
Fast Discovery of Inclusion Dependencies with
Desbordante

Alexander Smirnov1, Anton Chizhov1, Ilya Shchuckin1, Nikita Bobrov1, George Chernishev1,2

1 Saint-Petersburg State University
2 Universe Data

Saint-Petersburg, Russia

{alexander.a.smirnovv, anton.i.chizhov, shchuckinilya, nikita.v.bobrov, chernishev}@gmail.com

Abstract—Inclusion dependency is a relation between at-
tributes of tables that indicates possible Primary Key–Foreign
Key references. Automatic discovery of inclusion dependencies
is a relevant problem for both academic and industrial com-
munities. The core concern for this problem is the efficiency
of discovery process, since it is a computationally expensive
task. However, existing studies only address the algorithmic side,
while leaving out the implementation aspect. At the same time,
engineering details are at least as important as the algorithmic
ones for achieving good performance.

In this paper, we describe techniques for efficient implementa-
tion of two algorithms for discovery of inclusion dependencies —
Spider and Faida. The first one is a classic algorithm whose ideas
lie in the foundation of many other inclusion dependency discov-
ery algorithms. We propose an efficient parallelization technique,
which greatly speeds up the algorithm while simultaneously
reducing its memory consumption. The second one is the state-of-
the-art approximate algorithm, which we approach by applying
four types of optimizations: data buffering, SIMD-enabled exe-
cution, careful hash-table selection and parallelization.

In order to experimentally evaluate our techniques, we have
implemented these algorithms in Desbordante — an open-source
science-intensive data profiler written in C++. For Spider, we have
evaluated several different options, and in case of Faida we have
demonstrated that all our optimization techniques yield results.
We also compared our implementations with Metanome — a
Java-based data profiler. Overall, we report up to 5x improvement
in terms of run time reduction for Spider and up to 8x for Faida.

I. INTRODUCTION

Inclusion dependency (henceforth referred to as IND) is one

of the most well-studied database dependency concepts. First

papers [1], [2] on IND date back to the same epoch as studies

of other classic dependencies like functional, multi-valued or

join. Initially, IND was considered as a basis for defining

a domain-key normal form, which guarantees that a relation

has no insertion or deletion anomalies [3]. An IND complete

axiomatization was soon proposed [4], which defined the basis

for all further work.

In the past forty years IND has proved itself useful in data

management tasks, such as query optimization [5], schema

design [6], and data integration [7]. However, the IND is

primarily used in foreign key discovery [8], [9], which aims

to suggest possible joins over tables. In the first studies IND

is also referenced as an interrelational constraint since it is

usually defined over a set of tables. It is worth mentioning

that IND is not unique when it comes to multi-table setting.

E.g., matching dependencies (MD) [10] are also defined over

a set of tables, although MD are primarily used for capturing

common semantics over tables rather than discovering strong

foreign key relationships.

Like any other database dependency type, we consider IND

to be a knowledge that can be obtained in two different ways.

First way is handled by an administrator or a user who possess

a domain-specific knowledge. In that case, IND would be

manually defined over a set of tables during the database

design process. Such IND become a part of database integrity

constraints that can not be violated, and for any table we can

easily validate its constraints via database management system

(DBMS) checks. However, it is very common for something as

intrinsic as integrity constraints to be lost during data export,

or to not have been defined in the first place. This is the use

case for the second way of obtaining knowledge. We will refer

to this way as “automatic discovery of dependencies”, and the

philosophy behind it is simple: “if something was not defined

for data, it can probably be mined from data”. There is usually

a high probability of such knowledge yielding useful insights.

Automatic discovery of dependencies is a well-studied

problem from the algorithmic perspective, but not from the en-

gineering one. In this paper, we develop a technical approach

to the problem, which is based on efficient implementations of

algorithms for IND discovery. Solving this problem can lead

to more effective solutions of many data management tasks

that employ IND. Therefore, the contribution of this paper is

the following:

1) A comprehensive study of Faida [11] and Spider [12] —

two algorithms for automatic IND discovery, and des-

ignation of some of their components as candidates for

optimization

2) Implementation of several optimization techniques for

Faida and Spider algorithms

3) Experimental evaluation of the proposed optimizations

4) Discussion of results and an outline of suggestions for

effective implementation of two different types of algo-

rithms for automatic IND discovery.

In Sec. II we provide the necessary context for our study.

In Sec. III we provide a short report for each IND discovery

algorithm that can be found in modern papers on the subject.

In Sec. IV we scrutinize the two most important algorithms in

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 264 --

this study, i.e. Faida and Spider. Next, in Sec. V we discuss

algorithm components that can be enhanced and propose ap-

propriate optimization techniques. In Sec. VI we describe ex-

perimental setup, methodology, results, and takeouts. Threats

to validity of this study are described in Sec. VII. We conclude

this paper with Sec. VIII.

II. BACKGROUND

We provide IND definition according to the modern nota-

tion:

Definition 1. For two relations R = (R1 . . . Rk) and S =
(S1 . . . Sm), we define R̂ = Ri1 . . . Rin and Ŝ = Si1 . . . Sin

as combinations of attributes of R and S respectively. We say
that IND R̂ ⊆ Ŝ holds on relations R and S if for every tuple
tr ∈ R there exists a tuple ts ∈ S, such that tR[R̂] = tS [Ŝ].

One cay say that “R̂ is included in Ŝ”, which explains

the dependency type name. We call R̂ the left hand side of

a dependency, or dependent columns, and Ŝ the right hand

side of a dependency, or referenced columns. If R̂ and Ŝ
are represented by a single attribute, we call IND unary. If

R̂ and Ŝ are disjoint sets of attributes, we call IND n-ary.

For example, we can say that relations presented in Table I

comprise unary IND DLN ⊆ DLID, since for any value of

DLN attribute we can find the exact same value in DLID

attribute.

TABLE I. IND: DLN ⊆ DLID

tid UID Name DLN
t1 1 Sofia 21
t2 2 Leonard 35
t3 3 Shavkat 10
t4 4 Mary 65
t5 5 Andrew 10

tid DLID Country
t1 21 Romania
t2 35 Spain
t3 10 Germany
t4 65 USA

Automatic discovery of IND represents the largest fraction

of all contemporary studies on IND. We can categorize those

studies by the type of IND mined:

• unary IND [12]–[14] or n-ary IND [15]–[18]

• many tables setting [19]

• approximate IND discovery [9], [11], the approach which

estimates the set of the actual INDs

• partial IND [15], [20], which allows dependency viola-

tions by small fractions of typos or errors in data

• IND on non-relational data, e.g. on RDF [21]

• distributed discovery [22]

It can be seen that IND subject is researched in both

deep and broad fashions, and all studies provide extensive

evaluation of different aspects of automatic IND discovery.

Aforementioned studies keep pushing the envelope in terms

of reducing run times, memory usage, and increasing volumes

of data that can be processed by algorithms. Since algorithms

are just high-level abstractions of ideas, any comparison study

is free to choose the toolkit for algorithm implementation.

