
DeFi Gaming Platform Using the Layer 2 Benefits

Tomas Rafaj, Lukas Mastilak, Kristian Kostal, Ivan Kotuliak
Slovak University of Technology in Bratislava

Bratislava, Slovakia

xrafaj, lukas.mastilak, kristian.kostal, ivan.kotuliak@stuba.sk

Abstract—Decentralized finance (DeFi) and blockchain-based
gaming platforms are rapidly gaining popularity in the digital
world. However, the high gas fees associated with on-chain
transactions make it difficult to use these platforms for mass
adoption. In this paper, we propose a DeFi gaming platform
that leverages the benefits of layer 2 solutions to reduce gas
fees and improve user experience. Our platform utilizes state
channels, where players can interact with each other without the
need for on-chain transactions. Our platform’s architecture and
smart contracts are designed to ensure security, transparency,
and fairness. We demonstrate the feasibility and effectiveness
of our platform through several test scenarios. In addition,
we implement two approaches to validate the game results for
different games. Our results show that using a layer 2 solution
significantly reduces gas fees, making DeFi gaming accessible
to a wider audience. Our proposed platform can potentially
revolutionize the gaming industry by providing a seamless,
decentralized, and rewarding gaming experience to users.

I. INTRODUCTION

Blockchain technologies experienced a big rise in the last

decade, with many use cases found and implemented on these

technologies. The idea of decentralized finance has been and

continues to be very successful, with thousands of platforms

that implement borrowing, trading, or even copying assets

from the traditional finance world. However, decentralized

blockchain technology does not have to be limited to the

financial sector. The recent rise of non-fungible tokens, known

as NFTs, has seen extreme success among people and even

found its way into gaming platforms. The need for decen-

tralized gaming platforms still exists, as most projects that

have attempted it have either failed or been stopped midway.

However, the most commonly used platform is the Ethereum

network which provides the best base for smart contracts and

the implementation of decentralized applications.

The following sections of this article are organized: We

describe components of the Ethereum network and argue why

it is suitable for recording and evaluating game results in

Section II. Then, Section III shows the current state-of-the-art

solutions in the domain of DeFi games. Section IV describes

the design architecture of our DeFi gaming platform, which

uses a state channel to reduce transaction fees. Evaluation

and Discussion to prove our solution is in Section V and

VI. Section VII sums up the article with results, and we also

discuss future work there.

II. ETHEREUM BLOCKCHAIN

Ethereum network is also called the Turing machine, which

keeps track of all states of everything in the network. The start

is called the genesis or genesis block, which is the first block

ever made on Ethereum. Its function is to go from the genesis

state to the final state, with each new block holding a new final

state. Blocks on Ethereum work like a notebook, keeping track

of all transactions, the previous block, and the identifier of the

final state. However, due to their size, they do not contain the

final state themselves. Moreover, they contain data such as

transactions, smart contracts, block difficulty, block number,

and a link to the latest state [1].

A. Proof of stake

Ethereum blockchain uses the proof of stake mechanism. It

means all nodes share a uniform view of the network with the

Ethereum peer-to-peer network. They have one global state

that they all agree on. Validators are chosen to create new

blocks based on their stake, or the amount of cryptocurrency

they have deposited as collateral to participate in the network.

When a validator is selected to create a new block, they must

first verify and validate the transactions in the block. This

involves checking that each transaction is valid, that the sender

has enough funds to make the transaction, and that there are

no attempts at double-spending or other forms of fraud. If

a validator behaves maliciously or attempts to double-spend

cryptocurrency, their stake can be ”slashed” as a penalty. Once

a block is confined as valid, the state of the network is changed

[2]. The average time between blocks is 15 seconds [3].

B. Blocks

Blocks are a product of the Ethereum network proof of stake

consensus. Block contains information, such as block number,

hash of the block, parent hash, timestamp, and many others,

which we can see in Fig. 1. Block number defines the block

rank in the network. Further, the hash of the block is a 32-bit

hash code of the block, and the parent hash is the hash of the

block above it in a tree structure. Timestamp is the record of

the time when a block was produced, and the nonce is the

number of confirmed transactions from a given account sent

previously [4].

