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Abstract—This paper proposes an approach to enhance the
robustness and accuracy of visual simultaneous localization and
mapping (SLAM) for ground wheeled mobile robots in dynamic
environments. The proposed method incorporates encoder mea-
surements to establish optimization constraints in bundle ad-
justment. To further improve robustness, a geometric technique
utilizing KMeans clustering with epipolar constraints and the
SegNet [1] for semantic segmentation is employed to filter out
features detected on moving objects. These modifications are in-
tegrated into the state-of-the-art SLAM system ORB-SLAM3 [2]
and demonstrate superior accuracy and real-time performance
compared to the baseline approach. The effectiveness of the
proposed method is demonstrated through multiple OpenLoris
and IROS Lifelong SLAM competition scenarios.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) systems

for mobile robots have emerged as a critical area of research

due to their numerous applications in logistics, monitoring, and

inspection. Autonomous navigation is a crucial component of

these applications, and SLAM systems play a vital role in

achieving efficient task performance.

SLAM systems can be broadly categorized into two types:

filter-based and graph-based approaches [2]–[10]. Filter-

based methods use a multi-state constraint Kalman filter

[11], which is an extended Kalman filter that fuses sensors

in SLAM. However, the computational cost of computing

Jacobians for large maps limits the algorithm’s scalability in

large environments. On the other hand, graph optimization-

based algorithms have gained popularity in recent years as

they are easier to implement using open-source frameworks

such as [12]–[15] and can handle a larger set of sensors.

Here we introduce a modified version of graph-based ORB-

SLAM3 [2]. It is a well-developed and widely used state-of-

the-art approach that has been tested over different camera

models (mono, stereo) with different set of lenses (pinhole,

fish-eye) with/without the IMU sensor showing stunning per-

formance. Therefore, we took this approach as the baseline for

our research.

However, the ORB-SLAM3 system can be not robust

enough for certain conditions when mobile robots are operat-

ing in dynamic environments. Thus, here we aim to improve its

accuracy and robustness by applying the power of optimization

techniques, sensor fusion, and incorporating semantics of the

scene.

The fusion of odometric measurements and optical frames

has been shown to enhance the accuracy and robustness of

visual simultaneous localization and mapping (SLAM) sys-

tems, particularly in challenging low-illumination conditions.

The objective of this study is to investigate the efficacy of

fusing optical frames with encoders, as compared to using an

inertial measurement unit (IMU), for wheeled mobile robots.

For example, it was shown in [16] that for Visual Inertial

SLAM (VINS) scale parameter and robot’s global orientation

becomes unobservable, when it performs even basic movement

with constant acceleration or simply does not rotate during

the inertial initialization period. This phenomena leads to a

significant loss in accuracy of VINS pose estimation result.

On the other hand, several recent works elaborate on fusion of

optical data with encoders’ measurements. DRE-SLAM [17]

addresses the task of building a static map, while odometric

measurements from encoders are tightly coupled with optical

data using graph optimization based method. SE2CLAM [18]

implemented visual SLAM for SE(2) planar motion as a unary

constraint on SE(3) robot pose. SE2LAM [19] proposed a

novel constraint SE2-XYZ that allow to parameterize robot

pose on SE(2) along considering the out-of-SE(2) motion

perturbation.

Our approach builds upon the SE2LAM [19] methodol-

ogy, which has been demonstrated to effectively mitigate

potential drift in visual odometry and perform well in static

environments. However, real-world scenarios often involve

moving objects, making it critical to enhance the robustness

of SLAM systems by removing such objects. To address this,

we incorporate an outlier rejection algorithm to complement

our system.

In general, there are two types of methods for the outliers’

rejection algorithm. Geometric-based methods are quick and

important for improving the accuracy of border enhancement,

because low-level information (pixels’ value) is processed di-

rectly. AI-based methods provide processing of a higher-level

visual information by detecting, classifying, and semantically

annotating objects in the scene like people, cars, or pets.