Modern studies prefer to implement algorithms using tools

and languages that prioritize ease of deployment and repro-

ducibility. This approach leaves out potential improvements on

the implementation side of things, leading to a lack of studies

that are trying to solve engineering problems as opposed to

algorithmic ones.

For example, the data profiling tool Metanome [23] is a

great playground that allows its users to get familiar with

different database dependency concepts. It also provides an

easy-to-use framework for developing dependency discovery

algorithms. However, it is implemented in Java and thus can

not guarantee the best run times or memory consumption rates.

We believe that with the right implementation, the algorithms

can be expressed in a more meaningful way, which would

result in setting true industrial-level standards for automatic

discovery tasks. That is the vision of our data profiling tool

Desbordante [24], which is responsible for the “fast discovery”

part of this paper’s title.

Desbordante is open-source, written entirely in C++, pro-

vides developers with core data structures necessary for depen-

dency discovery tasks, and contains implementations of many

well-known algorithms (github.com/Mstrutov/Desbordante). It

has both console and web versions, which can be tried here:

desbordante.unidata-platform.ru. It can be seen that in many

ways Desbordante is inspired by Metanome — although the

vision is quite different. Our goal lies in building not just a

convenient tool to run research experiments, but an efficient,

resilient to crashes, and scalable application for data mining.

We want to emphasize, that in addition to most common

database dependency concepts, Desbordante also provides

its user with ways of obtaining or validating association

rules, graph dependencies, algebraic constraints. Any type of

knowledge that can be mined with Desbordante is called a
primitive — some hidden pattern in data.

For this paper, we’ve implemented two algorithms in Des-

bordante that could mine the IND primitive: Faida [11] and

Spider [12]. Initially, these algorithms were implemented

within Metanome framework by authors of the experimental

evaluation study [25], and we used their Java code as the

foundation for our work. We carefully converted the code

to C++, preserving the initial logic of programs, and on top

of C++ implementations we built the optimization techniques

introduced in Sec. V. The reasoning for choosing Faida and

Spider as algorithms for our study is discussed in Sec. III-D.

III. RELATED WORK

In this section, we present the gist of each IND discovery

algorithm developed over the past 40 years. We group them

by the type of discovered IND as unary, n-ary, as well as

both unary and n-ary. Due to the specifics of the n-ary IND

discovery process, some of the algorithms require first k levels

of true INDs as an input for their mining process. We organize

them into a stand-alone group in Sec. III-B. All the self-

contained algorithms, which do not require an input and can

mine IND starting with the very first level of search space, are

listed in Sec. III-C. In the last Sec. III-D, we analyze some

significant characteristics of Faida and Spider algorithms.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 265 --

A. Unary IND algorithms

1) Bell and Brockhausen: Bell and Brockhausen [26] is a

unary IND discovery algorithm that uses SQL-join statements

for candidates validation. Authors use the transitivity of INDs

to prune as many candidates as possible. However, this pruning

strategy is not sufficient, since a large number of redundant

candidates remain even after the filtering process.

Another issue with this algorithm is that it quickly becomes

inefficient on large datasets due to the need to access the

database for each candidate.

2) DeMarchi: The key idea of DeMarchi algorithm [14] is

to associate each value from a particular domain (the set of

attribute’s possible values) with every attribute containing this

value. DeMarchi applies this data representation technique for

candidate validation. This method, while providing an efficient

unary IND discovery, would have issues with most real-life

applications due to large datasets, making such index too big

to fit in the memory.

3) Spider: Spider [12] is a unary IND discovery algorithm.

It solves the issue of inverted indexes becoming too large

to fit in the memory by using disk space to store lists of

values. It also achieved better efficiency than its predecessors

by checking several candidates simultaneously and exploiting

early termination for the candidate checks.

4) S-indd: S-indd [27] is an extension of Spider that uses

attribute clustering technique instead of an inverted index. This

approach improves the scalability of the algorithm, making it

independent of the number of attributes.

5) Sindy: Sindy [22] is a distributed unary IND discov-

ery algorithm. This algorithm can be adapted to work with

different map-reduce-style frameworks since its logic can be

expressed in functional programming terms: map and reduce.

By scaling the number of workers, Sindy can outperform

most other methods. The distributed manner of working with

datasets also eliminates the main memory constrain.

6) Many: Many algorithm [19] is a unary inclusion de-

pendency detection algorithm capable of working with large

quantities of small tables. Web table corpus is a great example

of such tables.

7) S-indd++: S-indd++ [28] is a unary IND discovery

algorithm that aims at eliminating drawbacks of S-indd and

Binder. S-indd++ utilizes stepwise partitioning, which divides

the dataset into buckets of different sizes. This method is

capable of discarding a large number of attributes early on.

In contrast to Binder partitions are not required to fit into the

main memory. This feature allows S-indd++ to avoid unneces-

sary operations of partition splitting which are computationally

intensive.

B. n-ary IND algorithms

1) Mind: Mind [15] is a n-ary IND discovery algorithm

that uses Apriori-like candidate generation method. As input

Mind requires precalculated uINDs. Authors use a separate

algorithm for this purpose. Mind iteratively tests candidates

of a certain size and generates new from the satisfied ones.

Calculations stop when it cannot generate next candidates.

2) ZigZag: ZigZag [16] is an algorithm that uses a com-

bination of pessimistic and optimistic approaches. Pessimistic

approach uses adapted level-wise algorithm from Mind. Au-

thors claim that level-wise approach is not efficient on large

INDs. Instead, the algorithm constructs negative and optimistic

positive borders and ’zigzags’ between them. Negative and

positive borders consist of all known smallest unsatisfied

and largest satisfied INDs respectively. ZigZag uses distance

estimation between positive border and satisfied INDs.

3) Mind2: Mind2 [18] is an n-ary IND discovery algorithm

that uses the concept of unary IND coordinates. By using

database queries, algorithm derives these coordinates from

precalculated unary INDs. INDs can then be acquired by

applying set operations on the coordinates.

4) Find2: Find2 [17] is an algorithm that uses mapping

between n-ary INDs discovery problem and Clique-Finding

Problem in k-hypergraphs, which are graphs that have exactly

k nodes connected by each edge.

The algorithm consists of two stages. At the first stage

it discovers unary and binary INDs that will form the first

hypergraph. Unary INDs form nodes of the graph, while k-ary

INDs are represented by k-hyperedges. At the second stage

it calculates cliques using Hyperclique algorithm proposed

by the authors of FIND2. Additional validity checks of the

discovered INDs are required since the clique property is

necessary but not sufficient.

C. Both unary and n-ary IND algorithms

1) Binder: Binder [29] is an IND discovery algorithm

that detects both unary and n-ary INDs. This algorithm was

designed according to the Divide & Conquer paradigm. Before

processing, Binder splits datasets into smaller buckets and

then checks these buckets for INDs. For validation, it uses

two indexes: inverted and dense. A dense index reduces the

number of candidate checks for a partition. Binder dynamically

manages its memory. If buckets are too big to fit in memory,

it splits them further. That greatly increases its scalability.