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 236 --

Fig. 1. Structure of Ethereum Block Header [5]

C. EVM

The Ethereum virtual machine (EVM) is deterministic,

which means that it produces the same output every time

it runs the same program. However, it can not determine if

a program will ever end or continue indefinitely, leading to

issues like denial-of-service attacks [6]. The EVM runs smart

contracts, which are like programs on the EVM. Fees are

charged to prevent issues caused by the deterministic machine,

which will be explained later [7].

D. Smart contracts

Smart contracts are programs executed on the EVM with

associated data and states. They can modify the state of

Ethereum accounts, and all state changes made by calling such

contracts are registered to the state of the Ethereum network.

The contracts are isolated from the system in which they are

executed and are mainly programmed in the language Solidity,

which is widely used and popular due to its object-oriented

principles [8].

E. Solidity

Solidity is the language used to develop smart contracts on

the Ethereum blockchain. It has similarities with JavaScript

and coding language C. It is an object-oriented, case-sensitive,

static programming language. Compilation results in byte

code, and it has automatic control of syntax errors. The

language was developed by Gavin Wood, who is the co-

founder of the Ethereum network [9]–[11].

F. Fees

Fees were implemented in the EVM to solve the issue of

determinism, and these fees are calculated using gas, which

is an estimate of the gas required for a successful transaction

based on EVM instructions. The gas limit is initially set at

21,000, and each gas costs 0.000000001 ETH. However, when

executing complex transactions that require multiple changes

and state-saving operations, such as creating contracts, the gas

fee increases to compensate for the time and computational

power needed to solve them. The gas helps prevent denial of

service attacks by limiting the attacker’s ability to create infi-

nite loops, and the cost of each transaction step is proportional

to its complexity [11].

G. State channels and off-chain.

Off-chain solutions involve moving some transaction pro-

cessing off the blockchain and onto a separate network or

platform because of scalability and reduced fees. State chan-

nels are temporary channels created between parties for a

specific purpose, where multiple off-chain transactions can be

conducted without involving the blockchain for each one. The

final state of the transactions is recorded on the blockchain

once the channel is closed.

The Ethereum network charges fees for transactions, which

can be problematic for games because the dollar value of

the fees can be very high. For example, a $5 bet on roulette

may not make sense if the transaction fee is $20. The state

channels were created to solve this issue and operate off-

chain, meaning they are not directly connected to the Ethereum

network and are considered to be outside of the blockchain.

Off-chain solutions allow faster and cheaper computation of

results, increased privacy and scalability, and many more

transactions at a lower cost per transaction. However, the main

challenge with state channels is establishing trust in the off-

chain network. One or more nodes verify that everything is fair

and square to ensure safety. The zero-knowledge mode ensures

the result is correct without revealing any other information.

The main point behind state channels is to have ideally two

on-chain transactions, one to open the channel and the other

to close it, with numerous transactions occurring off-chain.

This approach significantly reduces the number of on-chain

transactions and associated fees [12], [13].

III. RELATED WORK

In this section, we would like to introduce related DeFi

gaming platforms built on state channels in more detail.

Finally, we will compare the benefits and drawbacks of each

approach.

A. Ethex.bet

Ethex is an Ethereum smart contract lottery with simple

rules. You have to guess 1 to 6 characters of the block’s hash

where your bet takes place. It operates fully on-chain, as it bets

on the on-chain results. The minimum bet on their site is 0.01

ether per character. If you want to bet and try to guess just one

character, the minimum bet stays at 0.01 ether. However, if you

want to guess all six characters, the minimum bet increases

to 0.06 ether. Validation is done in the following way: they

add to the stack the number of the block, the bet amount,

the ID of the transaction, and the bet-string array containing

the characters being guessed. They even implemented a demo

version that does not require a wallet or web3 connection. The

only downside is that the EVM has access to only the last 256

block hashes. If your bet is not confirmed within 256 blocks,

it will fail [14].