State-of-the-art approaches combine both methods and can be

considered as geometric-AI.
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For example, DynaSLAM [20] uses Mask R-CNN to detect

possibly moving objects, along with multi-view geometry

based method (epipolar constraint). DS-SLAM [21] uses se-

mantic segmentation model (SegNet [1]), along with moving

consistency check and is based on ORB-SLAM2 [7]. DreSlam

[17] utilizes an object detection model (YOLO) along with

K-means clustering method for segmentation over the depth

data from the RGB-D sensor. Detect-Slam [22] uses a DNN-

based object detector, along with propagating probabilities of

features (probability of detecting this feature on a moving

object). We propose the solution based on the work of DS-

SLAM by implementing similar model for the most recent

ORB-SLAM3 algorithm. Key-frames are segmented using

SegNet, and moving objects are detected semantically. We

process the depth data using a K-mean clustering algorithm to

obtain a higher level model, i.e. by detecting moving clusters

instead of detecting just moving feature points. It is suitable

for the outliers located on static objects that are moved (e.g.

moved chair). We additionally filter the good matches by

epipolar constraint, which helps to remove bad matches, that

were not detected on a moving object or a cluster.

The main contributions of this work are an extended version

of ORB-SLAM3 system that outperforms recent solutions in

terms of robustness and accuracy of localization and mapping

for mobile robots operating in dynamic environments by

introducing:

1) an algorithm for reducing drift in robot localization

that utilizes wheel odometry and optical frames fusion

together with constrained optimization in the SE(2)

space in the process of camera pose estimation and

bundle adjustment;

2) geometric-AI method for outliers’ rejection that detects

moving objects and excludes corresponding points at the

stage of visual feature extraction.

To evaluate the effectiveness of our proposed solution,

we conducted several steps. First, we utilized the OpenLoris

dataset [23], an open-source benchmarking dataset that pro-

vides recordings of stereo fish-eye cameras, RGB-D sensors,

encoders, and IMU measurements of a mobile wheeled robot

in various scenarios (e.g., cafes, corridors, rooms, and markets)

that include moving objects. Secondly, we employed the TUM-

RGBD dataset [24], which is an open-source dataset that has

been used in previous works to assess real-time performance,

robustness, and accuracy benchmarks, specifically for evalu-

ating outlier rejection algorithms. The remainder of the paper

is structured as follows: Section 2 describes the proposed

modifications to the ORB-SLAM3 system that involve the

fusion of odometric measurements with optical frames and

the optimization process. Section 3 presents the algorithm for

the outlier rejection model and its implementation in ORB-

SLAM3. Section 4 presents the evaluation and comparison of

our proposed solution with other state-of-the-art algorithms

in terms of accuracy and execution speed. Finally, Section 5

concludes our work and discusses future directions.

II. FUSING ENCODERS’ MEASUREMENTS WITH OPTICAL

FRAMES

This section describes two types of constraints used in the

optimization process. Here, we state their implementation in

the ORB-SLAM3 system in the bundle adjustment function.

A. Optimization Constraints on SE(2)
1) The projection Constraint: The feature-based SE(2)-

XYZ [19] benefits with encapsulating the out-of-SE(2) motion

perturbation and directly parameterizes the robot’s poses on

SE(2). The projection equation from a landmark l� w.r.t robot

body coordinate system to the image plane is:

u (νi, l�) = Π(CRBR
T
i (l� − pi) +

CpB) + ηu (1)

in which ηu ∼ N (
0, σ2

uI2
)

is the projection uncertainty, and

[CRB |CpB ] are calculated from extrinsic calibration of the

camera with respect to the body frame.

