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Abstract—People express emotions verbally (with the linguistic
part) and non-verbally (with facial expressions and speech tone).
For better emotion recognition it is expedient to use both types of
expressions. In this paper, a multimodal approach for emotion
recognition based on fusion of textual, audio, and video data
with masked multimodal attention and multimodal interaction
are suggested. Our models is built on top of the language rep-
resentation model Bidirectional Encoder Representations from
Transformers (BERT). BERT is mostly used to work with text
data, while the approaches with the interaction of text and audio
modalities with fine-tuning a pre-trained BERT model are less
common. In this work, a new 3-Modal Cross-BERT model that
utilizes BERT fine-tuning based on textual, audio, and video
data using masked multimodal attention and the model with
multimodal interaction are proposed.

Our algorithms were evaluated on publicly available mul-
timodal sentiment and emotion analysis datasets CMU-MOSI,
CMU-MOSEI, IEMOCAP and MELD. Experimental results
show significant improvements in the performance across all
metrics compared to the previous state-of-the-art methods for
chosen datasets.

I. INTRODUCTION

Automatic emotion recognition and sentiment analysis

are very close tasks. They are utilized in a range of

applications such as video game development, education,

patient care, car security, recruiting, smart home,

etc(https://www.gartner.com/smarterwithgartner/13-surprising-

uses-for-emotion-ai-technology).

Scientists and psychologists have been studying ways to

express and show human emotions. Now there are three

approaches to the study of the foundation of emotions: a

dimensional (regression) model, a categorical (discrete) model

of emotions, and mixed model.

In the discrete model (with a limited list of available

classes), the emotional sphere consists of a certain number

of primary, basic or fundamental emotions. Although each

person expresses emotions differently. It has been established

that a number of emotions are universal and can be understood

regardless of human characteristics. However, different authors

suggest a different number of basic emotions. P. Ekman [1]

identifies six emotions (happiness, sadness, anger, fear, sur-

prise, disgust), R. Plutchik [2] identifies eight basic emotions,

which are the basis for all others and can be grouped into polar

opposites: joy and sadness, acceptance and disgust, fear and

anger, surprise and anticipation.

Limited number of variables (axes in space) are specified

in the dimensional model. This model is focused on studying

the similarities and differences between emotions and provides

ways to express a wide range of emotional states. In this

model, emotion is described using two or three fundamental

characteristics, and affective states are expressed in a multidi-

mensional space. Russell’s model represents the affective state

as a circle in a two-dimensional bipolar space [3]. Suggested

dimensions are valence and arousal. Valence (pleasure) reflects

positive or negative emotional states, and a value close to

zero means a neutral emotion. Arousal expresses the active

or passive component of emotion.

Usually researchers are only interested in measuring va-

lency. In this case, observations are classified in a one-

dimensional emotive space ”positive-negative”. This direction

is called Sentiment analysis. As a rule, such a classification has

two, three or five dimensions. In the first case, a classification

is made into “positive” or “negative”. In the second case,

“neutrality” is added to these two dimensions. In the third case,

each of the classes (“positive” or “negative”) is expanded to

two according to the degree of expression of this emotion.

The approaches proposed in the article will be applied both

for recognizing emotions represented by a discrete model and

for estimating valence (sentiment analysis) with emotional

degree expressed in 5 classes (from -3 to 3).

According to various evaluations, the accuracy of man-

ual emotion recognition ranges from 50% to 70%; based

on audio data, the accuracy averages 70%. In the presence

of high environmental noise (with a signal-to-noise ratio =

+16 dB), the linguistic information is deformed to the point

where listeners cannot recognize words but the perception of

emotions is still possible with a probability of more than

50% [4]. The compilers of the IEMOCAP dataset estimate

the accuracy of manual emotion recognition from video data

to be 72% [5]. For most datasets, the accuracy of automatic

emotion recognition appears inferior to human capabilities.

According to the leaderboards crowdsourcing efforts Paper-

sWithCode, for the CMU-MOSEI dataset, the best accuracy

of recognition of 7 sentiment classes reaches 52.0% [6]; for

the MOSI dataset, the best result is 44.9% [7]. For the MELD

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 309 ----------------------------------------------------------------------------



dataset, the best accuracy reaches 66.7% [8] for the emotion

recognition in dialogues and 42.3% for emotion recognition

in separated messages regardless of the context [9]. In our

research we classify single utterance without context and

previous dialogues. For the IEMOCAP dataset, the best result

for emotion recognition is 68.2% [10].

