
Enhancing IoT Products through Integrated AI
Capabilities: Enabling Seamless AIoT Implementation

Kerem AYTAÇ
Priva BVA, Rotterdam, Netherlands

Marmara University, Istanbul, Turkiye
keremaytac@gmail.com

Ömer KORÇAK
Marmara University

Istanbul, Turkiye
omer.korcak@marmara.edu.tr

Abstract— In the contemporary landscape of Internet of Things
(IoT) products, mere incorporation of IoT functionalities falls short
of meeting the evolving consumer expectations. The paradigm has
shifted towards more sophisticated approaches, collectively referred
to as Artificial Intelligence of Things (AIoT), wherein IoT devices are
empowered by the integration of Artificial Intelligence (AI)
capabilities. However, transitioning from conceptualization to
realization proves to be a formidable challenge. Proficiency in AI is
a distinct discipline requiring specialized expertise; lacking such
competencies can lead to potential pitfalls such as wrong or
unintended or unreliable results. The attractiveness of AI
capabilities remains, prompting stakeholders to explore ways to
either achieve expertise or enable user-friendly routes, thereby
gaining a competitive advantage.. This paper introduces a novel
proposition: the seamless integration of black box AI capabilities
into IoT products. This integration stands to be universally
applicable across diverse IoT products. The solution eliminates the
need for data science expertise, while also providing a significant
level of flexibility for end-users to enhance AI capabilities as per
their needs. This article outlines the foundational concept of the
suggested integration and elaborates on its potential to transition
traditional IoT products into the AIoT realm.

I. INTRODUCTION

In the contemporary technological world, we have lots of
useful IoT devices serving various purposes, and there are also AI
tools bringing value in unique ways. The idea of putting both IoT
and AI together into so-called Artificial Intelligence of Things
(AIoT) [1] [2] seems promising, as it could offer attractive benefits
that customers desire. However, making this combination work is
challenging. Especially for IoT companies without a strong data
science background, forming a new team for this can be tough and
expensive. Even companies that have both IoT and AI products
face difficulties in making them work well together. This is
because they have different teams handling each type of product,
and getting these teams to collaborate can be challenging. Also,
their software development lifecycles are quite different, so
making them work seamlessly in sync is not easy, especially with
agile methods. To mitigate these problems, AI teams often collect
data from IoT devices, apply their business logic in a completely
separate pipeline, and provide some useful reports with some
latencies. In this approach, IoT and AI products will be abstracted
from each other.

For the sake of better understanding, let us illustrate through a
simple instance. Imagine a world of manufacturing company
producing cars that employs an IoT system to monitor various
stages of production using sensors and control actuators. This
application elevates production efficiency and quality control by
overseeing the manufacturing process. Additionally, the company

receives monthly reports based on the collected sensor data. These
reports incorporate machine learning algorithms to assess potential
issues, such as the risk of a robot arm malfunction during the tire-
mounting process. This predictive analysis relies on diverse sensor
measurements like vibration, temperature, and arm rotation speed
to determine maintenance requirements for specific robot arms.
However, monthly reports may not adequately address the
potential for abrupt robot arm failures. Relying solely on these
reports might lead to unexpected breakdowns, as immediate
failures can occur without prior indications. To preemptively
identify anomalies, agile intervention is essential. This means that
timely detection of irregularities is crucial. Failing to adopt an
agile approach might result in missed opportunities for addressing
impending issues before they escalate. Swift intervention would
have facilitated comprehensive maintenance and minimized
downtime, ensuring operational continuity. This approach is
commonly referred to as "predictive maintenance" [3]. By
anticipating issues in advance and promptly addressing them, the
incidence of malfunctioning components within the factory is
minimized. Consequently, this practice mitigates unanticipated
costs and reduces instances of operational interruptions.

An AIoT product is expected to yield immediate outcomes
from real-time data, delivering substantial value to consumers.
Nonetheless, constructing precise and useful models that yield
high accuracy often demands a substantial investment of time,
spanning weeks, months, or even years. Moreover, these models
necessitate ongoing adjustments and maintenance, which presents
potential challenges when integrating them into IoT products,
including a requirement of dedicated and hands-on experienced
proficiency which is obviously a challenging process.