The out-of-SE(2) motion [19] includes two parts: translation

perturbation along z as ηz ∼ N (
0, σ2

z

)
and rotation perturba-

tion xy as ηxy ∼ N (
02x1,Σθxy

)
. Therefore, the pose can be

written as:

Ri ← Exp(
[
ηT
θxy

0
]T

︸ ︷︷ ︸
ηθ

)Ri, pi ← pi +
[
0 0 ηz

]T︸ ︷︷ ︸
ηz

(2)

then the projection equation (1) becomes

u (νi, l�)

=π
(
CRBR

T
i e(−ηθ) (l� − pi − ηz) +

CpB

)
+ ηu

≈π (Ci
l�) + Jηθ

uθηθ + Ju
ηz

ηz + ηu

=π (Ci l�) + δηu
(3)

where δηu is a synthetic zero-mean noise, and e(−ηθ) =
Exp (−ηθ). The noise ηθ, ηz and ηu is not interdependent,

thus we can compute the covariance matrix as

Σδηu
= Ju

ηθ
Λ12Σθxy

ΛT
12J

uT
ηθ

+ σ2
zJηz

e3e
T
3 J

uT
ηz

+ σ2
uI2 (4)

As the matching feature of the corresponding landmark is

represented in pixels i�u, we can formulate our re-projection

error as:

ei� = π(Ci
l�)− i�u (5)

Graph optimization method is used for the minimization of

the error stated in (5). The information matrix for (5) is the

inverse of the covariance matrix Σδηu
. The Jacobian matrix

of ei� are

Ji�
i =

[
∂i�e

∂ri

∂i�e

∂φi

]
,

∂i�e

∂ri
= −Jπ (Ci

l�)
C
RBR

T
i Λ12

∂i�e

∂φi
= Jπ (Ci

l�)
C
RBR

T
i (1� − pi)

∧
e3

Ji�
� =

∂i�e

∂l�
= Jπ (Ci

l�)
C
RBR

T
i

(6)

This projection error is used in graph optimization for bundle

adjustment as the projection edge (Figure 1).
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2) The odometric edge: Inspired by the work on preinte-

grated IMU on SE(3) by [25], se2lam have formulated the

preintegration of encoder’s measurements on SE(2). From the

motion model of the wheel encoder, we get the robot body

pose νi and νj between two consecutive timestamps k, k+1,

respectively. The preintegrated measurement (φ - rotation and

r - translation) and the corresponding noises between key-

frame i, j are formulated as:

iφj :=
iφ̃j − δiφj

i
irj :=

i
ir̃j − δiirj

(7)

The propagation of the integrated noise δiφj , δiirj is written

in compact form as in [19][
δiirk+1

δiφk+1

]
:= δiνk+1 = Akδ

iνk +Bkηνk,

Ak =

[
I2 Φ

(
iφ̃k

)
1×r̃k

0 1

]
,Bk =

[
Φ
(
iφ̃k

)
0

0 1

]
(8)

Hence, the covariance of odometric measurement δiνk can be

propagated at each step:

Σδiνk+1
= AkΣδiνk

AT
k +BkΣνkB

T
k (9)

We can now formulate the error function of the preintegrated

odometric measurement as follows:

ije =

[
Φ (−φi) (rj − ri)

φj − φi

]
−

[
ir̃j
iφ̃j

]
(10)

where its information matrix is the inverse of the covariance

term Σδηu
. The Jacobian of error function is:

Jij
i =

∂ije

∂νi
=

[ −Φ (−φi) −Φ (−φi) 1
× (rj − ri)

0 −1

]

Jij
j =

∂ije

∂νj
=

[
Φ (−φi) 0

0 1

]
(11)

The preintegrated odometric measurements are used in graph 
optimization for the odometric edge (Fig. 1).

B. Implementation of visual odometric optimization edges in
ORB-SLAM3:

The ORB-SLAM3 system utilizes a graph optimization

method, wherein the error function is formulated as a nonlin-

ear least-squares problem and subsequently minimized using

techniques such as Gauss-Newton or Levenberg–Marquardt.