Multiclass emotion or sentiment classification represents a

more challenging task, so no experiments for binary classi-

fication were made. The article focuses only on multiclass

classification. The purpose of our study is not only to rep-

resent fusion techniques, but also to pay attention to the

different features representation and combinations. The most

common approaches to joining modalities are at the feature

level and at the decision level. The best performance is

achieved by intermediate modality fusion and neural networks

based on Graph-MFN (Memory Fusion Network) [11]. This

paper proposes a new methods for multimodal emotion and

sentiment recognition. First method was inspired by [7] and

extends the proposed approach by including video modality

and replacing audio features. The code is publicly available

at https://github.com/T-Sh/3-Modal-Cross-Bert. The second

model utilizes multimodal interactions on different levels and

refines the previous approach.

II. RELATED WORKS

The improvement of automatic emotion recognition remains

a key issue. Generally, models with a fusion of different

modalities (audio, video, and text) show better results. There is

a fairly large number of papers about the automatic recognition

of emotions, both in individual modalities and multimodal.

Methods and feature’s extractions contributed to better results.

The following vector representations are commonly used as

text representations in recent years:

• FastText [12] is a vector representation of words with the

simultaneous use of skipgram and C-BOW (Continuous

Bag-of-Words) models. The dimension of the representa-

tion is 300, a lot of multi languages pre-trained models

are publicity available, especially for English.

• Bert Embeddings [13] represents and connects the token

itself (pre-trained), the number of its offer, and the posi-

tion of the token within its. The input data is received and

processed by the network in parallel, not sequentially, but

the information about the mutual arrangement of words

in the original sentence is stored, being included in the

positional part of the embedding of the corresponding

token. The Bidirectional Encoder Representations from

Transformers (BERT) [14], Robustly Optimized BERT

Pretraining Approach (RoBERTa) [15], Generative Pre-

trained Transformer (GPT) [16] are commonly used for

text data and shows SOTA results in a lot of tasks based

on text data.

As characteristics and features of audio, 3 presentation

options can be distinguished:

• Spectrogram represents the image that shows signal

power spectral density versus time. It is required to

analyze each segment of the signal. Although the original

spectrum contains many components that are not essential

for emotional recognition, spectrograms can find their

application [17], [18].

• The Geneva Minimalistic Acoustic Parameter Set

(GeMAPS) [19] - two versions of the acoustic parameter

set representation are proposed: a minimalist parameter

set that implements the prosodic, excited, vocal, and

spectral descriptors that have been found to be the

most important, and an extension of the minimalist set

(eGeMAPS) that contains additional descriptors that are

claimed to improve accuracy automatic affect recogni-

tion compared to a set of pure prosodic and spectral

parameters. The application for emotional recognition is

presented in [20].

• Mel-Frequency Cepstral Coefficients (MFCC) [21] are

another characteristics of speech signals. The chalk scale

relates the perceived frequency or pitch of a pure tone to

its actual measured frequency. Humans are much better

at distinguishing small pitch changes at low frequencies

than they are at high frequencies. This approach makes it

possible to bring the machine perception of speech closer

to the human one. The application is presented in [22].

• It is also possible to use the MFCC and eGeMAPS

features at the same time, as shown in paper [23].

As shown in [24] and [25], various versions of convo-

lutional and recurrent neural networks are typically used to

extract features from video data. This models are also used as

feature extractors and classifiers. The following architectures

are the most common:

• RNN (recurrent neural network) [26] is recurrent neural

network. Designed for modeling serial data, they are

widely used in text and video [27] processing. The paper

[28] shows the use of various modifications of RNN in the

problem of multimodal sentiment recognition, however,

all of them show low results (Concordance Correlation

Coefficient ¡ 0.5) compared to other approaches.

• LSTM [29] is long short-term memory network. Com-

pared to RNNs, are capable of storing long-term depen-

dencies. It is similarly applied in various tasks. Along

with RNN, LSTM configurations are used, but in the

problem of multimodal analysis they show close results.

For video modality some of the possible neural architectures

were evaluated, for example CNN and LSTM. Also, com-

bining the received frames into sequences shows much better

results [30]. In addition, other experiments were carried out

to select the best number of frames, the best selection of n-th

frames, the size of overlapping windows and etc.

