
Transformer-Based Dual-Modal Visual Target
Tracking Using Visible Light and Thermal Infrared

*Pengfei Lyu, Minxiang Wei
College of Energy and Power Engineering,

Nanjing University of Aeronautics and Astronautics

Nanjing, China

*lvpengfei, minxiangfwei@nuaa.edu.cn

Yuwei Wu
College of Mechanical and Electrical Engineering,

Nanjing University of Aeronautics and Astronautics

Nanjing, China

wyw826@nuaa.edu.cn

Abstract—Visual target tracking is an essential technology
with numerous applications, including video surveillance, mo-
tion recognition, and autonomous driving. However, tracking
accuracy can be affected in challenging scenarios, such as low-
light conditions and occlusion, which make it difficult to extract
effective tracking features from a single visible light image. On
the other hand, infrared images can penetrate occlusion and
are insensitive to light. However, tracking using only infrared
images can be influenced by thermal crosstalk and lacks detailed
texture information. Therefore, the RGB-T tracking method,
which combines visible light and thermal infrared images, can
significantly enhance the accuracy and robustness of object track-
ing in challenging scenarios, especially in autonomous driving.
We propose a transformer-based fusion tracker that utilizes dual-
modal information and combines test and training branches with
target encoding for global reasoning across frames. The proposed
method successfully achieves target tracking using visible light
and thermal infrared images. The experimental results on the
public benchmark show that the proposed tracker has higher
overall performance and can meet the requirements for precise
and robust tracking of vulnerable road users in autonomous
driving tasks.

I. INTRODUCTION

Visual target tracking is a computer vision task that aims to

accurately locate and track objects in video frames. It is used

in applications like surveillance, robotics, and autonomous

driving. Visual target tracking is challenging under low illu-

mination, occlusion, and rainy conditions because visible light

images provide insufficient features for effective tracking [1].

These problems are inherent limitations of visible light images,

and cannot be solved through network architecture alone.

However, infrared images are insensitive to light, sensitive to

temperature, and can penetrate situations such as smoke ob-

struction. Despite their advantages, they lack information such

as fine textures. RGB-T tracking can address these shortcom-

ings by fusing complementary information from visible light

and thermal infrared images, leading to improved accuracy

and robustness in object tracking, particularly in the context

of autonomous driving. Fig. 1 illustrates the complementary

advantages of the RGB and thermal infrared modalities.

RGB-T fusion tracking methods [2] can be categorized into

pixel-level, feature-level, and decision-level fusion tracking

based on the fusion stage. Pixel-level fusion tracking first

fuses images of different modalities and then performs object

(a) baginhand - Visible and thermal infrared image pairs

(b) GarageHover - Visible and thermal infrared image pairs

Fig. 1. Explanation of complementary advantages of visible light and thermal
infrared multimodal image tracking

tracking. However, this approach requires significant compu-

tation, which may impact the overall speed of the model.

Feature-level fusion tracking extracts features from RGB and

infrared images and fuses them based on designed fusion rules,

resulting in improved recognition performance. Decision-level

fusion tracking first tracks a single modality and then fuses

the results to obtain the final result. Compared to pixel-level

methods, feature-level and decision-level methods are more

direct. The feature-level method requires solving the problem

of feature extraction and fusion of visible light and infrared

images, while the decision-level method requires selecting

different trackers for tracking.

In recent years, the field of RGBT tracking has seen

significant advancements with the exploration and application

of correlation filters. Several notable RGBT trackers have

emerged, showcasing impressive results. For instance, Zhai et

al. [3] have achieved consistent object localization by jointly

learning correlation filters from different modalities with the

inclusion of low-rank constraints. However, this approach

relies solely on handcrafted object features, which may not
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effectively represent the rich information of the object. In

light of the widespread use of convolutional neural networks

(CNNs) in RGB tracking, Zhang et al. [4] have taken a

different approach by employing a fully convolutional Siamese

network for RGBT tracking. This tracker has the capability

to run at an impressive rate of approximately 30 frames per

second. Nonetheless, it’s worth noting that the correlation

operation of Siamese-based trackers is a simple local linear

matching process between the template and search area, which

may have limitations in capturing complex object appearances

and variations.