In ORB-SLAM3, this optimization process is incorporated in

the Bundle Adjustment (BA) function, which optimizes the

local window of key-frames’ poses and the associated local

map points.

The ORB-SLAM3 system [6] operates on parallel threads,

including the Tracking, Mapping, and Loop Closing threads,

along with an additional thread for performing global bundle

adjustment. Specifically, 1) the Tracking thread serves as the

front-end of the system, processing data from sensors for the

initial pose estimation and determining when to update the

map by adding new key-frames or points based on the optical

frames from the camera and other sensor data. 2) The Mapping

thread processes the key-frames and map points, with bundle

adjustment executed every time a new key-frame is added to

the map. 3) The Loop Closing thread detects loops during

tracking to correct optical drift.

In the following section, we describe the modifications we

made to the ORB-SLAM3 system.

1) In the tracking thread: The Tracking thread in the

ORB-SLAM3 system functions as the front end of the system

and is responsible for reading odometric measurements from

encoders and converting them into odometric poses. The ticks

from encoders can be transformed into SE2 poses using

the motion model of encoders at specific timestamps. To

synchronize the optical frames’ timestamps with the odometric

data, we perform offline or online interpolation.

The SE2 poses can be interpolated linearly over the X, Y

axes and linearly over the angles around the Z-axis, although

this is not the most efficient method. To address this, we

use the slerp method, which interpolates the Quaternion

representation of the data.

To build the first map, the system needs to be initialized

after processing the encoder data. We modified the initializa-

tion process by incorporating odometric measurements with

monocular frames since the scale is unobservable to the

monocular vision alone. The optical criteria for successful

initialization are satisfied when two optical frames have suffi-

cient parallax for the first triangulation between their matches.

Instead of calculating the Fundamental or Essential matrix as

in standard ORB-SLAM3, we use odometric poses to estimate

the first transformation between these two optical frames.

After successful initialization, the odometric poses will act as

the first estimates of the tracking pose. The main advantage of

odometric poses is that they provide a reliable relative estimate

between frames. These poses are prone to a neglected drift that

will be corrected by bundle adjustment or loop closure. The

odometric poses without optical correction will drift after some

time (even if no slipping happens in the wheels). However,

they provide an odometric trajectory in bad optical situations

e.g. insufficient illumination, low-textured planes, etc. This

state is called in the ORB-SLAM3 system as the Recently-
Lost. It is used basically with the IMU, so we modified it to

be used also with encoders’ measurements.

The last rule of the tracking thread is to decide whether a

new Key-frame is needed or not. In ORB-SLAM3, there are

only optical criteria. We also added movement criteria, because

the pre-integrated measurements between key-frames will drift

if they are far from each other. So we add new KF when

transnational movement > 10cm or rotational angle > 10◦)

based on the odometric measurements.

2) In the mapping thread: The mapping thread optimizes

the key-frames using bundle adjustment. We implemented a 
modified version of BA function in ORB-SLAM3 where the 
camera parameterized directly on SE(2) and the out-of-SE(2) 
motion perturbation is also considered. The graph is structured 
as depicted in Fig. 1 using two edges mentioned in II-A. 
The local window in our case consists of 10 succeeding key-
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Fig. 1. Graph structure in Bundle Adjustment

frames connected subsequently by odometric Pre-integration 
constraint (Fig. 1: The odometric edge). The local window also 
includes all the map points that are seen from those Key-

frames through observations. These observations represent the 
projection error modeled using an edge in the graph 
optimization, which connects Key-frame with a map point (Fig 
1: The projection edge). The bundle adjustment also includes 
all Key-frames that observe the map points but are not 
included in the local window as fixed optical constraints 
(figure 1). We also modified the Key-frame culling process, 
which re-moves redundant Key-frames after using them in 
optimization. We cull a key-frame located in the current local 
window as long as its removal still satisfies a convenient 
interval of translation or rotation between previous and next 
key-frames. Key-frames located outside the local window are 
culled as in the standard ORB-SLAM3 system.