Combining the selected features is possible at different

stages, depending on the chosen approach:

• Earle fusion or data level fusion. Early fusion applies to

raw data or pre-processed data from sensors. Features of

the data must be extracted from the data before merging,

otherwise the process will be complicated, especially

when the data sources have different sampling rates
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between modalities. Synchronization of data sources is

also more complicated when one data source is discrete

while others are continuous. Therefore, converting data

sources into a single feature vector is a major challenge in

the early stage of data fusion. There are two drawbacks to

using data merge early on. One of the main disadvantages

of this method is that a large amount of data will be

subtracted from the modalities to arrive at a consensus

before the merge. Once the data has common matrices, it

is analyzed using a machine learning algorithm. Another

disadvantage of this method is the synchronization of

timestamps of different modalities. A common way to

overcome this shortcoming is to collect data or signals at

a common sample rate.

• Late fusion or decision level fusion. A late merge uses

data sources independently, followed by a merge at the

decision stage. This method is much simpler than the

early merge method, especially when the data sources

differ significantly from each other in terms of sample

rate, data dimensions, and units. A late merge often

gives better performance because problems from mul-

tiple models are handled independently so errors don’t

correlate. However, a number of researchers use late

merging or decision-level merging to analyze problems

with multimodal data [31], [32], [33].

• Intermediate level fusion. The architecture of the interme-

diate fusion is built on the basis of a deep neural network.

This method is more flexible, allowing to combine data

at different stages of model training. For example, in

paper [34], unimodal features of each modality are com-

bined using Attention Networks. Afterwards, the merged

modalities go through the various RNN variants again to

get the final sentiment polarity.

• Another fusion methods. The authors of [22] suggest us-

ing not only data from each modality, but also intramodal,

intermodal, and interbimodal interactions as features. A

bimodal information-oriented architecture based on mul-

tilevel attention has been developed to extract indepen-

dent and consistent information from different modalities

for efficient fusion. Also graph representations [35] can

be used to efficiently represent modalities and combine

them.

The Table I presents the results for our implementation

of each modality individually and in various combinations.

Experiments are provided for MOSI dataset due to it’s small

size and a fairly large variety of actors. As you can see, the

main part of the information on sentiment is extracted from

the textual modality. The video and audio modalities are rather

complementary. In this work, the text modality is also taken

as the basis, and the audio and video modalities are taken as

additional ones.

III. DATASETS & METHODS

A. Datasets
Datasets were preprocessed before models training. During

preprocessing broken audio and video sources were removed,

TABLE I. COMPARISON OF THE ACCURACY OF ALGORITHMS FOR 
DIFFERENT APPLIED MODALITIES ON THE MOSI DATASET

Features Model Accuracy F1 Precision Recall

T BERT 41.5 41.2 50.2 41.3

A LSTM +
Linear

25.59 25.63 32.76 20.1

V 2*3D-
CNN +
Linear

29.2 29.2 32.8 29.2

T+A CM-
BERT

44.7 44.6 44.3 43.9

T+A+V 3-Modal
Cross-
BERT

47.5 47.3 48.6 47.6

all data were represented in unificated form. Modalities were

preprocesse separately. The information about resulted datasets

are presented in Table II.

TABLE II. DATASETS 
INFORMATION

Dataset № of actors № of classes № of samples

MELD 260 7 emotions 13019

MOSEI 1000 6 emotions
7 sentiments

8206

MOSI 89 7 sentiments 2185

IEMOCAP 10 6 emotions 7368

CMU - MOSEI (CMU Multimodal Opinion Sentiment and

Emotion Intensity) [11] is the largest dataset for emotionality

evaluation. It contains over 65 hours of open source videos,

23,453 tagged videos from 1,000 speakers on 250 different

topics. Videos from Youtube were selected according to certain

conditions: the monologue format, the presence of only one

person during the recording, shooting mainly from the front.

The most common 3 topics are reviews (16.2%), debates

(2.9%) and consultations (1.8%). For markup, the authors used

the Ekman emotion system [36] with 6 emotions happiness,

sadness, anger, fear, disgust, surprise and 7 sentiment classes.

The dataset is unbalanced, the emotion of happiness and

positive classes prevail.