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 237 --

Fig. 2. Funfair off chain state channel concept [15]

B. Funfair

Funfair is a large gaming platform focusing on casino

games and is fully built and implemented on the Ethereum

network.They implemented their own ERC20 token, FUN,

for betting and cashing out within their platform. However,

it has been found that the average blackjack bet is only

around a dollar, which means they needed to find a way to

eliminate Ethereum blockchain fees that are not even close

to $1. Another problem is that they would have to wait for

multiple blocks to finish one bet. It could take time because the

new block is mined every 10 to 15 seconds. Funfair introduces

an off-chain solution with a state channel called the Funfair

Fate Channel to solve these issues. We can see their idea of

the Fate Channel shown in Fig. 2, where only two transactions

are needed for creating and closing the channel. Games are

played off-chain, and initial and final states are stored on the

blockchain [15].

C. Sunrise Casino DAO

Sunrise is a gambling platform focusing on table games like

poker and blackjack. They faced two main challenges in their

design how to create their token and how to assign value to

their tokens. They wanted to create tokens that operate like

shares and retain value even after their distribution. They also

had to solve the issue of the pseudo-random function. Initially,

they planned to run their project on the Ethereum blockchain

but, due to high fees and unsolved problems, they decided to

use a private blockchain that would interact with web3. They

will use the synthetic United States dollar (sUSD) token, which

will be exchanged for Tether (USDT), a stablecoin fixed to

$1. The choice of the private blockchain was influenced by

the problems they faced on the Ethereum network [16].

D. Stixex

Stixex is a gaming platform that allows playing only one-

player mode while betting on the odds of a trading pair on

the market. The first problem with this idea is that betting

on the commodity rate, namely Ethereum in US dollars, must

be drawn from the centralized solution offered by the API.

The problem arises when, for some reason, this centralized

Name Ethex.bet Funfair Sunrise Stixex Degens
Blockchain ETH ETH ETH ETH ETH
Whitepaper No Yes Yes No No

Tokens ETH ETH,FUN ETH,SUNC ETH DAI
Provably fair Yes Yes No Yes Yes

Offchain Yes Yes No Yes Yes

TABLE I. COMPARISON OF DEFI GAMING
PLATFORMS

service stops or sends incorrect data. The highlight of this

platform is that they use off-chain transactions, which are free

of charge. A state channel is created for this. The transparency

of a smart contract ensures fairness between participants. The

site communicates via web3 on the Ethereum blockchain and

does not offer the possibility of registration. In the process of

tokenization, they work with USDT Tether, which has a fixed

value to the US dollar [17].

E. Degens

A gaming platform designed primarily for player-to-player

betting. The authors created their token, DEGENS, which is

used for several functions within their platform. Players can

use Ether or DAI tokens (stablecoin on the Ethereum) for

their bets, which are fixed to the price of US dollars. The

platform uses off-chain methods to evaluate matches, which

helps to save on fees and increase privacy. In order for a bet

to take place, two players must be paired up - one betting for

a particular outcome and the other betting against it. Pending

games are listed on the login page, waiting for a player to join

and place the bet [18].

F. Summarization of platforms

The compared platforms have several weaknesses but also

several strengths. The most suitable platform is Funfair, which

makes very good use of several elements. We would like to

highlight their off-chain channel, which stores intermediate

results of the game. On the other hand, the Stixex platform has

a similar implementation with API centralization problems and

outside blockchain solutions. Despite the off-chain solution,

the FUNFAIR platform offers the possibility of tokenization

and a large number of games. Other platforms have several

problems, out of which we can highlight the Degens platform’s

only partially transparent verification of results. It can be

considered a significant centralization, and the Degens creators

agree. They justify it by saying that if they did not evaluate

the correct results, everyone would stop using them, and no

one would play with them. In the case of the Sunrise casino,

players are almost forced to use platform tokens without being

able to play directly with Ethereum coins, where you would

reduce your fees and even have more confidence in the value

of the coin. We selected several features of DeFi gaming

platforms and compared then in Table I.