3) In the loop closing thread: Loop closure process is

purely optical process. It detects cases where the robot has

traversed in some old recognizable places. If the system

detected some loop, then the closure process is done over 3

steps:

• Correcting local key-frames using SIM3 Solver satisfy-

ing the detected loop.

• Optimizing the essential graph, which preserve the rela-

tive constraints between key-frames. We modified here by

adding subsequent constraints of odometric preintegrated

measurements over the current local window.

• Global Bundle Adjustment: Here we apply global BA

with the edges described in II-A.

III. OUTLIERS REJECTION MODEL:

The fast development of visual processing of scenes, either

by low-level image processing techniques or by AI approaches,

has led to a great contribution to SLAM community. Visual

processing can be classified into two classes: geometric-

based and AI-based. Geometric-based approaches use low-

level information in the image like pixel values (either it is

a color image or a depth image), where AI-based methods

can utilize a higher level of information like objects in the

scene.

SLAM expects the surrounding scene to be static. ORB-

SLAM3, similar to other basic SLAM systems, is not robust

to dynamic environments, and some additional models should

be implemented to filter out the moving objects. We realized a

geometric-AI model for detecting moving objects and remove

optical features located on them.

1) The AI-Based approach: We used the semantic segmen-

tation model SegNet [1] for detecting and segmenting the 
possibly moving objects. SegNet classifies objects semanti-

cally in the scene. We filter out detected people, animals, 
cars, buses, bicycles, etc... The SegNet model can process 
images at moderate frequencies, and it can perform real-time 
segmentation to some level. However, We applied the SegNet 
segmentation only over the key-frames. When the criteria of 
creating new key-frame in the tracking thread are satisfied, we 
process the image in the SegNet model and remove all key 
points that are located on possibly moving objects (Fig. 4).

2) The Geometric-Based approach: As SegNet provides

a real-time segmentation and detection of possibly moving

objects, the accuracy of the segmentation is not high. That’s

why we need to detect the points that are moving and not

detected by SegNet.

The RGBD sensor provides a colored monocular image with

the corresponding depth data. In the case where the mobile

robot has an RGBD sensor, we do geometric clustering using

the K-Means algorithm over the depth data. The clustering

operation can’t identify whole objects, but parts of an object as

depicted in figure 3. We search for possibly moving clusters by

calculating the ratio of optical outliers located in this cluster.

If the ratio of outliers (> 50 %), it means that the cluster

is moving, and we remove all the optical features (Inliers

& Outliers) located in this cluster. Outliers are defined by

projection error on the new candidate key-frame of recognized

optical features from the local map. If the projection error is

bigger than some threshold (3-7) pixels, it is considered an

outlier. This geometric filter is sensitive to moving objects not

detected by the semantic segmentation model. Specifically, It

detects optical features located on objects moved by people

for example, which are considered static by the SegNet, i.e. a

moved chair. It detects also the optical features on the borders

of a moving object, due to not accurate segmentation (figure

3). We also show in table III, that the model preserve the real-

time performance of ORB-SLAM3, and working as fast or

faster than other models. As our objective is not to compare

with running time of other approaches and on other devices,

but to show the capability that the proposed solution operates

in real-time.

The geometric model also includes the epipolar constraint

between two subsequent key-frames for filtering not correctly

matched points (relatively-moving features won’t satisfy the

epipolar constraint), in case these points were not detected on

moving object neither on moving cluster.
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Fig. 2. Detecting Points on moving objects
(Person)

Fig. 3. KMeans - Geometric-based approach
(High border details)

Fig. 4. SegNet Model: AI-based approach (Semantic
segmentation and object detection)

IV. EVALUATION

We split the evaluation into two sets of experiments: First,

we test the optimization constrained modification over the

ORB-SLAM3 system and compare it with the monocular

inertial results over the OpenLoris dataset [23]. and second,

we test the efficiency and robustness of the dynamic model

independently from the constrained optimization on TUM-

RGBD [24]. Both took place on Intel i7 CPU, RTX2060

(Notebook) GPU, RAM 16 Gb.