2) Faida: Faida [11] is an approximate IND discovery algo-

rithm. Approximate algorithms are not guaranteed to produce

correct or complete results. This assumption allows it to use

more efficient discovery strategies thus significantly increasing

performance. In particular, Faida provides complete yet incor-

rect results which can contain false positives. However, in [11]

and in [25] was shown that Faida’s false positive rate is quite

small. In fact, it outperformed state of the art solutions of the

time (such as Binder) without reporting any false positives.

D. Summary

To conclude this section, we need to justify choosing Faida

and Spider for our evaluation study.

Faida paper presents a one-of-a-kind approach, which ad-

dresses the problem of a trade-off between the correctness of

discovered INDs and algorithm performance. Authors show

that the proposed approach guarantees the output to contain the

complete set (i.e. none are lost) of both unary and n-ary INDs,

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 266 --

although it is prone to false positives. Faida is the state-of-the-

art approximate IND discovery algorithm that demonstrates

better performance on large datasets when compared to other

IND discovery techniques [25] while maintaining an insignif-

icant false positive rate. At the same time, the design of Faida

guarantees better scalability [25] and does not require database

connection for candidates validation subroutine as opposed to

other n-ary IND discovery algorithms. Still, the architecture

of Faida’s solution contains many components that can be

enhanced by using exclusively engineering solutions. All of

that makes Faida a perfect candidate for our research, and it

will be shown that Faida’s components can be implemented

in a more performant way.

Spider was the first unary IND discovery algorithm that

utilized disk swap mechanism for solving the issue of data

structures not fitting into RAM. This issue is the reason

for prior algorithms falling short on datasets that produce

large search space. We have selected Spider as the second

algorithm for our research for multiple reasons. First, Spider

is quite straightforward and can be easily implemented in C++.

Second, unary INDs found by Spider are frequently used as an

input for more advanced n-ary IND discovery algorithms [25].

Finally, Spider’s core idea of backing up value files on disk is

considered a solid foundation for many other algorithms [22],

[27]–[29], so the proposed optimization techniques can also

be applied to those algorithms.

IV. ALGORITHMS

In this section we will present a high-level overview of the

algorithms considered in this paper.

A. Faida

The algorithm can be divided into three steps: preprocess-

ing, candidate generation, and candidate validation.

1. Preprocessing. In this step the algorithm reads the input

dataset in a per-table, line-by-line fashion. At this point the

algorithm is solving two distinct problems — it converts the

dataset into a representation better suited for further analysis

and constructs a data sample for each table. The resulting

entities will be used in further steps.

In order to construct the new representation, the algorithm

splits each table into a number of columns, hashes each

column’s value and flushes results to disk. Each column is kept

in a separate file (column file). In further steps the algorithm

works exclusively with these hashed values, while the dataset

itself is no longer in use.

We have to note that hashing, performed on this step, may

result in collisions, which are one of the sources of Faida’s

false positives.

In order to construct a data sample, the algorithm selects

a subset of table rows that satisfies a specific condition. The

sample must either contain all unique values for each column,

or it must contain n such values, in case a column contains

more than n of them. The value n is the parameter of Faida

which can be set up at launch time. This sample will be used

for the construction of an inverted index, and therefore it is

also hashed and stored on disk in a separate file.

2. Candidate generation. Faida starts by generating unary

candidates, which constitute a set of all column pairs, ex-

cluding the ones where a single column appears twice. Then,

candidate validation is run, and sets of n-ary candidates

are formed. There is a partial order on this collection of

candidates, so an algebraic lattice can be used to conveniently

represent it.

Since the collection is rather large, the straightforward

approach to generating candidates will require the algorithm

to check too many candidates. To solve this issue, Faida uses

Apriori-style generation, which is a popular approach used in

several older algorithms. The candidate lattice is traversed in a

level-by-level fashion, which allows the algorithm to eliminate

many candidates that would not pass validation. Such traversal

ensures that elimination happens without running a costly

validation procedure.

Now, let us consider this part of the algorithm. The first level

of lattice contains unary dependencies which were computed

beforehand. This set is used to generate 2-ary candidates,

which are then checked and the ones which pass validation

form the resulting set of 2-ary valid INDs. Using this set, the

3rd level of lattice is computed and so on. Thus, the process

is organized as follows: n-ary inclusion dependencies are

used to generate (n+1)-ary candidates, which are subsequently

validated to form a set of (n+1)-ary inclusion dependencies. It

is repeated until the set of (n+1)-ary candidates is empty.

3. Candidate validation. For candidate validation Faida

uses two data structures — an inverted index and the Hyper-

LogLog. Let us consider them in detail.

The HyperLogLog (HLL) [30] is a data structure that

estimates the number of unique values in a set. Large datasets

are handled well by this structure: it requires constant time

and a constant amount of memory to compute the estimate.

The original paper [11] states that if X and Y are columns

or column combinations and s(X), s(Y) are sets of unique

values in these columns, then X ⊆ Y if and only if

|s(Y)| = |s(X) ∪ s(Y)|. HLL allows to estimate |s(Y)| and

|s(X)∪ s(Y)|, effectively allowing the validation of inclusion

dependency X ⊆ Y . This data structure is parameterized by

the accuracy of estimation. The higher the desired accuracy,

the more memory is required.

However, the accuracy of the HLL suffers if the data

contains a low number of unique items. For instance, this can

occur in case of categorical columns. To handle this particular

case, the authors opted to use inverted index. It is a data

structure which maps a value into a set of columns containing

that value.

De Marchi et al. [14] used an inverted index for the

discovery of unary inclusion dependencies in the DeMarchi

algorithm. The idea is to use the index to find all columns

containing a specified one, and then intersect them. Applying

this approach for each column makes it possible to discover

all inclusion dependencies in the dataset.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 267 --

However, it is too expensive for handling big datasets, since

the inverted index becomes too large and does not fit into

RAM. Therefore, Faida builds the inverted index from a table

sample which was prepared on the preprocessing step. Note

that since Faida hashes values, the inverted index uses hashes

as keys as well.

The validation itself happens as follows. As input, this part

accepts all candidates from the current lattice level. All data

structures are initialized with hashed values that are read from

the corresponding column files. Then, a candidate checking

is performed. This process is based on the contents of the

aforementioned structures.

In the 2-ary, 3-ary, etc candidates, combinations of several

attributes (e.g. AB ⊆ CD) start to appear in left and right parts

of INDs. Because of that, Faida has to check set containment

for tuples instead of single values. In the straightforward

approach, it would have to fill data structures with tuple

data. However, as Faida works with hashed data, a different

approach is taken: each sequence of hashes (corresponding to

a tuple) is combined into a single hash using XOR and circular

shift operators. Thus, even for n-ary candidates the validation

process is in no way different from the unary case.

B. Spider

Similarly to Faida, Spider consists of the same three steps:

preprocessing, candidate generation, and candidate validation.

1. Preprocessing. At this step Spider iterates over input

tables. Each column is sorted, deduplicated, and then flushed

to disk into a separate file (column file). During this step

the algorithm can write to disk if the program approaches

memory limit. In that case, the algorithm processes data in

parts, similarly to external sort in DBMSes.