In this paper, we propose an end-to-end Transformer-

based multi-modal visual object tracking method. This method

utilizes complementary information from visible light and

thermal infrared modalities to address the challenge of ex-

tracting meaningful features from visible light in low-light

conditions. Our approach introduces a Transformer encoder-

decoder architecture to handle global information, overcoming

the limitations of CNN-based methods that rely on local

receptive fields. The Transformer encoder utilizes the encoded

concatenated features from the bi-modal input and outputs

concatenated features with enhanced test features. The Trans-

former decoder leverages the concatenated features output

from the Transformer encoder to predict model weights. The

model weights, along with the enhanced test features, are

then passed through linear layers and CNNs to output the

final classification response map and regression bounding box,

resulting in the tracking results. Qualitative and quantitative

experimental results on publicly available datasets demonstrate

that our proposed method outperforms several state-of-the-art

algorithms in terms of tracking performance.

II. RELATED WORK

A. RGB Tracking

Deep learning-based RGB tracking methods can be divided

into two categories: classifier-based and siamese network-

based. The former achieves object tracking through classifi-

cation, while the latter performs tracking by comparing sim-

ilarity. Recently, MDNet [5] combined domain learning and

CNNs to learn a shared representation model for object track-

ing. The model consists of shared layers and K branches of

fully connected layers, corresponding to K domains. Siamese

network-based trackers aim to learn an appearance model that

maximizes the distance between blocks of different objects

and minimizes the distance between blocks of the same object.

SiamFC [6] and SiamRPN [7] achieved real-time high tracking

speeds due to their fully convolutional siamese networks.

To further improve the discriminative ability of trackers,

DaSiamRPN [8] incorporates potential distractors into the

embedding space learning process and introduces a distractor-

aware module. In addition, SiamRPN++ [9] and SiamDW

[10] adopt deeper backbone networks such as ResNet [11]

for feature extraction. SiamRPN++ replaces the up-channel

cross-correlation layers in SiamRPN with lightweight deep

cross-correlation layers. Meanwhile, it aggregates multi-layer

features to further enhance the accuracy of the tracker. In

SiamDW, the authors design a new module called Cropping-

Inside Residual (CIR) unit, which helps build deeper and wider

backbone networks.

B. RGBT Tracking

With the popularity of thermal infrared sensors and the pro-

posal of RGBT234 [1] tracking benchmarks, RGBT tracking

has attracted extensive attention. In recent years, the fusion

tracking technology based on correlation filtering has also

begun to attract the attention of researchers because of its

good tracking performance and high efficiency. Wang et al.

[12] proposed a soft consistency filter for visual tracking

using visible light and thermal infrared data. This method

employs soft consistency to account for collaboration and

heterogeneity, enabling joint learning of correlation filters for

visible light and thermal infrared spectra. Additionally, the

computational time is significantly reduced by utilizing fast

Fourier transform. Moreover, a weighted fusion mechanism

is employed to compute the final response map during the

inference phase. In addition, there are also tracking methods

that are based on CNN feature fusion. For example, Zhang

et al. [13] proposed a fusion tracking method based on the

idea of MDNet [5], which utilizes a parallel structure to

separately process visible light and thermal infrared images

using two shallow CNNs. However, this method does not

consider modal weights when combining visible light and

thermal infrared features. In contrast, Li et al. [14] proposed

a dual-stream fusion network that merges the most effective

features generated by two sets of convolutional networks. This

method uses one CNN in the dual-stream network for feature

extraction from thermal images and another for processing

visible light images. The designed FusionNet is used for

adaptive fusion of the two modalities and noise reduction.

However, this method may not meet real-time requirements

and does not take into account the reliability of visible light

and thermal infrared images. While these RGBT trackers have

contributed to the advancement of RGBT tracking, they often

neglect the nature of feature interaction during the learning

process, which could potentially hinder further improvement

in tracking performance.