1) Evaluation of Constrained Optimization: We chose the

OpenLoris dataset for evaluation for several purposes. The 
OpenLoris dataset is universal, including a diverse set of sen-

sors (monocular (pinhole, fish-eye) /Stereo (fish-eye) vision, 
gyroscope, accelerometer, encoders, RGBD sensor). Open-

Loris is also a popular platform for competitions of SLAM for 
mobile robots1. We couldn’t find any published results of 
ORB-SLAM3 (monocular inertial case) for the OpenLoris 
dataset. So, we tested ORB-SLAM32 with monocular pinhole 
inertial default settings. We found out that ORB-SLAM3 is not 
working fine, because we got bad trajectories. So, we decided 
to test ORB-SLAM3 with monocular fish-eye inertial default 
settings. Fish-eye model provides bigger FoV and therefore 
more robust and accurate tracking. In Table I, we provide the 
average of (rotational/translations) RMSE error3 of 5 
executions of ORB-SLAM3 system on the OpenLoris dataset.

We found that one of the main factors of the failure of 
the State-of-The-Art ORB-SLAM3 system on OpenLoris 
dataset is the bad inertial initialization, due to 
unobservable scale and the constant acceleration (rotational 
only/transitional only) movement of the mobile robot [16].

We tested our modification over the ORB-SLAM3 system us-

ing the constrained optimization (monocular fish-eye & wheel 
odometry) also by running 5 executions for each sequence

1https://competitions.codalab.org/competitions/21504#result
2V0.3: Beta version, 7 September 2021
3https://docs.openvins.com/eval-error.html

and calculating the average (transitional) ATE error, showing 
more accurate and robust results over different sequences and 
places (Table I). The most noticeable improvement is depicted 
in figure 5, where our trajectory over Z axis shows better 
accuracy and robustness than ORB-SLAM3.

We also provide in the Table I results of the 1st place of 
the IROS 2019 Lifelong Robotic Vision Challenge: 
Lifelong SLAM, were all sensors are available to use in the 
challenge of OpenLoris. The Table I shows that our results 
are robust and in most cases better than the best results 
achieved in the challenge.

Fig. 5. XY trajectory of Corridor 01, with Z trajectory (Bottom Left)

2) Evaluation of The Outliers’ Rejection model in Dynamic
Environments: For evaluation of our outliers’ rejection model,

we tested on the TUM-RGBD dataset [24]. It provides RGBD

sequences with different scenarios of moving objects in front

of a static or moving camera. TUM-RGBD is also suitable

to compare with other models in the literature by robustness,

accuracy, and execution cost. We tested our modification of

the ORB-SLAM3 system without the constrained optimization
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TABLE I. PERFORMANCE COMPARISON OF THE ATE (POSITION) (M.) 
BETWEEN OURS (MONOCULAR-WHEEL ODOMETRY), ORB-SLAM3

(MONOCULAR-INERTIAL) AND THE 1ST PLACE WINNER OF COMPETITION ON 
OPENLORIS DATASET [23]

Sequence ORB-SLAM3 1st place Ours

office1-1 0.063 0.172 0.030
office1-2 0.076 0.936 0.036
office1-3 0.028 0.732 0.022
office1-4 0.080 0.673 0.045
office1-5 0.227 0.515 0.083
office1-6 0.067 0.459 0.026
office1-7 0.060 0.854 0.030
Avg 0.086 0.620 0.039

home1-1 0.424 0.172 0.223
home1-2 0.371 0.240 0.301
home1-3 0.351 0.158 0.118
home1-4 0.299 0.171 0.091
home1-5 0.257 0.254 0.077
Avg 0.340 0.206 0.162