2. Candidate generation. An attribute object is an object

created for each attribute. It contains:

• a forward iterator for enumerating column data for the

corresponding attribute;

• two lists of attributes — a list of referenced and a list of

dependent attributes.

Thus, each attribute object stores information on which

attributes may be present in left and right parts of the prospec-

tive dependency. In the former case object’s attribute is the

referenced one, and in the latter case it is the dependent one.

At this step, Spider initializes all attribute objects with

iterators pointing to the first value of the corresponding column

file. Both lists are populated with all attributes except for

the current one. An advanced version of the algorithm may

filter these lists using column data type (e.g. no point in

checking dependency between float and integer strings). The

basic version (which is considered in this paper) treats all

columns as the string ones.

Attribute object is considered processed if its column has

been fully read or both lists are empty.

3. Candidate validation.
Attribute objects are stored in the min-heap, sorted accord-

ing to the values pointed to by their iterator. Spider repeats

the following process until min-heap is not empty:

1) A set of attribute objects sharing the same value is

extracted from the min-heap. We denote it as the set.

2) For each attribute object belonging to the set, its ref-

erenced attributes are intersected with the set. In other

words, the algorithm removes attributes that are not

included in the set from the referenced list. Dependent

attributes are removed in a similar manner.

3) For each unprocessed attribute object from the set, the

algorithm increments iterator and inserts the attribute

object into min-heap.

V. IMPLEMENTATION

A. Faida

Having studied the performance of the algorithm, we have

discovered that the majority of time spent was on filling in data

structures. This process is a part of the candidate validation

step (recall Sec. IV-A). At the same time, candidate checking

itself, which is also a part of the validation step, had almost

no contribution to the total run time.

Let us consider the algorithm part that is responsible for

filling in data structures for each candidate level. In the outer

loop the algorithm iterates over table rows, and for each row it

reads values from files containing hashed columns. This way, it

constructs one dimensional array containing hashed represen-

tation of the original table row. In every iteration, the algorithm

also iterates over column combinations on the current level,

and for each one of them it computes a combined hash. That is,

it computes a hash for a row, projected (in relational database

terms) on the column combination. This hash is then added

into the inverted index or the HLL. If this hash is already

among keys of the inverted index, then we add the current

column combination to the list of column combinations that

corresponds with this key. Otherwise, we add this hash into

the HLL, since the current column combination is not covered

by the inverted index.

Buffering. The main drawback of this approach is that

we have to process each table row individually, which is an

inefficient way of using CPU. In order to address this issue, we

have proposed the use of data buffering. The simplified version

of the modified algorithm is shown in Listing 1. Its inputs

are: table, inverted index, and levelColumnCombs structure.

The latter stores all column combinations belonging to the

current candidate lattice level and, apart from that, maps these

combinations into the corresponding HLL data structures.

Now, the outer loop iterates not over individual table rows,

but over chunks — a series of consecutive rows. Therefore,

we have to read not a single value from each involved column

file, but a block of values (lines 3-4) in order to obtain data

for several rows.

The data is kept in a hashedChunk, which is a two-

dimensional array with the first index denoting the column

number, and the second one representing the row number. This

allows us to process whole chunks instead of individual rows.

First, we calculate combined hashes for rows projected on

the current column combination (lines 8-10) and then insert

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 268 --

these values into the inverted index and the HLL (lines 11-

17). This approach should reduce the number of cache misses

since 1) data is densely packed into an array, and 2) method

calls exhibit better temporal locality.

Algorithm 1 Faida — filling data structures, buffered

Require: table, invertedIndex , levelColumnCombs
1: for chunk in table do
2: hashedChunk ← ArrayOfIntegers2D(

table.numColumns, chunkSize
)

3: for colFile in table.colFiles do
4: hashedChunk [i] ←

ReadNextBlock(colFile, chunkSize)
5: end for
6: for (columnCombination, hll) in levelColumnCombs do
7: combinedHashes ← ArrayOfInts(chunkSize)
8: for columnIdx in columnCombination do
9: combinedHashes ← RotlXor(

combinedHashes, hashedChunk [columnIdx]
)

10: end for
11: for hash in combinedHashes do
12: if invertedIndex .HasKey(hash) then
13: invertedIndex .Insert(

hash, columnCombination
)

14: else
15: hll.Insert(hash)
16: end if
17: end for
18: end for
19: end for

Hash table. Note that there are two operations involving

the inverted index (lines 12-13): a lookup of hashed value

and an addition of new columns that contain this hash. In

Metanome, the inverted index was implemented as a hash

table with integer keys. It maps hashed values onto sets of

column combinations that contain these values. Individual

column combinations are encoded as integer values, and

therefore are represented by sets of integers and implemented

as hash tables. That is why Metanome doesn’t use default

Java hash tables, instead opting for implementations from the

fastutil library, which are optimized for integer keys.

Our initial experiments have demonstrated that hash table

from the standard C++ library failed to achieve the desired

level of performance. For this reason we have also decided to

use third-party implementation. There are lots of various hash

table implementations for C++ with an extensive comparison

of available options (martin.ankerl.com/2022/08/27/hashmap-

bench-01).

In the considered code the lookup speed is a priority: a

dataset having N rows and M column combinations will issue

N ∗ M inverted index lookups. Therefore, we have selected

the emhash7 hash table, a member of the emhash family

(github.com/ktprime/emhash). It is optimized for storing in-

tegers, and according to the benchmarks offers fast lookup

speed. We have also selected the emhash family hash table

(emhash2) with a high performance for inserts to represent

sets of column combinations.
Vectorization. Now, consider Listing 1, line 9. Note that

the process of computing combined hashes for projected rows

is presented in the vectorized form: ROTL (left circular shift)

and XOR are performed not for individual hashes, but for the

whole chunk. Note that the circular shift is performed by one

bit to the left, as in the original implementation.
A straightforward implementation of RotlXor function

will iterate over an array of hashes and call ROTL and XOR

instructions for each element. Therefore, we have decided to

vectorize these computations using SIMD instructions.

Algorithm 2 RotlXor Vectorized

Require: combinedHashes, hashedChunk [colIdx]
1: rowIdx ← 0
2: for hashVector in combinedHashes do
3: vectReg ← LoadVect(hashVector)
4: vectReg ← RotlVect(vectReg)
5: vectReg ← XorVect(

vectReg , hashedChunk [colIdx][rowIdx]
)

6: hashVector ← StoreVect(vectReg)
7: rowIdx ← rowIdx + vectorSize
8: end for

Now, several items of combinedHashes are loaded into vec-

tor register (lines 2-3 of Listing 2) and vectorized versions of

ROTL and XOR operations are executed. Thus, the technique

uses the same number of instructions as the straightforward

approach to compute combined hash for several rows. The

obtained speedup depends on the number of rows that can

fit into the register. Our implementation is tailored to 64-bit

integers and the AVX2 instruction set, which offers 256-bit

registers. Thus, our technique allows the computation of four

hashes with a single instruction.
Unfortunately, vector extensions up to AVX2 (including

AVX2 itself) do not support vectorized ROTL. Therefore, we

had to emulate it using three other vectorized instructions:

two bitwise shifts and a bitwise or. The idea is as follows:

the original number is 1) shifted 1 bit left, 2) shifted n − 1
bits right, where n is hash size in bytes, 3) results of the first

and second step are “or”ed. Thus, in our implementation two

regular instructions will be substituted with four vectorized

ones: three for ROTL and one for XOR. Finally, it should be

noted that the next version of vectorized instruction set (AVX-

512) offers a single vectorized instruction ROTL. This will

further improve the performance of this part of the algorithm.
Parallelization. Despite various optimizations, the process

of filling in data structures for big datasets remains a bot-

tleneck. Let’s consider a for loop at lines 6–18 in Listing 1.