IV. DESIGN

As mentioned above, some projects are trying to imple-

ment DeFi gaming platforms using state channels to reduce

transaction fees in the public blockchain network. Thus, we

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 238 --

will attempt to compare our project with those solutions’

specifications. In contrast to the aforementioned platforms and

what we have learned, we want to design a game platform

with several games within the blockchain. The aim is to design

several implementation types and point out at their advantages

and disadvantages. The result is an effort to implement two

types of games, one that takes place directly on the blockchain

without off-chain transactions and another that takes place off-

chain using state channels. However, we want to stress the ben-

efits of the second layer, which offers high scalability. It saves

transaction fees when we deploy our decentralized application

into a mainnet network. The game begins with players A and

B, who access the application’s web interface and choose the

game. If they are connected, they can start playing. The game

does not have a time limit, but it is recommended to set a

timeout in case one player stops playing or faces circumstances

that prevent them from continuing. The channel should only

be opened after adding both players. Opening the channel with

only one player can cause implementation issues. For example,

if player A opens the channel but can not find their opponent,

they will have to close it with a value of 0, which does not

make sense. Each player should be able to quit the game and

close the channel anytime. We have implemented two games

to demonstrate our solution and use different approaches to

validate the final state for each of them, which are described

in more detail in one of the following subsections. Now, let

us introduce the most important components of our design.

A. Connecting players

One of the challenges we faced was how to establish

connections between players. There are various approaches

to addressing this issue, and one of the simplest is to pair

players randomly. However, in our case, we wanted to retain

the ability to select an opponent. Therefore, we developed a

list of all active players waiting for a game, where players

can sign up to join and start playing. To differentiate players,

we use public keys that are unique to each player, giving

each player a distinct identification. We have also implemented

multiple functions, such as deploying the contract to initiate

the game, which is done by Player A, and allowing Player B

to join the game. Additionally, we have introduced features

such as claiming a timeout, surrendering, and more. In Fig. 3,

we can see the web interface for connecting to the game. After

players select the game, they are invited to connect using the

Metamask wallet.

B. Smart contact

For playing the game, the smart contract needs to include

essential information. Most games involve two players, so it

is necessary to keep important data about these two players.

Specifically, we need to store information about the credit of

Player 1 and Player 2, the public addresses of their wallet to

identify the player, and whose turn it is. In terms of the game

itself, it is critical to keep the round number being played,

with each opponent’s move counted as one round and the

number iteratively increased from zero. It is also necessary to

Fig. 3. Player Dashboard

identify the game being played, as there can be multiple games

with varying rules, numbers of players, maximum rounds, and

other factors. Consequently, we must verify the validity of the

provided results when players attempt to close the channel.

We save the timestamp, ideally when writing in the block

or shortly before. Timestamp is also recorded if one or both

players stop playing during the game. It is crucial to record

and remember the bet value, for example, 0.0754814 ETH.

Finally, the smart contract should include information about

the game status. We define the following statuses:

• status number 0 is terminated normally

• status number 1 is terminated by the expiration of time

• status number 2 is terminated by the user

• status number 3 is an pending game

Fig. 4 describes the interaction between players and also

shows the interface of our implemented smart contract. The

following functions are defined there:

• returnWinner - determine the winner of the game after

it finishes

• getMessageHash - return Keccak256 hash of received

message from the opponent

• verify - declare the winner, verify the result, and also pay

the reward to the winner

• timeoutChallenge - set the timer and challenge the

player’s opponent to play round

• claimTimeout - player, who invoked timeoutChallenge,

calls it to pay off the reward after the timer is expired

• cancelTimeout - opponent calls it in response to time-
outChallenge before the timer is expired

• recoverSigner - validate sender of the received message

• splitSignature - divide a given board hash into 3 parts

• getP1 and getP2 - return the address of the given player,

if the return value is null, the game has not started yet

• join - joining player2 to the game, his bet value must be

the same as the bet of player 1

C. State channel

Each game instance will be represented using a structure

that will keep information such as who is their turn to play, the

sequence number, and the state of the game, several constants.

The game is closed by closing this channel, and the game

statuses are written using the transfer function. The off-chain

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 239 --

Fig. 4. Interface of Smart contract

Fig. 5. Sequence diagram showing game without problems.

channel between players is created using the public service

PubNub [19]. It allows exchanging of messages between

players out of blockchain. The whole process of playing the

game is shown in Fig. 5.

D. Verifying game states

Our implementation offers two methods to verify that a

game session has been completed correctly and without cheat-

ing. The first method, demonstrated using the example of

Tic-Tac-Toe, involves signing the game state by both players.