cafe1-1 0.102 0.232 0.201
cafe1-2 0.115 0.230 0.432
Avg 0.108 0.231 0.317

corridor1-1 5.040 1.032 1.841
corridor1-2 6.119 0.675 2.251
corridor1-3 11.273 1.320 0.190
corridor1-4 2.916 1.270 0.244
corridor1-5 4.464 0.964 0.442
Avg 5.962 1.052 0.993

market1-1 15.771 1.073 2.712
market1-2 9.126 1.216 5.381
market1-3 11.431 1.432 4.534
Avg 12.109 1.240 4.209

part, to see independently how well the model is performing. 
This outliers’ rejection model provides ORB-SLAM3 with 
robustness and accuracy in the case of tracking in a dynamic 
environment. We show in Table II, the results of our model 
compared to ORB-SLAM3 and other works in the literature. 
It is shown that our model is robust over all the sequences 
we tested, and gets either the best or second best accuracy in 
most cases. We also show two trajectories of ORB-SLAM3 
with/without our dynamic model (figure 6), and it is clear that 
ORB-SLAM3 system is not robust to dynamic environments 
and it works better with our modifications. We also show in 
table III that our modification preserve the real-time perfor-

mance of the ORB-SLAM3 system.

V. CONCLUSION

We addressed the robustness of the visual SLAM systems

designed for ground wheeled robots operating in real-world

like dynamic environments. We benefits from the constrained

movement on Z-axis by adding constraints based on encoder

measurements in the optimization process, showing that Visual

Encoder SLAM is more robust than Visual Inertial one for

wheeled robots. For more robustness, we realized an outliers

rejections model for detecting moving features. This model

consists of Geometric and AI-based methods that are comple-

mentary for achieving high robustness.

The work was built upon the state-of-the-art ORB-SLAM3

TABLE II. COMPARISON OF THE RMSE RPE IN TRANSLATION DRIFT OVER 
TUM-RGBD [24] DATASET. BEST RESULTS ARE HIGHLIGHTED IN BOLD AND 

THE SECOND-BEST ARE UNDERLINED.

Translation RPE (m/s)

Sequence
ORB SLAM3

(RGB-D)
DS-SLAM

Detect
Slam

Ours
(G+AI)

walking xyz 1.251107 0.0333 0.0241 0.046710
walking rpy 1.517069 0.1503 0.2959 0.040565
walking half 1.055122 0.0303 0.0514 0.040534
walking static 0.553423 0.0102 - 0.011880
sitting xyz 0.016737 - 0.0201 0.016970
sitting rpy 0.031859 - - 0.032727
sitting half 0.037480 - 0.0231 0.024585
sitting static 0.015077 - - 0.009412

TABLE III. OVERVIEW OF THE RUNNING TIME FOR THE PROPOSED 
SOLUTION AND OTHER EXISTING APPROACHES, SHOWING THAT IT WORKS IN 

REAL-TIME

Methods AI Geometric Tracking Hardware
ORB

SLAM3
- - 22.2322 CPU only

DS-SLAM 75.64 47.38 148.53
Intel i7 CPU
P4000 GPU

Dyna
SLAM

884.24 589.72 1144.93 Titan X GPU

Detect
Slam

4 310.0 20.0 -
Intel i7-470

GTX960M GPU

Ours 69.3642 26.6683 22.837
Intel i7 CPU

RTX2060 GPU

Fig. 6. Trajectory comparison on TUM-RGBD walking-XYZ sequence

system and has been tested on OpenLoris and TUM-RGBD

showing better results in terms of robustness and accuracy,

while still performing SLAM in real-time.

In the future, fusing wheel odometry with inertial data for the

robust inertial initialization and overcoming wheel slippage

error will be implemented to achieve a better state estimation

providing more accuracy for visual SLAM system in mobile

robots. The semantic model can be extended for improving

place recognition and performing better loop closing.
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