For each chunk, this loop iterates over each pair of column

combinations and the corresponding HLL. In each iteration, it

performs combined hashes calculation (lines 8–10) and a data

structure insertion (lines 11–16). According to the profiling

results, this loop significantly affects performance, which is

why we decided to parallelize it.
Since every column combination can be encoded

with an integer, the inverted index is represented with

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 269 --

std::map<int, std::set<int>>, which maps a

hash to the set of columns containing that hash. Due

to this design, a race condition can arise if two threads

were to acquire equal hashes and attempt to perform the

insertion operation (invertedIndex.Insert()) on a

corresponding set. There are two possible ways to tackle this

problem. The first one is to create a mutex (or a spinlock)

for each std::set<int>, thus preventing simultaneous

column combinations insertions. The second one is to

replace std::set<int> with a lock-free bit vector. In this

case, setting the i-th bit is equivalent to inserting the i-th

combination in a set. This operation is atomic, preventing

the aforementioned race conditions from occurring. The

advantage of this approach is the absence of system calls that

appear when working with mutexes. On the other hand, it

increases memory consumption since every bit vector must be

allocated beforehand to reserve space for every combination,

while the first method initially has empty int sets.

B. Spider

Early experiments with Spider have demonstrated that the

most time- and memory-consuming step was the preprocess-

ing. At the same time, candidate generation and validation

steps take an order of magnitude less time. Overall, their

contribution to the total run time is negligible and therefore

will not be considered in our study. Instead, our enhancements

concern only the first step of the algorithm, for which we

describe several low-level techniques that present a trade-off

between run time and memory consumption.

In Metanome, the preprocessing step is performed on a

column-by-column basis, i.e. for each column, the algorithm

performs a full table scan, and writes sorted and deduplicated

values into a separate file. To store deduplicated values,

Metanome uses a sorted set of unique elements represented by

a java.util.TreeSet data structure. While processing

large datasets, the Spider may flush intermediate results to

disk when hitting the memory limit. In such cases, it has to

merge these intermediates later. On the one hand, Metanome’s

approach is quite simple implementation-wise and is memory-

efficient. But on the other hand, reading the source table

multiple times may lead to subpar performance. Now, let us

turn to our implementations.

Set-based implementation. Our first implementation uses

the std::set parameterized with std::string to store

intermediates. It is a single-pass implementation, which flushes

intermediates for all attributes to disk when the memory limit

has been reached. The set-based approach eliminates dupli-

cates for free, but creates a potential bottleneck: set insertion

will take a lot of time. Moreover, an efficient multi-threaded

execution will not be possible. As the result, both Metanome’s

Spider and our set-based implementation are single-threaded

applications.

Vector-based implementation. In order to ensure the par-

allelizability of the algorithm, we have devised a second

implementation, which uses std::vector to store results.

In this approach, vectors are initially populated with values

from the corresponding columns. Then, vector sorting and

duplicate elimination are run in parallel, with each vector being

processed in a separate thread. This way a significant speedup

can be achieved.

The main drawback of this approach is the amount of used

memory since vector stores all duplicate values. Therefore, it

is essential to reduce the amount of memory needed for storing

results. A straightforward approach of using std::string
as a vector key is a very inefficient option, since each item

takes at least 32 bytes. As the result, the original table will

grow several times.

To make the implementation more efficient memory-wise,

we have implemented a chunk-based reading of the source

files. Each file is split into equal-sized parts, such that each

part can not occupy more than half of available memory.

The remaining memory is used to store column intermediates.

Thus, loading and processing tables in parts resemble an

external sort operation in DBMSes. Consequently, at the end

of this processing, the algorithm will have to merge resulting

intermediates and build a single output file.

The chunk-based processing leads to vector storing refer-

ences instead of actual values, with those references being

tied to a position relative to the current part. There are two

possible implementations which use different keys:

1) std::string_view — values of this type reference

a contiguous region of memory.

2) std::pair<uint, uint> — the first element stores

an offset from the start the part, and the second stores its

length. In this case the maximum part size is capped by

maximum integer value.

As we noted earlier, the code of candidate generation and

validation is similar to the one used in Metanome. However,

we would like to mention a small optimization that is possible

in our approach and that may further increase the performance.

It is possible to add checks for maximum values that will run

during the attribute object initialization. Observe the following

simple heuristic: inclusion dependency A ⊆ B will not hold

if the maximum value in A is less than the maximum value

in B. Checking this fact while populating both lists will allow

the algorithm to reduce the number of iterations during the

candidate validation step.

VI. EXPERIMENTS AND DISCUSSION

In this section we present an experimental comparison be-

tween our implementations of the aforementioned algorithms

and their Java counterparts from Metanome profiler.

A. Experimental Setup

Methodology.
In Sec. IV it was shown that Faida and Spider workflows

share the same three stages, but they differ in the data struc-

tures, as well as subroutines and discovery methods. Due to

the specifics of algorithms, we address different optimization

techniques, which is why we provide detailed descriptions of

experiments in the corresponding sections: Sec. VI-B for Faida

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 270 --

and Sec. VI-C for Spider. In this section we focus on the high-

level methodology related to both algorithms.

The methodology of our evaluation study is defined by two

research questions:

1) RQ1: which families of optimization techniques can be
considered as the more efficient for implementing auto-
matic IND discovery algorithms?

2) RQ2: how significantly can an engineering approach to
the problem of automatic IND discovery improve state-
of-the-art solutions?

To answer those research questions, we implemented Faida

and Spider for Desbordante in C++. Both implementations are

based on the Metanome versions of algorithms written in Java.

For both algorithms run time is used as the main metric for

performance assessment. We consider average execution time

metric, which is acquired by averaging measurements of 5

runs. The disk cache is cleared on each run to avoid skewing

the results. Lastly, we handle NULL values according to the

following well-known policy: NULL values are equal to each

other, but can not be treated as “synonyms” to any other value.

For Spider we also measured memory consumption since it

is the other most prominent aspect of applied optimizations

for this algorithm.

For each experiment, we provide a review of obtained

results as well as the impact on performance as the optimiza-

tion techniques are applied. Discussion of these results forms

the answer to RQ1. To answer RQ2, we compare our best

implementations of Faida and Spider with the Metanome ones.

Datasets. For evaluation, we use 3 real datasets from

different domains and 3 synthetic ones. The datasets with their

characteristics are listed in Table II. We aimed to construct a

collection of datasets such that each of them would possess

some unique trait. Brazilian E-commerce (ECOMM for short)

is a real sales dataset which contains rather long strings with

user feedback. FitBit Fitness Tracker Data (FITBIT) is a wide

dataset which holds a great number of INDs. CIPublicHighway
(CI PH) is a sparse dataset with big percentage of NULLs.