CMU - MOSI (Multimodal Corpus of Sentiment Intensity

and Subjectivity Analysis in Online Opinion Videos) [37] was

created based on short (two to five minutes) video blogs from

Youtube. A total of 93 videos were selected with 89 speakers,

including 41 women and 48 men. Each video was then

split into segments for a total of 3702 segments. Commonly,

English is used, but not all speakers are native. The data are

labeled according to 7 classes of sentiment. The dataset is

unbalanced for different sentiment classes.

Dataset MELD [38] contains dialogues from the popular

series Friends. The authors used the Ekman emotion sys-

tem [36] with 6 emotions and the additional neutral class. The

dataset contains over 1,400 dialogues and 13,000 utterances

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 311 ----------------------------------------------------------------------------



from the series. Both already cut segments of the video

with transcription are presented, as well as an indication

of the season and episode. While other datasets consist of

monologues or dialogues of only two people, this database

aims to increase the number of participants in a conversation.

It presents a more difficult task for researchers. Also, unlike

other datasets, it often has a noisy soundtrack and off-screen

laughter. Several people can be present in one frame as well,

which makes it difficult to determine the speaker. The dataset

is unbalanced.

IEMOCAP (Interactive Emotional Dyadic Motion Capture

Database) [5]. Audio and video streams, text description of

scenarios and face capture were used. Invited professional

actors (5 men and 5 women) were recorded for 5 episodes

of a couple of people each. As a result, the total size of the

dataset is 302 video dialogues, about 12 hours. The markup

was carried out in two dimensions. Discrete emotions were

assessed, such as anger, excitement, fear, sadness, surprise,

frustration, joy, annoyance, disappointment and neutral class,

as well as continuous ratings on scales of valence (valence) (1

- negative, 5 - positive), activation (activation ) (1 - calm,

5 - excited) and dominance (1 - weak, 5 - strong). There

are multiple labels for one entry. Since weakly expressed

emotions are poorly represented in the dataset (for example,

fear, surprise, disgust), they were merged with the nearest

strongly expressed emotion. As a result, the following set of

classes was obtained: sadness, neutral, joy, delight, anger and

disappointment.

B. Methods

In this paper, the 3-Modal Cross-BERT model, which

combines textual, audio, and video data for emotion and

sentiment recognition, and Multimodal Interaction Model, that

carries modalities interactions on different levels of features

processing, are suggested. The base algorithm is presented in

Fig. 1. Both algorithms implement same feature extractions

stage, but use different approaches in the fusion stage.

Algorithms receive a sequence of the first 50 tokens, a

dedicated audio track, and a sequence of frames extracted

from the video stream as input. The first 25 data from the

video sequence were used. The following sections describe

approaches for handling each modality and modalities fusions.

1) Text: The sequence of tokens is fed to the algorithm. The

pre-trained Bert model extracts features from the sequence.

Bert Embeddings connect pre-trained representations of the

token itself, its sentence’s number, and the position of the

token within its sentence. The input data is received and

processed by the network in parallel, not sequentially, but

the information about the mutual arrangement of words in

the original sentence is stored, being included in the posi-

tional part of the embedding of the corresponding token. The

dimension of the representation is 768. A pre-trained model

for the English language is used. For research, the bert-base-

uncased (12-layer, 768-hidden, 12-heads, 110M parameters,

trained on on BookCorpus, a dataset consisting of 11,038

unpublished books and English Wikipedia (excluding lists,

Fig. 1. Pipeline for the multimodal multiclass classification

tables and headers)) version from the transformers library is

applied. Finally we get one-dimensional embedding for text

utterance. Since the dimensionality of the data is different, a

convolutional layer is used to control the dimensionality of the

output.

2) Audio: 40-dimensional MFCC features are extracted us-

ing the Librosa library and 88-feature GEMAPS are extracted

using the OPENSMILE library for audio tracks. Then the

resulting vectors are combined into a single one-dimensional

feature vector. The vector is then fed to the input of the con-

volutional layer to extract features with the desired dimension.

3) Video: First, every 5th frame was extracted from a video

stream. Then faces were searched, cropped, and aligned with

the help of OpenCV2 and DLib within the selected frames.

After the faces were converted to grayscale, the size of the

resulting images was reduced to 64 by 64 pixels. The sequence

of two dimensional frames is formed into groups of 10 frames

with an overlapping window between groups of 5 frames.