C. Transformer mechanism

The Transformer [15] is introduced in natural language

processing and later adapted for computer vision tasks. It

has demonstrated strong global reasoning abilities due to

its self-attention and cross-attention mechanisms in various

computer vision tasks. Carion et al. [16] propose an end-to-

end target detector called DETR, which uses the Transformer

self-attention mechanism to directly output the final detection

results, and successfully applies Transformer to the target

detection task. Furthermore, attempts have been made to

incorporate Transformer-based approaches into the field of

visual tracking. Chen et al. [17] applied Transformer in visual

tracking tasks, modeling the relationship between template

frames and search frames. In TransT [17], a combination

of self-attention and cross-attention modules in Transformer
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is used to predict the target location, instead of traditional

correlation operations as seen in most siamese network-based

trackers. ToMP [18] is a tracker architecture that utilizes a

Transformer-based prediction module, which captures global

relationships with minimal inductive bias, leading to a more

powerful target model prediction capability. This approach

significantly enhances the expressive power of the track-

ing network, addressing the limitations of optimization-based

methods. This study marks the beginning of our endeavors to

integrate the Transformer into RGBT tracking algorithms.

III. THE PROPOSED ALGORITHM

A. Overview of the Network Architecture

We propose a method for visual target tracking based on the

fusion of visible and thermal infrared (RGB-T) modalities, as

depicted in Fig. 2. The method consists of a test branch and

a training branch, where the latter is responsible for feature

extraction and initialization of the target tracking, and the

former is updated over time to track the target. Both branches

use the ResNet feature extraction network to extract features

from the RGB and TIR modalities, respectively, and then fuse

the features of the two modalities using Concat operation. The

target state information in the training frame is encoded and

fused with the depth image feature. Similarly, the test frame

is also encoded to identify it as a test frame. The features

from the training and test branches are jointly processed in

the Transformer encoder, which generates enhanced features

through cross-frame global reasoning. The Transformer de-

coder uses the output of the Transformer encoder to predict

the target model weights. A linear layer is then applied to the

predicted weights to produce target classification weights and

bounding box regression weights. Finally, the target classifica-

tion weights are utilized to localize the target in the enhanced

test frame features, and the bounding box regression branch

uses the enhanced test frame and bounding box regression

weights for bounding box regression. The tracking process’s

main components are described in detail in the subsequent

sections.

B. Target Encoding

While a target model can locate the center of the target

in each frame, a tracker also needs to estimate the precise

bounding box of the target. To achieve this, the model is

extended by encoding both the target center position and size

information as the target state encoding to provide richer input

to the model predictor. Furthermore, the model predictor is

also extended to estimate the weights of the bounding box

regression network in addition to the target model weights.

The resulting tracking architecture, as shown in Fig. 2, can

better estimate the target’s precise bounding box. In training

frames, the target state information is encoded into target

localization and target range encodings. The target localization

encoding enables the model predictor to consider the target

state information in training frames when predicting the target

model, while the target range encoding contains information

about the target bounding box. These two encoding methods

are then fused with the deep image features.

The target localization encoding enables the model predictor

to incorporate target state information from the training frame

when predicting the target model. In this study, the target

encoding function is defined using an embedding efg ∈ R1×C

representing the foreground and a Gaussian vi ∈ RH×W×1

centered on the target position. The target encoding function

is defined as follows:

φ(vi, efg) = vi · efg, (1)

where · denotes pointwise multiplication with broadcasting.

It is worth noting that Him = s · H and Wim = s · W
correspond to the spatial dimensions of image patches, where

s is the stride of the backbone network used for extracting

depth features x ∈ RH×W×C . The embedding vector efg is a

256-dimensional learnable vector. Next, we combine the target

encoding with the depth image feature xi as follows:

yi = xi + ψ(vi, efg), (2)

which provides the training frame feature yi ∈ RH×W×C that

includes the encoded target state information.

To incorporate information about the target bounding box,

in addition to the depth map feature xi and target position

encoding ψ(yi, efg), we use a method called target range en-

coding. The ltrb representation is used to encode the bounding

box bi = {bxi , byi , bwi , bhi } containing the target object.

To implement this encoding method, we map each position

(jx, jy) on the feature map xi back to the image domain using

(kx, ky) = (�s/2�+s·jx, �s/2�+s·jy). Then, we compute the

normalized distance from each remapped position to the four

edges of the bounding box bi using the following formulas:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

li = (kx − bxi )/Wim,

ri = (kx − bxi − bwi )/Wim,

ti = (ky − byi )/Him,

bi = (ky − byi − bhi )/Him,

(3)

where Wim = s · W and Him = s · H . We use these four

edges to generate a dense bounding box representation, i.e.,

d = (l, t, r, b), where d ∈ RH×W×4. To further improve the

performance of the target tracking method, we use a multilayer

perceptron (MLP) to encode the bounding box, increasing its

dimension from 4 to C, and then add the resulting encoding

to formula 2. Let φ denote MLP, then yi can be denoted as

follows:

yi = xi + ψ(vi, efg) + φ(di), (4)

where yi is the obtained feature map used as the input to the

Transformer encoder, as shown in Fig. 2. The MLP for target

range encoding consists of three layers, with a structure of 4

→ 64 → 256 → 256. Each layer contains three steps: linear

projection, batch normalization, and ReLU activation (except

for the last layer, which only contains linear projection).