TPC-H is a widely used synthetic dataset for which we con-

sider two scale factors: 1 and 10. The last dataset haINDgen
is generated by an utility which can produce data with n-ary

INDs, where n is large.

Hardware and software. For experiments we used a PC

with the following specs: AMD Ryzen 7 4800H CPU @

2.90GHz x 8 cores (16 threads), supports AVX2 vector exten-

sion, 32 GiB RAM, SSD A-Data S11 Pro AGAMMIXS11P-

512GT-C 512GB, running Ubuntu 22.04.

Java configuration used by Metanome: openjdk 19.0.1 2022-

10-18 OpenJDK Runtime Environment (build 19.0.1+10-

Ubuntu-1ubuntu122.04) OpenJDK 64-Bit Server VM (build

19.0.1+10-Ubuntu-1ubuntu122.04, mixed mode, sharing).

For Desbordante, the following software was used: gcc

(Ubuntu 11.3.0-1ubuntu1 22.04) 11.3.0, ldd (Ubuntu GLIBC

2.35-0ubuntu3.1) 2.35. Our implementations were compiled

with -O3 option.

B. Experiment 1: Faida
Experiment. In order to demonstrate that each of the

proposed techniques increases the resulting performance, we

have evaluated five implementations that incrementally in-

troduce discussed optimizations. The first one, Default(2) is

the C++ equivalent of the Metanome(1). It is a straightfor-

ward rewrite that does not contain any optimizations. The

first non-trivial version HTab(3) features a specialized hash

table. Next, HTab+Buff(4) and HTab+Buff+SIMD(5) versions

contain additional buffering and buffering with SIMD-enabled

computations, respectively.
Finally, HTab+Buff+SIMD+Par(6) is a parallelized version

of the HTab+Buff+SIMD(5) implementation. The parallel

version was run using 16 threads. Recall that earlier (see

Sec. V-A) we have discussed two parallel implementations.

Here, we benchmark only the mutex-based one. This was done

to provide a more fair comparison since, unlike the lock-free

version, the mutex-based version requires the same amount of

memory.
In Sec. IV-A we noted that Faida has two parameters. The

first one defines a sample size, and the second is used to

determine the accuracy of HyperLogLog. These parameters

impact not only the accuracy of the algorithm but also its run

times. In our experiments, we have decided to use the same

parameter values as in experiments in the original paper —

sample size was set to 500 and HLL accuracy to 0.1%. Authors

of the original paper [11] experimentally demonstrated that

these values ensure a sufficient quality of results without

causing a significant slowdown.
For each of the implementations, we have measured average

run times while separately recording the preprocessing and

population phase times. Results are presented in Fig. 1. Each

figure is as follows: the datasets are listed above, and for each

of them the implementations are presented below. Note that

we have to divide our collection of datasets into two figures

for better presentation as their run times vary significantly.
Another point of concern is the accuracy of Faida, since

it is an approximate algorithm. In our experiments, we do

not evaluate it because it was already studied in the earlier

works [11], [25] and none of our techniques should impact it.
Results & Discussion. Experiments demonstrated that

each of the proposed optimizations gave a positive result,

speeding up the algorithm. We can note that using a spe-

cial hash table (HTab(3)) and buffering (HTab+Buff(4)) pro-

vided relatively better speedup than SIMD computations

(HTab+Buff+SIMD(5)). However, all of these optimizations

yield improvement, therefore the HTab+Buff+SIMD(5) ver-

sion can be recommended in a single-threaded environ-

ment. The overall best performance was demonstrated by

the HTab+Buff+SIMD+Par(6) version, which we recommend

for use in a multi-core environment. The obtained speedups

(compared to Metanome) are provided in Table III.
Interestingly, the FITBIT dataset cannot be processed with

Desbordante and Metanome implementations. There are more

than 5 million of 2-ary dependencies alone, so during candi-

date generation for the third level both implementations run

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 271 --

TABLE II. DATASETS
CHARACTERISTICS

Dataset Size Type Tables Attributes Rows Unary INDs n-ary INDs Max nIND arity
Brazilian E-Commerce [31] 126.3 MB Real-world 9 52 1.6 M 23 23 1
FitBit Fitness Tracker Data 330 MB Real-world 18 259 8.1 M 8798 ? (ML) ? (ML)
TPC-H (SF=1) 1.1 GB Synthetic 8 61 8.7 M 96 99 2
TPC-H (SF=10) 11.1 GB Synthetic 8 61 86.6 M 97 103 3
haINDgen (generator) 862 MB Synthetic 2 36 6.1 M 18 221 7
CIPublicHighway 28.3 MB Real-world 1 18 0.4 M 65 440 4

TABLE III. FAIDA — OVERALL SPEEDUP

CIPH FIT(U) HAIND ECOMM TPCH-1 TPCH-10

Sequential(5) 2.60 1.65 3.14 2.21 2.52 2.52
Parallel(6) 3.68 1.61 8.20 2.27 3.40 3.35

TABLE IV. FAIDA — FILLING DATA
STRUCTURES SPEEDUP

CIPH FIT(U) HAIND ECOMM TPCH-1 TPCH-10

Sequential(5) 2.64 2.66 3.22 2.48 3.11 3.27
Parallel(6) 5.47 1.92 10.20 3.64 8.14 9.11

out of memory. Therefore, we provide the numbers only for

unary dependencies in this case (hence, the U mark in the

figure).

Next, consider algorithm run times during the preprocessing

and filling phases. Our optimizations involved only the latter

and significantly speeded it up for all datasets. The obtained

speedups (compared to Metanome) for both best sequential

and parallel implementations are presented in Tables IV. The

improvement depends on various dataset properties, such as

the number of dependencies, the number of unique values,

and others. It should be also mentioned that the performance

of this phase can be affected by disk speed as Faida reads

column files.

Another artifact that we need to discuss is the perfor-

mance of parallel and sequential implementations on the

FITBIT dataset. There, the parallel implementation demon-

strated worse results than the sequential version. We believe

that the reason for this lies in the specifics of the dataset:

FITBIT contains many identical values which leads to many

mutex lock/unlock events during the inverted index filling. We

have also evaluated the lock-free implementation which we

described above, and in that case, no performance degradation

occurred.

Now let’s talk about the preprocessing phase (see Sec IV-A).

In our experiments, its run time is constant for a fixed

dataset regardless of the implementation since we have not

optimized it. This phase is rather straightforward and depends

on three aspects: data parser, disk read/write speeds, and a hash

function. Our implementation uses the internal Desbordante

parser, which is why we have not tried to speed it up or

parallelize it. However, we have experimented with an efficient

third-party parser and found out that it was possible to obtain

a significant speedup. Disk speed also heavily impacts the

performance of this phase: the algorithm not only reads an

input file, but also writes column files at the same time. The

hash function is the last aspect that has to be carefully taken

into account. A good hash function can be slow, but its quality

determines the collision frequency, which impacts the accuracy

of the overall algorithm.