Finally a three dimensional vector with a convolutional 3D

layer is used for feature extraction and dimensionality control.

Further, the results are normed and fed to the LSTM layer.

4) Fusion of Modalities with mask: The masked multi-

modal attention is designed to merge audio, video, and text

modalities. A close-up of the fusion architecture is shown in

Fig. 2.

Features Xmodality and Keys Kmodality for each modality

are defined as Kmodality = X�
modality . Then the attention

matrix Wmodality is evaluated through matrix multiplication.
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Fig. 2. The architecture of multimodal masked attention fusion

With the attention matrix and weights wmodality the fusion

attention matrix Wm is calculated. To reduce the influence

of the padding sequence, a mask matrix is introduced. This

matrix uses 0 to represent the token position and infinite—to

represent the padding position (after the softmax function the

attention score of the padding position will be 0) [7].

After obtaining the multimodal attention matrix, Wm mul-

tiplied by Xt to add text modality features and get the output

of the attention Y . Then the final prediction of the class is

calculated by a linear layer.
5) Fusion of Modalities with multimodal interaction: The

previous method was then extended using inter-modal interac-

tion and named Multimodal interaction model. Combinations

are created with each modality in pairs, in triplets and in the

union of pairs. The resulting sets are then merged into a result

set, applying a per-set bias. For original features weights for

each modality were applied. The method in details is presented

in Fig. 3. Then the final prediction of the class is calculated

by a linear layer.

IV. EXPERIMENTAL METHODOLOGY

The datasets were pre-processed to extract features. Then

each dataset was divided into training (80%) and testing (20%)

subsets. Classes are evenly distributed in subsets for MOSEI,

IEMOCAP and MELD datasets. Additionally, for the MOSI

dataset, the partition from [7] is recreated.

Following training parameters were used: the AdamW op-

timizer with a learning rate = 2e − 6 and the BCELoss loss

and Cross Entropy functions for masked fusion and interaction

fusion respectively. The pre-trained BERT model is also fine-

tined. For training the 3-Modal Cross-BERT model, the batch

size is setted to 24 and the max sequences length is setted

to 50. For each dataset, the model was trained separately for

80 epochs. The best results were selected based on the test

sample from all epochs.

The following libraries for the Python 3 programming

language were used for experiments:

• pytorch - creation of basic models, usage of structures

and methods for experiments.

• scikit-learn - use of metrics for evaluation.

• transformers - implementation of Transformer class mod-

els, like BERT.

• librosa - audio MFCC features extraction.

• openSMILE - audio eGEMAPS features extraction.

• Dlib and OpenCV - determination of the face in the

image, cropping and straightening of the image;

Fig. 3. The architecture of multimodal interaction fusion
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TABLE III. RESULTS AND COMPARISON WITH 
SOTA MODELS

Dataset Task Classes Model Weighted Accuracy Weighted F1 Weighted Precision Weighted Recall

HGFM [9] 42.3 - - -

MELD emotion recognition 7 3-Modal Cross-BERT 44.0 45.0 52.7 41.3

Multimodal interaction 62.2 60.7 60.8 62.2

MMLatch [6] 52.1 - - -

MOSEI sentiment analysis 7 3-Modal Cross-BERT 58.4 59.0 62.2 58.4

Multimodal interaction 63.3 61.0 61.2 63.4

3-Modal Cross-BERT 34.7 33.2 49.6 34.7

MOSEI emotion recognition 6 Multimodal interaction 52.4 46.0 43.5 52.4

MMIM [39] 54.2 - - -

CM-BERT [7] 44.9 - - -

MOSI sentiment analysis 7 3-Modal Cross-BERT 48.5 48.2 49.8 48.5

Multimodal interaction 51.0 50.2 50.5 50.1

3-Modal Cross-BERT 34.0 34.0 37.0 33.0

IEMOCAP emotion recognition 6 Multimodal interaction 57.0 57.0 57.0 57.0

COGMEN [10] 68.2 67.6 - -

V. RESULTS

Evaluations of the following results were presented: the

emotion recognition results for the MELD, MOSEI and IEMO-

CAP and the sentiment analysis results for MOSI and MOSEI.

In our experiments, consistent with the previous work [7], the

same metrics were used to evaluate the performance of the

baselines and our model. Multiclass weighted accuracy (WA)

and F1 score are selected.