Before the game starts, the smart contract saves the initial state

of the game boards of both players, which must be encrypted

to prevent the opponent from seeing them. Using an off-chain

channel, players take turns making their moves until one player

reaches the final state. If one player wins, the other has to sign

their game board to declare their loss and send it to the winner,

who also has to sign it. Once both players sign the final state

of the game, known as the finishing move, the expected winner

can call the function claimWinner and pass the signed game

board to the smart contract to declare the winner and payout

the bet.

The second method is based on implementing the Merkle

tree for the game Blackjack. The game is usually played with

52 cards. Our algorithm will generate an array of all cards, sort

them randomly, and make the root of the Merkle tree where

all leaves will be cards. Players cannot change the order of

the cards or cheat in any way, as they must provide proof that

builds the root hash and compare it with the saved root hash.

Failure to do so would be considered cheating.

Both methods allow players to invoke the function time-
outChallenge if their opponent appears inactive in the game.

The opponent must acknowledge their presence in the game

by calling cancelTimeout in response. If the opponent fails to

respond, the timer will expire, and the requesting player can

claim a reward by calling claimTimeout.

V. EVALUATION

We defined several test scenarios to evaluate all the possible

cases that can occur during the game, including a standard

playing test, a cheating test, and even a timeout test. With

these scenarios, we can observe what happens if one of the

players decides not to play or can not continue playing.

Standard game scenario:

1) Player A joins the game.

2) Player B joins the game.

3) Both play at least a few rounds.

4) One of them loses.

5) The channel is closed, and the prize is paid to the winner.

Cheating game scenario:

1) Player A joins the game.

2) Player B joins the game.

3) Both play at least a few rounds.

4) One of the players tries to submit the end of the game

with a fake signature.

5) If the system detects such behavior, it will punish the

given player by giving everything to the opposite player,

making him the winner.

6) The channel is closed, and the prize is paid to the winner.

Timeout scenario:

1) Player A joins the game.

2) Player B joins the game.

3) Both play at least a few rounds.

4) If one of the players stops playing, the opposite side

triggers a timeout using the smart contract.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 240 --

Fig. 6. Gas Optimization with Hardhat-Gas-Reporter

5) If the system detects such behavior, it will pay out

the current balances of both players to the player who

requested the check.

6) The channel is closed, and the prize is paid to the winner.

We performed multiple security tests on Linux and ran gas

optimizations to reduce the cost of transactions. Fig. 6 shows

the average cost of each called function in our smart contract

in the test scenario when we played the Tic-Tac-Toe game. The

parameter run is worth mentioning, which means how many

times you expect functions to be called in that smart contract.

If it is set to a lower value, it optimizes the byte code of

the smart contract to be cheaper for the deployment and later

function executions to be more expensive. On the other hand,

deploying the smart contract is more expensive if it is set to a

higher value, but the later function executions will be cheaper.

On the bottom line of Fig. 7, we can see that deployment

will cost 92 percent of the total cost for the smart contract,

while the steps will cost next to nothing. However, looking

at the top line, we can see that the yellow bar represents 79

percent of the total cost, which is the cost of moves. This

test was performed for the game with 100 moves submitted to

the blockchain. Using a state channel can significantly reduce

fees based on our test results. The color labels represent the

following information:

• blue - deploying of the smart contract

• light red - creating of the state channel

• yellow - off-chain transactions on the state channel

• light blue - closing of the state channel and verifying of

game results

VI. CONCLUSION

In this paper, we have introduced the concept of a DeFi

gaming platform using the state channel. It means that the

initial and final state of the game is saved in the blockchain.

Otherwise, the game is played by players off-chain, and the

intermediate game results are not saved to the blockchain. This

approach significantly reduces transaction fees. However, we

Fig. 7. Reduce of cost using the state channel

have also implemented two different approaches to validate

the game results for the game Tic-Tac-Toe and Blackjack.

An important aspect was validating the solution. We defined

test scenarios for various game situations, including standard

gameplay, cheating, and timeouts. Next, we focused on re-

ducing transaction fees and confirmed that state channels help

lower costs for players in the DeFi games.

We could not compare our design with existing solutions

because most of them no longer exist or do not have code in

public.