Interestingly, candidate generation and checking phases

provide a negligible contribution to the overall run time and

cannot be even seen in the resulting figures, except for the

FITBIT dataset. We have studied this issue, and we believe

that generation and validation will be noticeable if there are

a lot of candidates and dependencies, like in the FITBIT case

with n-ary INDs.

C. Experiment 2: Spider

Experiments. In this section, we will use the following

names to denote different implementations:

1) SETSTR and VECSTR denote implementations that em-

ploy std::string
2) VECSV and VECPAIR denote implementations

that rely on std::string_view and

std::pair<uint, uint> respectively

We have created all four implementations that we discussed

in Sec V-B. The VECSTR was included into the evaluation

pool in order to demonstrate the excessive memory footprint

of this approach.

The run time and memory consumption are the primary

metrics for the Spider algorithm and are assessed in our first

experiment. The results are presented in Fig. 2 and Fig. 3. The

std::vector-based implementations were evaluated with

the maximum number of threads (16) with the memory limit

set to 22GB.

The Metanome evaluation included the selection of the

optimal values for the JVM -Xmx parameter. It is used to

define the maximum amount of memory heap for JVM. This

way, we ensure that the algorithm never flushes intermediate

results to a disk. If this parameter is not used, then the Spider

consumes much more memory, since Garbage Collector almost

never frees heap until the end of processing. Finally, we tried

to ensure that run times of Spider were affected only slightly

or not at all when we were selecting this value.

In the Metanome implementation, candidate generation step

is inseparable from the preprocessing. Therefore, in the Fig. 2

preprocessing includes both of these steps. These steps can be

merged into one, since, as we noted in Sec. V-B, the candidate

generation contribution to the total time is negligible.

The Fig. 2 is organized similarly to the one for Faida.

The Fig. 3 is the same, except it denotes the peak memory

consumption.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 272 --

Fig. 1. Run time of implementations of Faida on different datasets.

Fig. 2. Run time of implementations of Spider on different datasets.

The second experiment demonstrates run times and peak

memory consumption depending on the maximum available

memory. This experiment was run using the TPC-H dataset

with the scale factor of 1. Its results are presented in Fig. 4.

This experiment is necessary to demonstrate how run time is

affected when there is not enough memory.

Results & Discussion. Experiments demonstrated that the

SETSTR implementation offers improvements ranging from

1.26 to 3.87 times (2.44 on average). VECPAIR and VECSV

have shown almost identical results due to the similarity of

these methods. When applying either of them, we achieve 3.92

improvement compared to Metanome on average, and 1.7 im-

provement compared to SETSTR. It is worth mentioning that

for TPCH-10 both methods split lineitem table in two chunks

of the same size: VECPAIR splits it due to implementation

cap on chunk size of 4GB, while VECSV hits memory limit

and writes intermediate results to the disk. Therefore, lineitem
parts have to be merged on the later stages of both methods.

For some datasets, VECSTR shows the same run times

compared to other techniques based on std::vector, but

it is usually outperformed by them due to different allocation

mechanism used for std::string type. On the other hand,

sorting routine is faster in VECSTR case.

Switching to memory consumption results depicted in

Fig. 3, we can conclude that: (1) among proposed optimiza-

tions, SETSTR is the most efficient for datasets that contain

large number of duplicates; (2) for other types of datasets

applying VECPAIR would be a better choice; (3) VECSTR

almost always leads to the largest peak memory consumption,

as was presumed in Sec. V-A.

Note that analysis of memory consumption by Metanome

and our versions of Spider can lead to some ambiguous conclu-

sions. There are two reasons for that: (1) specifics of JVM and

Garbage Collector (2) the way Metanome preprocesses data.

For some datasets, Java implementations show significantly

larger memory consumption, while for some Metanome yields

the best results. E.g, HAINDGEN fully allocates into memory

by Metanome and is processed in a column-wise manner,

while our preprocessor splits dataset into “wide” chunks that

contain all the table’s attributes.

Our Spider implementations perform table processing in a

one-pass manner, which explains larger memory consumption

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 273 --

Fig. 3. Memory consumption of implementations of Spider on different datasets.

Fig. 4. Time and memory consumption of Spider on Varying Memory Limits.

and leads to writing intermediate results to the disk. In Fig. 4,

we show run time as a function of the maximum available

memory. The experiment was conducted on TPC-H dataset.

We can draw three conclusions: (1) varying the parameter

highly affects VECTORSTR: when setting 256 MB cap, the

run time increases by a factor of 1.7; (2) when there is no

need for VECPAIR to write to the disk (e.g. 2GB cap), it

shows better results compared to VECSV and VECSTR; (3)

starting with 512 MB memory limit, VECSV and VECSTR

improve run time by a factor of 1.55 compared to SETSTR.

VECSV and VECPAIR achieve better performance on a

multi-core setting compared to SETSTR. In regards to the

run time, both methods are equally effective, though memory

consumption rates differ. VECSV and VECPAIR perform well

on datasets with size less or equal to 4GB, since there is no

need for splitting data into chunks. However, one should prefer

VECPAIR over VECSV as the former implementation requires

much less memory. When dealing with datasets with size

greater than 4GB VECSV should be preferred over VECPAIR,

as the latter has to swap data chunks to the disk.

D. Wrap-up and Takeouts

Experiments demonstrated that it is possible to increase the

performance of Faida and Spider by applying the proposed

optimization techniques.

For Faida, we managed to obtain up to 8x improvement in

terms of run times. But whats more important, is the fact that

we proved that each of our techniques are useful since they

all allow to yield positive results. The only questionable one

is the SIMD-enabled execution, but we believe that switching

to AVX-512 will unlock its full potential (recall the end of

Sec. V-A).

We were able to improve Spider’s performance up to 5 times

while reducing memory consumption. The obtained speed

up of Spider comes from parallelization of the algorithm.

Thus, increasing the number of threads (given the sufficient

number of cores and table columns) may improve the results

even further. Achieved improvements in Spider performance

implies that it is also possible to speed up every spider-based

algorithms, such as S-indd or S-indd++.

Having discussed the conducted experiments, we are now

ready to summarize this section and give answers to the

following research questions:

1) RQ1: which families of optimization techniques can be
considered as the more efficient for implementing au-
tomatic IND discovery algorithms? For Faida-like al-

gorithms, we conclude that all proposed optimization

techniques can be considered useful, while the most

efficient combination is parallelized version of techniques
applied together (number 6 on figures). For Spider-like

algorithms we advise using vector-based implementations

with varying memory limits: increase limits to reduce run

time, or decrease it for smaller memory footprint.

2) RQ2: how significantly can an engineering approach to
the problem of automatic IND discovery improve state-
of-the-art solutions? Compared to the Metanome imple-

mentation, we were able to improve Faida run time by a

factor ranging from 1.6 to 8.2 depending on the dataset.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 274 --

Improvement for Spider ranges from 1.26 to 4.89.

VII. THREATS TO VALIDITY

• In the preprocessing phase, both algorithms use disk

extensively for both reading and writing data. Therefore,

their overall run time is very dependent on disk speed.