Considering an alternative perspective, a conventional product
is typically designed for universal application, offering a
standardized user experience for all customers without bespoke
modifications. Conversely, AI models diverge across customers
due to disparities in sensor measurements, application domains,
and use cases. The impracticability of crafting a uniform model for
diverse clientele necessitates a dual approach: an underlying,
shared IoT product designed to serve all customers uniformly, and
a tailored AI solution that adapts significantly between customers.
This presents a paradox: the IoT product alone lacks the appeal to
attract a substantial customer base, while the diversity of AI
requirements of customers poses challenges in creating a unified
AI model.

To resolve this problem, adopting an AI approach
characterized by a self-improving, adaptable, and modular black
box is prudent. By embedding rudimentary AI capabilities into the
IoT product, customers can initiate usage with basic AI

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 192 --

functionality, which evolves over time as data accumulates. This
progressive evolution culminates in the system reaching an
optimal state where customers can maximize benefits.

This paper delves into the outlined problem through the lens of
the aforementioned use case, "Predictive Maintenance", which
serves to offer a tangible illustration and enhance comprehension.

A. RELATED WORK
In the literature, there are many useful applications of AIoT.

Sipola et al. [4] describe applications of moving AI computation
near the IoT data sources in various domains such as security,
mobile networks, healthcare, voice and image analysis and
associated frameworks. Sun et al. [5] have proposed a resilient AI
system integrated atop the Internet of Things (IoT), which
significantly enhances sensor accuracy for the precise
identification of object grasps within a virtual retail environment.
Chen et al. [6] have demonstrated the merge of AI and image
recognition technologies into sensor systems embedded within an
IoT framework. This integration facilitates improved pest
identification mechanisms within agricultural systems. Zhang et
al. [7] have introduced a valuable framework tailored for tunnel
construction operations. By collecting specific data, this
framework trains models designed to predict operational
parameters for both the shield and ground response during
subsequent phases of construction. This AIoT-based system
augments information granularity and automation throughout the
construction process, streamlining decision-making processes and
minimizing the occurrence of accidents. In another study, Chen S.
W. et al. [8] scrutinize recent advancements in combating the
COVID-19 pandemic through the symbiotic utilization of IoT and
AI. The article delves into comprehensive strategies for addressing
the pandemic and explores prospective technological avenues for
such endeavors. Mamza [9] has presented an AIoT based system
incorporating medical devices, sensors, and web/mobile
applications to create a globally accessible medical resource,
enabling monitoring of vital signs like heart rate and blood
pressure, even in remote areas without nearby hospitals.

In a closely related study, Prado et al. [10] examine the
evolving landscape of next-generation embedded ICT systems,
which possess the capability to autonomously execute tasks while
being interconnected and collaborative. This research underscores
the increasing importance of Edge computing in seamlessly
integrating artificial intelligence (AI) into our everyday lives,
particularly given the growth of the embedded ICT market.
Nevertheless, a substantial challenge emerges from the complexity
associated with the harmonization of data, algorithms, and tools
for deploying tailored AI solutions on embedded devices, which
has impeded widespread adoption. To address this challenge, the
authors propose a modular AI pipeline designed to simplify the
integration process. This pipeline facilitates end-to-end AI product
development for embedded devices and comprises four key stages:
data ingestion, model training, deployment optimization, and IoT
hub integration.