Using this MLP, the target range can be encoded as a 256-

dimensional vector. This vector can be used as input to the
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Fig. 2. Transformer-based dual-modal fusion visual target tracking network architecture

target tracking method for tracking and position estimation of

the target.

We also introduce a test encoding scheme to identify the

features corresponding to the test frames, which is formulated

as follows:

ytest = xtest + μ(etest), (5)

where μ(·) encodes the patch etest onto each token of xtest.

A token refers to a discrete unit obtained by segmenting

the input sequence, with each unit representing a specific

meaning or information. The patch etest is represented by a

256-dimensional learnable embedding vector. The next section

introduces a Transformer-based architecture for predicting the

target model.

C. Transformer model architecture

The Transformer model utilized in this paper comprises an

encoder and a decoder. The encoder comprises N encoder

layers, and the decoder is likewise composed of M decoder

layers. Each encoder layer and decoder layer contains several

sub-layers that receive the output of the previous layer as

input and generate their output. By adding more encoder

and decoder layers, a more profound Transformer network

can be created to enhance the model’s performance further.

The architecture of the Transformer encoder and decoder is

demonstrated in Fig. 3.

The encoder layer consists of two sub-layers, namely the

multi-head self-attention mechanism (MHA) and the fully

connected feed-forward network (FFN). The MHA learns

the dependencies between different positions in the input

sequence, while the FFN performs non-linear transformations

and modeling of features at each position. To alleviate the

gradient vanishing problem caused by the depth of the model,

residual connections and layer normalization are applied to

each sub-layer. Specifically, the output of each sub-layer is

added element-wise to its input, and then passed through a

layer normalization operation, which can be represented as

LayerNorm(X+ Sublayer(X)). Here, Sublayer represents the

function of the sub-layer, LayerNorm is the layer normaliza-

tion operation, and + denotes the residual connection.

The structure of the decoder layer is similar to that of the

encoder layer, consisting of three sub-layers. The first sub-

layer is a multi-head self-attention mechanism, the second sub-

layer is a multi-head attention mechanism, and the third sub-

layer is a fully connected feed-forward network (FFN). The

structures of the multi-head attention mechanism sub-layer

and the multi-head self-attention mechanism sub-layer are the

same, but the inputs are different. Like the encoder layer,

each sub-layer adopts residual connections and is followed

by a layer normalization operation. To prevent the model

from attending to subsequent positions at the current position,

the original Transformer introduced a masking mechanism to

modify the self-attention sub-layer of the decoder layer. As

the method used in this study only performs single-frame

prediction, where the input of the decoder is from the start

token encoding, the first sub-layer of the decoder layer is the

same as the first sub-layer of the encoder layer.

The encoder processes the concatenated training and test

features Y ∈ R
N×d using the multi-head self-attention mech-

anism. This mechanism allows for interaction between features

at different positions and captures global information. The
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Fig. 3. Transformer model architecture

query, key, and value matrices Q,K,V ∈ R
n×d have n heads

and a feature dimension of d. The output Z of the multi-head

self-attention mechanism can be obtained using the following

equation:

Ẑ = MHA(Y) = Concat(head1, . . . , headn)W
O, (6)

where headi refers to the i-th head, WO ∈ R
d×d is the

output’s linear transformation matrix, and Concat concatenates

the outputs of all the heads. Each head performs a scaled

dot-product attention operation, and its calculation can be

expressed as follows:

headi = Att(Qi,Ki,Vi) = Softmax(
QiK

T
i√

dk
)Vi, (7)

where dk is one dimension of the key matrix, and Qi, Ki,

and Vi are the query, key, and value matrices of the i-th head

obtained by linear transformations of Y.