In our experiments, we used a fast SSD. Run times may

increase considerably for slow devices, e.g. HDD.

• Algorithm run times are affected by dataset properties:

the number of dependencies, the number of unique values

in a column, the number of columns, etc. In our experi-

ments, we tried to evaluate several datasets with different

properties. However, it is possible that we missed some

cases.

• Running Metanome, we have not varied JVM parameters,

except heap size in one of our experiments with Spider. It

is possible that there is a combination of parameters that

may increase the overall performance of an algorithm.

However, our previous study [32] demonstrated that

changing default parameters do not provide a substantial

boost to performance.

• Finally, our experiments were conducted without varying

Faida parameters. We performed our evaluation using

values that were recommended by the authors of the

original algorithm. Changing those values may affect the

accuracy of the algorithm as well as its performance.

VIII. CONCLUSION

In this paper, we have proposed a number of optimiza-

tion techniques for two IND discovery algorithms: Faida

and Spider. Experimental evaluation has demonstrated that

we achieved improvement in both run time and memory

consumption rate. Suggested optimizations can be applied to

components of any other IND discovery solution with similar

architecture.

ACKNOWLEDGMENT

We would like to thank Vladislav Makeev for his help with

the preparation of the paper.

REFERENCES

[1] E. F. Codd, “Extending the database relational model to capture more
meaning,” ACM Trans. Database Syst., vol. 4, no. 4, p. 397–434, dec
1979.

[2] J. M. Smith and D. C. P. Smith, “Database abstractions: Aggregation,”
Commun. ACM, vol. 20, no. 6, p. 405–413, jun 1977.

[3] R. Fagin, “A normal form for relational databases that is based on
domains and keys,” vol. 6, no. 3, p. 387–415, sep 1981.

[4] M. A. Casanova et al., “Inclusion dependencies and their interaction
with functional dependencies,” in Proceedings of the 1st ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, ser. PODS ’82.
New York, NY, USA: Association for Computing Machinery, 1982, p.
171–176.

[5] J. Kossmann et al., “Data dependencies for query optimization: a
survey,” The VLDB Journal, vol. 31, 06 2021.

[6] M. Levene and M. Vincent, “Justification for inclusion dependency
normal form,” IEEE Transactions on Knowledge and Data Engineering,
vol. 12, no. 2, pp. 281–291, 2000.

[7] R. Miller et al., “The clio project: Managing heterogeneity,” SIGMOD
Record, vol. 30, pp. 78–83, 03 2001.

[8] A. Rostin et al., “A machine learning approach to foreign key discovery.”
01 2009.

[9] M. Zhang et al., “On multi-column foreign key discovery.” PVLDB,
vol. 3, pp. 805–814, 09 2010.

[10] W. Fan, “Dependencies revisited for improving data quality,” in Proceed-
ings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, ser. PODS ’08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 159–170.

[11] S. Kruse et al., “Fast approximate discovery of inclusion dependencies,”
03 2017.

[12] J. Bauckmann et al., “Efficiently detecting inclusion dependencies,” in
2007 IEEE 23rd International Conference on Data Engineering, 2007,
pp. 1448–1450.

[13] S. Bell and P. Brockhausen, “Discovery of constraints and data de-
pendencies in relational databases (extended abstract),” in Machine
Learning: ECML-95, N. Lavrac and S. Wrobel, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 267–270.

[14] F. De Marchi et al., “Efficient algorithms for mining inclusion depen-
dencies,” in Advances in Database Technology — EDBT 2002. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 464–476.

[15] F. D. Marchi et al., “Unary and n-ary inclusion dependency discovery in
relational databases,” Journal of Intelligent Information Systems, vol. 32,
pp. 53–73, 2009.

[16] F. De Marchi and J.-M. Petit, “Zigzag: a new algorithm for mining
large inclusion dependencies in databases,” in Third IEEE International
Conference on Data Mining, 2003, pp. 27–34.

[17] A. Koeller and E. A. Rundensteiner, “Discovery of high-dimensional
inclusion dependencies,” in In Proceedings of the International Confer-
ence on Data Engineering (ICDE), 2003, pp. 683–685.

[18] N. Shaabani and C. Meinel, “Detecting maximum inclusion dependen-
cies without candidate generation,” vol. 9828, 09 2016, pp. 118–133.

[19] F. Tschirschnitz et al., “Detecting inclusion dependencies on very many
tables,” ACM Transactions on Database Systems, vol. 42, pp. 1–29, 07
2017.

[20] S. Lopes et al., “Discovering interesting inclusion dependencies: appli-
cation to logical database tuning,” Information Systems, vol. 27, no. 1,
pp. 1–19, 2002.

[21] S. Kruse et al., “Rdfind: Scalable conditional inclusion dependency
discovery in rdf datasets,” ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 953–967.

[22] S. Kruse, T. Papenbrock, and F. Naumann, “Scaling out the discovery of
inclusion dependencies,” in Datenbanksysteme für Business, Technologie
und Web (BTW 2015). Gesellschaft für Informatik e.V., 2015, pp. 445–
454.

[23] T. Papenbrock et al., “Data profiling with metanome,” Proc. VLDB
Endow., vol. 8, no. 12, p. 1860–1863, aug 2015.

[24] G. Chernishev et al., “Desbordante: from benchmarking suite to high-
performance science-intensive data profiler (preprint),” 2023.

[25] F. Dürsch et al., “Inclusion dependency discovery: An experimental
evaluation of thirteen algorithms,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
2019, pp. 219–228.

[26] S. Bell and P. Brockhausen, Discovery of data dependencies in relational
databases. Citeseer, 1995.

[27] N. Shaabani and C. Meinel, “Scalable inclusion dependency discovery,”
in Database Systems for Advanced Applications: 20th International Con-
ference, DASFAA 2015, Hanoi, Vietnam, April 20-23, 2015, Proceedings,
Part I 20. Springer, 2015, pp. 425–440.

[28] N. Shaabani et al., “Improving the efficiency of inclusion dependency
detection,” in Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, ser. CIKM ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 207–216.

[29] T. Papenbrock et al., “Divide & conquer-based inclusion dependency
discovery,” Proceedings of the VLDB Endowment, vol. 8, no. 7, pp.
774–785, 2015.

[30] P. Flajolet et al., “HyperLogLog: the analysis of a near-optimal car-
dinality estimation algorithm,” in AofA: Analysis of Algorithms, ser.
DMTCS Proceedings, P. Jacquet, Ed., vol. DMTCS Proceedings vol.
AH, 2007 Conference on Analysis of Algorithms (AofA 07). Juan les
Pins, France: Discrete Mathematics and Theoretical Computer Science,
Jun. 2007, pp. 137–156.

[31] Olist and A. Sionek, “Brazilian e-commerce public dataset by olist,”
2018. [Online]. Available: https://www.kaggle.com/dsv/195341

[32] M. Strutovskiy et al., “Desbordante: a framework for exploring limits
of dependency discovery algorithms,” in 2021 29th Conference of Open
Innovations Association (FRUCT), 2021, pp. 344–354.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 275 --

