);

 end loop;
end;
/

The second solution relates to the B+tree index extension.
In this case, the root element of the B+tree is extended to hold
the NULL pointer layer used as the list of references to the
rows, which hold undefined value for the particular data
attribute. In [7], various architectures and data structures have
been evaluated. Namely, pure B+tree, bitmap, and function-
based indexes are evaluated. Besides, partitioning using global
and local indexes are performance studied, pointing to the
processing time, costs, and storage demands. In this paper, the
NULL pointer layer is stored primarily in the instance memory
and loaded automatically during the instance startup,
respectively on demand. Moreover, this layer is shared among
all indexes associated with the table, compared to the original
solution described in [13]. Fig. 16 shows the architecture of
the proposed solution by focusing on the undefined value
management. Data input is represented by the various data
stream, typically defined by the sensor based network. Then,
each data tuple is extracted to identify, whether NULL values
are present. If so, processing is navigated to the NULL pointer
layer to record the ROWID reference. Otherwise, particular
tuple is directly indexed. ROWID reference is shown red. The
general data flow is marked black.

Fig. 16. Proposed architecture

Fig. 17 shows the results comparing BI-index introduced in
[14] and the proposed memory structure. It is used in various
optimization strategies [15] [16] and decision making support
systems [17].

The limitation of the proposed solution is the pre-loading
necessity. However, this operation can be done directly during
the instance opening process, which would delay the timepoint
of getting the database accessible or on demand before the first
attempt to use that layer. In that case, however, loading would
be strongly delayed, because the whole NULL pointer layer
must be formed. The third relevant solution relates to the pre-
indexer, which compresses the structure and loads in during
the weak workload to make it already accessible when trying
to reference the NULL pointer layer. Based on the results

shown in Fig. 17, by comparing physical structure and
memory structure, total improvements range from 16.2% up to
18.7%.

Fig. 17. Index performance

To conclude, memory loading operations provide sufficient
power and improve the performance of the ad-hoc dynamic
queries. On the other hand, memory loading must be present to
ensure the structure accessible. Similarly, before shutting
down the instance ordinary, particular memory NULL pointer
layer must be binary exported to the database. But if the
database is not closed correctly, the NULL pointer layer is
automatically marked as untrusted and cannot be used later. In
that case, the NULL pointer layer is composed from the
scratch by scanning the table block set and identifying
undefined values. During this period, the original indexes are
accessible, but if a NULL value were referenced, a sequential
search would be necessary. On the other hand, even this search
itself can be used to construct a NULL pointer layer.

VIII. METHODOLOGY

This paper deals with undefined value management, which
is critical for temporal management, as well as the sensor-
based environment. Communication infrastructure can also
cause delays and unreliable data, which should be considered.

This paper is practically oriented by providing the
performance evaluation study, starting with Where the
condition of the Select statement (data retrieval). Whereas
undefined values cannot be mathematically compared, nor
evaluated, significant additional processing time demands, and
costs can be identified. Besides, several additional clauses
have been considered. Namely, the Order by clause can be
extended by the NULLS FIRST or NULLS LAST clause,
which, based on the defined environmental conditions, brings
1.02 or 0.45 seconds, reflecting 26.22% or 11.59%,
respectively. Own explicit sortage method does not bring a
relevant solution, while the additional processing time
demands rise to 2.89 seconds for the NVL function call or 4.35
seconds for the complete own function body definition. It is
caused by the necessity to shift between SQL and PL/SQL
environments.

Then, replacing the undefined value with NULL notation is
evaluated. Default on NULL is optimized and reduces
processing time demands, compared to the trigger, up to
36.20%.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 167 --

Data can be originated from various sources and need to be
commonly converted to the destination data type. This activity
requires additional checking to ensure the conversion can be
properly done. To highlight the performance demands, three
solutions were evaluated. The best solution is provided by the
conversion error clause extension. The most demanding
solution is just exception management, while the additional
universal handler must be defined. Similarly, checking
conversion is not fair, because it is not directly associated with
the operation, but it must precede the conversion itself.

Finally, the indexing techniques are discussed. The focus is
on the B+trees, which are used as a default option in relational
databases, while they maintain efficiency with the data source
expansion. The proposed solution serves relevant solution
because it is stored in the memory and completely shared for
all indexes of the table.

The source of the undefined values and references can be
placed in the memory, requiring synchronization across the
instance and database during the maintenance windows or
shutdown request. If the synchronization is not done, after
reloading, the structure is marked as invalid and the system
will launch additional background processes to compose a new
structure by scanning the whole associated table block set
sequentially.