The encoder’s fully connected feed-forward network sub-

layer is a non-linear transformation used to enhance the

model’s expressive power. Let Ẑ ∈ R
N×d denote the output

of the multi-head self-attention mechanism. The output Z of

the fully connected feed-forward network sublayer can be

calculated using the following equation:

Z = FFN(Ẑ) = ReLU(ẐW1 + b1)W2 + b2, (8)

where W1, W2, b1, and b2 are the weights and biases of

the fully connected layer, respectively. This sublayer maps the

features ẑ at each position to a new set of features z.

The multi-head self-attention sublayer in the decoder has

the same structure as that in the encoder, but it takes Ê ∈
R

1×d as input, passes it through a multi-head self-attention

mechanism sublayer, and outputs E ∈ R
1×d. This output

is then concatenated with the encoder’s output, i.e., object

feature vectors Z ∈ R
N×d, and fed into another multi-head

attention mechanism sublayer. After obtaining the output of the

multi-head attention mechanism, the model further processes

it through a feed-forward network (FFN), which has the same

structure as that in the encoder layer. The output of the FFN

is a matrix w ∈ R
1×d which is the obtained target model.

D. Transformer-based target model prediction

This study aims to utilize the foreground and background

information of both training and test frames to predict the tar-

get model. For this purpose, the Transformer encoder module

explained above, is employed to jointly process the features

of both training and test frames. The Transformer encoder

has two main functions in our approach. Firstly, it computes

the features required by the Transformer decoder module to

predict the target model. Secondly, it generates improved test

frame features that are utilized as input to the target model for

detecting the target.

To achieve the goal, multiple encoded training features

yi ∈ RH×W×C and an encoded test feature ytest ∈ RH×W×C

are reshaped into R(H·W )×C and concatenated along the first

dimension. The concatenated features, which consist of all

m training features yi and the test feature ytest, are jointly

processed in the Transformer encoder as follows:

[z1, . . . , zm, ztest] = Tenc([y1, . . . , ym, ytest]). (9)

The Transformer encoder module includes multi-head self-

attention modules, enabling it to perform global reasoning

across the entire frame, even across multiple training and test

frames. Moreover, the encoded target state can differentiate

between foreground and background regions, allowing the

Transformer to distinguish between these two regions.

The Transformer encoder’s output, namely zi and ztest, is

utilized as an input to the Transformer decoder to predict the

target model weights, denoted as w:

w = Tdec([z1, . . . , zm, ztest], efg). (10)

It is important to note that the inputs zi and ztest are

obtained through joint inference over the entire training and

test samples, allowing for the prediction of a discriminative

target model in this study. Additionally, we use the same

learned foreground embedding efg as the input query to the

Transformer decoder when predicting the target model weights

w.

E. Regression and Classification

The output w from the Transformer decoder is passed

through a linear layer that uses a 1 × 1 convolutional kernel

with 256 channels. This process yields two sets of weights:

wbbreg for bounding box regression and wcls for target clas-

sification.To obtain the response map, we utilize the discrim-

inative correlation filter method, which is expressed as:

h(wcls; ztest) = wcls ∗ ztest. (11)

For bounding box regression, we utilize the weight wbbreg

to conditionally constrain the output test feature ztest of the

Transformer encoder with target information. This is achieved

by applying wbbreg as a weight matrix to ztest, resulting in a
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refined feature representation used for bounding box regres-

sion. To imbue target awareness into the output feature ztest of

the encoder, we take the following steps. First, we compute the

attention map wbbreg ∗ztest using the predicted weight wbbreg .

Next, we point-wise multiply the attention weight with the

test feature ztest and input the resulting product into a five-

layer convolutional neural network. The network carries out

bounding box prediction on the final convolutional layer and

utilizes the exponential activation function to ensure a positive

number output. This number is then normalized to achieve the

same ltrb representation of the bounding box prediction, as

illustrated in Equation 3. To obtain the final bounding box

estimate, we use the argmax(·) function on the predicted

target score map v̂test to extract the center position and then

query the dense bounding box prediction d̂test at the center

position of the target object to obtain the bounding box. Two

dedicated networks are employed for target localization and

bounding box regression to decouple these two tasks during

tracking.

F. Loss Function

In the proposed method, there are two sub-tasks, and

therefore, the loss function consists of a classification loss and

a regression loss as follows:

Ltot = λclsLcls(v̂, v) + λgiouLgiou(d̂, d), (12)

where λcls and λgiou are scalar weights that balance the

contribution of each loss. In this work, we set them to

λcls = 100 and λgiou = 1.