The performance of 3-Modal Cross-BERT and Interaction

model was compared with previous models on the multimodal

sentiment analysis and emotion recognition tasks. Results are

presented in Table III. The chosen models for comparison

are:

• Hierarchical grained and feature model (HGFM), where

the frame-level and utterance-level structures of acoustic

samples were processed by the recurrent neural network.

The model included a frame-level representation module

with before and after information, an utterance-level

representation module with context information, and a

different level acoustic feature fusion module [9].

• MMLatch, a neural network module that used representa-

tions from higher levels of the architecture to create top-

down masks for the low-level input features. Mechanism

extracted high-level representations for each modality and

used these representations to mask the sensory inputs,

allowing the model to perform top-down feature mask-

ing [6].

• Cross-Modal BERT (CM-BERT), which relied on the

interaction of text and audio modality to fine-tune the

pre-trained BERT model. As the core unit of the CM-

BERT, masked multimodal attention was designed to

dynamically adjust the weight of words by combining

the information of text and audio modality [7].

• MMIM, MultiModal InfoMax, which hierarchically max-

imizes the Mutual Information (MI) in unimodal input

pairs (inter-modality) and between multimodal fusion

result and unimodal input in order to maintain task-related

information through multimodal fusion. The framework

is jointly trained with the main task (MSA) to improve

the performance of the downstream MSA task. To address

the intractable issue of MI bounds, a set of computation-

ally simple parametric and non-parametric methods were

formulated to approximate their truth value [39].

• COGMEN, COntextualized Graph Neural Network based

Multimodal Emotion recognitioN (COGMEN) system

that leverages local information (i.e., inter/intra depen-

dency between speakers) and global information (con-

text). The model uses Graph Neural Network (GNN)

based architecture to model the complex dependencies,

local and global information, in a conversation [10].

Based on Table III, it is easy to see that the Multimodal

Interaction model produces new state-of-the-art results on

chosen datasets and improves the performance on weighted

accuracy. For the task of emotion recognition without context,

an improvement of 1.7% was achieved for the MELD dataset.

For the sentiment analysis task, the classification accuracy for

the MOSI and MOSEI datasets increased by 3.6% and 6.3%,

respectively.
Confusion matrices for each dataset with the best results are

presented in Fig. 4- 8. For the sentiment analysis problem, the

most mistakes are confusions of close classes. For example,

for the MOSEI dataset, an erroneous assignment of neutral

messages to weakly positive ones and vice versa. This is
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Fig. 4. MOSEI confusion matrix (sentiment)

Fig. 5. MOSI confusion matrix (sentiment)

because people show a weak positive attitude almost as neutral.

For the task of emotion recognition, the largest part of the

errors is associated with the confusion of a neutral emotion

with the rest, which is explained by a possibly weak expression

of emotions. This is especially evident in the results for the

MELD dataset. For the MOSEI dataset algorithm usually

misplaced emotions with happiness. This may be due to the

stronger expression of happiness compared to others emotions.

The model, trained on IEMOCAP dataset, commonly classifies

emotions correctly, but like the other versions, confuses neutral

class and close emotions (like anger and frustration).

VI. CONCLUSIONS

In this paper, new 3-Modal Cross-BERT model and Multi-

modal Interaction model for multiclass sentiment analysis and

emotion recognition were proposed. An extension of the pre-

trained BERT model with audio and video modalities were

suggested. Audio and video data are used to fine-tune the

textual BERT model through the use of masked multimodal

attention. Research has been conducted with various methods

Fig. 6. MELD confusion matrix (emotion)

Fig. 7. MOSEI confusion matrix (emotion)

Fig. 8. IEMOCAP confusion matrix (emotion)
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for extracting features from audio and video data. The best

results for audio data were obtained using 40-dimensional

MFCC and 88-feature eGEMAPS, a combination of convo-

lutional 3D layer and LSTM for video data.

Experimental results show that 3-Modal Cross-BERT and

Multimodal Interaction model significantly improved accuracy

on MELD, MOSI, and MOSEI data compared to the previous

state-of-the-art models. The value of including video modality

is being proven experimentally. For example in the MOSI

dataset, adding modality improved accuracy by 3.4%. It also

managed to outperform the state-of-the-art models for other

datasets, which indicates the validity of adding a video modal-

ity. The work presents only the best parameters and features

sets.
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