IX. CONCLUSIONS & FUTURE RESEARCH

NULL value management is an inseparable part of
relational data processing. To ensure proper management and
performance, individual options must be taken into account to
choose the best solution based on the workload and strategy.
In this paper, NULL value representations and meanings are
stated. Then, the techniques for sorting data consisting of
NULL values are present, followed by the default value
management replacing original NULL values. Data conversion
techniques are also taken into consideration during the
definition and performance evaluation. This option is critical
during the bulk data loading and moving data.

A significant emphasis of this paper is related to indexing
by proposing own memory NULL pointer layer, which is a
general repository referenced by all indexes using a root node
pointer. It discusses the techniques, synchronization
operations, as well as rebuilding after the failure.

In the future, we will focus on the development of other
methodological procedures and techniques, with an orientation
towards distributed environments, synchronization, and a
multi-tenant cloud environment. Besides, the analytical
environment will be considered, which uses data aggregations
and pre-calculated results.

ACKNOWLEDGMENT

It was partially supported by the Erasmus+ project: Project
number: 022-1-SK01-KA220-HED-000089149, Project title:
Including EVERyone in GREEN Data Analysis
(EVERGREEN).

REFERENCES
[1] R. Greenwald, R. Stackowiak, and J. Stern, Oracle Essentials: Oracle

Database 12c, O'Reilly Media, 2013.

[2] D. Kuhn and T. Kyte, Expert Oracle Database Architecture: Techniques
and Solutions for High Performance and Productivity. Apress, 2021.

[3] D. Kuhn and T. Kyte, Oracle Database Transactions and Locking
Revealed: Building High Performance Through Concurrency, Apress,
2020.

[4] J. Lewis, Cost-Based Oracle Fundamentals, Apress, 2005.

[5] S.Y.W. Su, S.J. Hyun and H.M. Chen, “Temporal association algebra: a
mathematical foundation for processing object-oriented temporal
databases”, IEEE Transactions on Knowledge and Data Engineering,
vol. 4, issue 3, 1998.

[6] M. Kvet and K. Matiaško, “Analysis of current trends in relational
database indexing”, 2020 International Conference on Smart Systems
and Technologies (SST), Croatia, 2020.

[7] M. Kvet, J. Papán, “The Complexity of the Data Retrieval Process Using
the Proposed Index Extension”, IEEE Access, vol. 10, 2022.

[8] T. Cunningham, “Sharing and Generating Privacy-Preserving Spatio-
Temporal Data Using Real-World Knowledge”, 23rd IEEE International
Conference on Mobile Data Management, Cyprus, 2022.

[9] X.Yao, J. Li, Y. Tao and S. Ji, “Relational Database Query Optimization
Strategy Based on Industrial Internet Situation Awareness System”, 7th
International Conference on Computer and Communication Systems
(ICCCS), China, 2022.

[10] M. Kvet, “Autonomous Temporal Transaction Database”, 30th
Conference of Open Innovations Association FRUCT, 2021.

[11] Z. Liu, Z. Zheng, Y. Hou and B. Ji, “Towards Optimal Tradeoff
Between Data Freshness and Update Cost in Information-update
Systems”, 2022 International Conference on Computer Communications
and Networks (ICCCN), USA, 2022.

[12] W. Wang, Y. Jin, B. Cao, “An Efficient and Privacy-Preserving Range
Query over Encrypted Cloud Data”, 2022 19th Annual International
Conference on Privacy, Security & Trust (PST), Canada, 2022

[13] M. Kvet, “Temporal bi-index”, unpublished

[14] M. Kvet, “Relation between the Temporal Database Environment and
Disc Block Size“, IEEE 16th International Scientific Conference on
Informatics (Informatics), Slovakia, 2022.

[15] A. Dudáš, J. Škrinárová, and E. Vesel, “Optimization design for parallel
coloring of a set of graphs in the High-Performance Computing, “
Proceedings of 2019 IEEE 15th International Scientific Conference on
Informatics. pp 93-99. ISBN 978-1-7281-3178-8.

[16] W. Steingartner, J. Eged, D. Radakovic, V. Novitzka, “Some innovations
of teaching the course on Data structures and algorithms, ” In 15th
International Scientific Conference on Informatics, 2019.

[17] J. Janáček and M. Kvet, “Shrinking fence search strategy for p-location
problems”, 2020 IEEE 20th International Symposium on Computational
Intelligence and Informatics (CINTI), Hungary, 2020

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 168 --