We aim to improve and expand the current implementation

in the future. One of our key goals is to transform it into a

plug-and-play gaming platform, but this will require significant

effort because we can not validate results with the same

approach for every game.

ACKNOWLEDGMENT

This publication has been written thanks to the support of

the Operational Programme Integrated Infrastructure for the

project: Research in the SANET network and possibilities of

its further use and development (ITMS code: 313011W988),

co-funded by the European Regional Development Fund

(ERDF).

REFERENCES

[1] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014. [Online]. Available: https://files.gitter.im/ethereum/
yellowpaper/VIyt/Paper.pdf

[2] Proof-of-stake (pos). Accessed: 2023-04-26. [Online]. Available:
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/

[3] P. Sajana, M. Sindhu, and M. Sethumadhavan, “On blockchain applica-
tions: hyperledger fabric and ethereum,” International Journal of Pure
and Applied Mathematics, vol. 118, no. 18, pp. 2965–2970, 2018.

[4] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Ethereum
query language,” in Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain. Gothenburg
Sweden: ACM, May 2018, pp. 1–8.

[5] A. Rishi. The ultimate guide to ethereum blocks. Ac-
cessed: 2023-04-26. [Online]. Available: https://blog.cryptostars.is/
the-ultimate-guide-to-ethereum-blocks-98da8e2c1697

[6] S. Tikhomirov, “Ethereum: state of knowledge and research perspec-
tives,” in Foundations and Practice of Security: 10th International
Symposium, FPS 2017, Nancy, France, October 23-25, 2017, Revised
Selected Papers 10. Springer, 2018, pp. 206–221.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 241 --

[7] Y. Hirai, “Defining the Ethereum Virtual Machine for Interactive Theo-
rem Provers,” in Financial Cryptography and Data Security, M. Brenner,
K. Rohloff, J. Bonneau, A. Miller, P. Y. Ryan, V. Teague, A. Bracciali,
M. Sala, F. Pintore, and M. Jakobsson, Eds. Cham: Springer Interna-
tional Publishing, 2017, vol. 10323, pp. 520–535, series Title: Lecture
Notes in Computer Science.

[8] J. Toroman, “Application of ethereum smart contracts in purpose of
generating new cryptocurrencies,” Global Journal of Computer Science
and Technology, 2018.

[9] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Smartinspect:
solidity smart contract inspector,” in 2018 International workshop on
blockchain oriented software engineering (IWBOSE). IEEE, 2018, pp.
9–18.

[10] R. Modi, Solidity Programming Essentials: A beginner’s guide to build
smart contracts for Ethereum and blockchain. Packt Publishing Ltd,
2018.

[11] C. Signer, “Gas Cost Analysis for Ethereum Smart Contracts,” p. 39
p., 2018, artwork Size: 39 p. Medium: application/pdf Publisher: ETH
Zurich.

[12] J. Eberhardt and S. Tai, “ZoKrates - Scalable Privacy-Preserving Off-

Chain Computations,” in 2018 IEEE International Conference on In-
ternet of Things (iThings) and IEEE Green Computing and Communi-
cations (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). Halifax, NS, Canada:
IEEE, Jul. 2018, pp. 1084–1091.

[13] J. Stark, “Making Sense of Ethereum’s Layer 2 Scaling Solutions: State
Channels, Plasma, and Truebit,” p. 17.

[14] Ethex faq. Accessed: 2023-04-26. [Online]. Available: https://ethex.bet/
faq

[15] Funfair. Accessed: 2023-04-26. [Online]. Available: https://funfair.
ventures/

[16] Sunrise gaming by dao. Accessed: 2023-04-26. [Online]. Avail-
able: https://sunrisegaming-dao.com/pdf/Release SUNRISECASINO
by DAO WHITEPAPER v1.pdf

[17] Stixex. Accessed: 2023-04-26. [Online]. Available: https://stixex.io/#/
[18] Degens protocol documentation. Accessed: 2023-04-26. [Online]. Avail-

able: https://degensprotocol.github.io/degens-contract/protocol.html
[19] Pubnub. Accessed: 2023-04-26. [Online]. Available: https://www.

pubnub.com/

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 242 --