The target classification loss used in this study is a variant of

hinge loss. It penalizes the model for misclassifying samples

during classification and helps improve decision boundary

learning. The loss function is given by

Lcls(s, z) =

{
s− z, z > τ,

max(0, s), z ≤ τ,
(13)

where the threshold τ defines the target and background

regions based on the label’s confidence value z. If z > τ ,

the predicted confidence score s and label z difference is

calculated for the target region. For the background region

where z ≤ τ , only positive confidence values are penalized.

The Generalized Intersection over Union (GIoU) loss func-

tion is used in this study to supervise bounding box regression

with ltrb bounding box representation [19]. This function,

denoted as Lgiou, is a more accurate measure of similarity

between bounding boxes, thereby guiding model training more

effectively. The GIoU loss function is defined as follows:

Lgiou = 1− GIoU(Bpred, Bgt), (14)

where Bpred and Bgt represent the predicted and ground-truth

bounding boxes, respectively.

IV. IMPLEMENTATION DETAILS

A. Training Details

We sample multiple training and test frames from video

sequences to form training subsequences. Specifically, we use

two training frames and one test frame. The training and test

frames are kept at the same resolution and resized to 288 ×
288×3 after being sampled and cropped from the dataset. Each

image Ii is paired with its corresponding bounding box bi.
The object’s target state is encoded using the training frames,

and only the bounding boxes from the test frames are used to

supervise the training by computing two loss functions based

on the predicted bounding boxes and the target object’s center

position in the test frame.

The feature extraction backbone network used in this study

is a modified ResNet-50 network that is initialized with pre-

trained weights on the ImageNet dataset to improve training

speed and model performance. During training, we generate

the target states v by using a Gaussian function with a standard

deviation of 1/4 relative to the base target size, and set

τ = 0.05 to differentiate between foreground and background

regions in the corresponding classification loss lcls. The model

predictor extracts features with a stride of s = 16 from the

third block of ResNet. As the input channel dimension of the

Transformer used in this study is 256 and ResNet features have

1024 channels, the channel number doubles after fusing the

two modal features. Therefore, before inputting features to the

Transformer encoder, a convolutional layer is used to reduce

the number of channels. The Transformer encoder consists of

multiple layers, each containing multi-head self-attention and

a feed-forward network. We employ 8 heads and 2048 hidden

dimensions as the feed-forward network, and use dropout with

a probability of 0.1 and layer normalization. The proposed

tracker is trained on the training set split of the LasHeR dataset

[20] by sampling 40k subsequences and performing training

for 300 iterations. The ADAMW optimizer with a learning

rate of 0.0001 is used for optimization.

B. Tracking Details

The target model in this study generates the expected target

state yi ∈ Y for the training samples Strain ∈ (xi, yi)
m
i=1,

where xi ∈ χ represents the depth feature map of the i-th
frame, and m = 2 is the total number of training frames.

During the tracking process, we use the annotated first frame

and the previously tracked frames as the training set Strain.

Although the initial frame and its annotations are always kept,

we also use a previously tracked frame and replace it with

the latest frame. According to the ablation experiment results

in this paper, the replacement condition is that the tracking

method works best when the target classifier confidence score

is above a threshold of 0.85.

Incorporating the previous tracking results into Strain sig-

nificantly improves target localization. However, including

bounding box estimates with predictions reduces the perfor-

mance of bounding box regression due to inaccurate predic-

tions. Therefore, we run the model predictor twice. First, this

study includes intermediate predictions in Strain to obtain

classifier weights. In the second run, we only use the annotated

initial frame to predict the bounding boxes.
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Fig. 4. Performance evaluation on RGBT234 in terms of success and precision plots

V. EXPERIMENTAL RESULTS

This section presents the experimental results of the pro-

posed method on the RGBT234 dataset [1] in comparison with

other RGBT tracking methods. Furthermore, the performance

of the trackers is analyzed on various attributes. Finally, the

effectiveness of the proposed tracker is qualitatively verified

through visualization results of different trackers. Experiments

were conducted on hardware including Intel i9-10900K 3.70

GHz CPU and Nvidia GeForce RTX 3090 GPU, with software

environments including Ubuntu 20.04 64-bit operating system,

PyTorch, and Python.

A. Evaluation on RGBT234

The comparisons were conducted based on the one pass

evaluation (OPE) rule with Success Rate (SR) and Precision

Rate (PR) metrics. The performance of various trackers, in-

cluding DAFNet [21], RT-MDNet [22], DAT [23], ECO [24],

CSR-DCF [25], MANet [26], SiamDW+RGBT [10], were

compared. As shown in Fig. 4, it can be observed that the

proposed tracker achieves the best performance among all

the trackers on the RGBT234 dataset with PR/SR reaching

82.5%/59.7%, respectively. Specifically, compared to DAFNet,

which is the second strongest tracker in SR, the performance

of the proposed tracker is improved by 4.3%. Furthermore,

compared to the second-ranked tracker MANet, the proposed

tracker improves PR by about 2.9%. These results demonstrate

that the proposed tracker is highly competitive.

B. Quantitative

The performance of tracking methods is observed in test

video sequences, and the method’s effectiveness is analyzed

through image descriptions. Fig. 5 showcases the visualization

results of our method and five other trackers, namely MDNet

[27], SGT [28], SOWP [29], ECO [24], and SOWP+RGBT

[29], in various challenging scenarios. Our method’s results are

depicted by red bounding boxes, while the other five methods’

results are represented by bounding boxes of different colors.

The yellow number present in the upper right corner of

TABLE I. EFFECT OF η ON THE AREA UNDER THE SUCCESS 
RATE CURVE IN RGBT234

η 0.75 0.8 0.85 0.9 0.95
AUC 59.1% 59.4% 59.7% 59.5% 59.3%

each image represents the frame number of the image in

the sequence. Objects being tracked in test video sequences,

including cyclists (sequence bikeman), cars (sequence car41)

and electric bicycles (sequence elecbike), which are crucial

targets or vulnerable road users in autonomous driving sce-

narios. The visualization results clearly demonstrate that the

proposed method outperforms these state-of-the-art methods

and meets the requirements of driving scenarios.

C. Ablation Study

To determine whether previous tracking results were used

as training frames, we used the maximum value of the tar-

get score map generated by the target model as the basis.

Specifically, if the confidence value of the sample is higher

than a certain threshold η, the sample is selected. We selected

different values of η, including 0.75, 0.8, 0.85, 0.9, and

0.95. The area under the success rate curve was used as

the evaluation metric to determine the optimal η value. The

experimental results are shown in Table I. On RGBT234, the

experimental results show that selecting a threshold of 0.85

can achieve good performance. In addition, if the maximum

value of the target score map is less than 0.25, it is considered

that the target is not found. During inference and training, we

used the same target score map spatial resolution (18×18) and

search region scaling factor (5.0). In conclusion, selecting the

appropriate threshold to obtain corresponding training frames

is very important in the proposed target tracking method and

can significantly affect tracking performance.

VI. CONCLUSION

In this work, we have addressed the challenge of limited

visible light information in low-light conditions by fully
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Ours MDNet SGT SOWP ECO SOWP+RGBT

Fig. 5. Visualization of tracking results of different methods on three sequences of RGBT234. The first, third, and fifth lines represent the visible light modality
of the sequences bikeman, car41, and elecbike, respectively. The second, fourth, and sixth lines represent the thermal infrared modality of the sequences
bikeman, car41, and elecbike, respectively.
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exploiting the supplementary information provided by ther-

mal infrared. Specifically, we have proposed a dual-modal

visual target tracking framework based on Transformers that

effectively utilizes both visible light and thermal infrared. Our

proposed tracker utilizes a Transformer encoder-decoder struc-

ture to improve the performance of traditional convolutional

models. We have used a modified ResNet-50 as the backbone

network to extract features. By fusing the training and test

branches of the dual-modality information, we have generated

enhanced features that leverage global reasoning through the

Transformer encoder, combined with target encoding informa-

tion from both branches. We have employed the Transformer

decoder to predict the target model weights, which are then

acted upon by a linear layer to generate target classification

and bounding box regression weights. Finally, we have utilized

the enhanced test frame and target classification weights to

achieve object localization, while the bounding box regression

weights are used to achieve bounding box regression. The

proposed method has achieved state-of-the-art performance in

both quantitative and qualitative analysis on various publicly

available datasets.
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