Furthermore, leading companies in the IoT sector, such as
Microsoft, offer a set of generic IoT services that can be enhanced
through the incorporation of machine learning capabilities, thus
transforming them into AIoT products. These AIoT products can
be applied across a wide range of domains [11]. Amazon's AWS

IoT Greengrass, for instance, provides the ability to perform on-
device inference at the edge while also offering cloud-based
management. Although it supports a variety of edge devices, it's
important to note that this service is currently available only in
specific regions and conforms to Amazon's specific format [12].
In addition to enterprise-level AI services, there's an opportunity
to shift our focus towards AI services oriented for edge computing,
particularly those designed for vision-related tasks. One notable
example is Eugene, a suite of machine intelligence services
tailored specifically for IoT applications. Eugene encompasses
various functionalities including data labeling, model training,
deployment optimization, and integration with IoT systems. This
work not only showcases the efficient customization of deep
neural networks but also introduces a runtime scheduling
algorithm to optimize the selection of network depth [13].
However, it is important to recognize that these approaches
generally require a prior understanding of machine learning in
order to effectively integrate and utilize them within the intended
solution.

II. OVERVIEW OF CURRENT IOT PRODUCT

In this section, we will begin by introducing the prevailing and
basic design of an IoT product. On top of that, the proposed AI
module will be introduced as well. A generic IoT product revolves
around both real-time and historical data. Real-time data is
particularly valuable for creating dynamic dashboards, facilitating
ongoing monitoring, and enabling instant insights. On the other
hand, historical data serves as a valuable resource for generating
comprehensive reports and supporting data science endeavors. It
is important to note that historical data can be classified into
different types. Short-term historical data, for instance, offers
higher data freshness and is suitable for storage in hot-storage
systems. It typically spans up to weekly data intervals. In contrast,
long-term historical data possesses lower data freshness but
comprises voluminous data, making it conducive for generating
numerous reports and conducting meaningful data science
analysis. This data type spans various time ranges, from days to
years or even decades. While long-term historical data is
particularly well-suited for data science activities, it is worth
noting that short-term historical data also holds relevance for
similar purposes. Although the outcomes may be constrained, they
are immediate in nature, circumventing the need for prolonged
data accumulation periods.

Fig. 1 High-level illustration of a basic IoT product.

Fig. 1 provides a high-level overview of a basic IoT product.
A sensor initiates data generation, followed by a multiplexer that
duplicates and transmits this data through Real-time and Historical
Data channels. Below these channels, a set of services execute the

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 193 --

requisite business logic, and ultimately, the data is directed
towards one or multiple databases. Real-time data is typically
utilized immediately and discarded once its relevance wanes,
whereas Historical data is persistently stored and actively
employed for various purposes. In our context, historical data
emerges as the optimal source to engage with and utilize. This
preference stems from the imperative need for data, which serves
as the nourishment vital to training our models. Indeed, data
constitutes an essential cornerstone of models; a wealth of data
enhances the precision of the models crafted.

In the IoT realm, you also possess entities that are subject to
observation or control through sensors and actuators. These
entities, referred to as assets, encompass tangible objects within
your environment, including components such as a specific model
of a robot arm, a section of a factory floor, a door, a production
line, or a room. Additionally, asset types serve as foundational
templates for assets. For instance, a robot arm could serve as an
asset type for all robot arms within a factory. The fundamental
attributes of a robot arm, such as vibration and angle sensors, as
well as characteristics like model, material, and arm length,
represent features inherent to this asset type. Each individual asset
emanating from the robot arm asset type must adhere to these
attributes. Telemetries like vibration and angle sensors become
intrinsic to asset connections, while elements such as model,
material, and arm length are stipulated within the system to render
them operable. In practical terms, a factory might house numerous
robot arms derived from this asset type—possibly numbering in
the tens or hundreds. This construct mirrors the concept of an
interface or a base class within object-oriented programming.
Every piece of data generated within the system is linked to a
specific asset. Consequently, it becomes feasible to retrace
measurements through the asset's telemetries, simplifying
monitoring and management processes. In the IoT context, these
entities are commonly referred to as digital twins.

For a more comprehensive examination of the technical
dimensions of this product, it is essential to delve deeper. This
product is formulated within a containerized environment,
specifically residing within Kubernetes [14]. The significance of
Kubernetes technology cannot be overemphasized; it indeed
stands as a leading-edge solution for hosting applications. While
the specifics of Kubernetes are not extensively addressed within
this paper, we will harness its preeminent advantages. Within this
framework, each application is contained as an individual unit
within Kubernetes. For the sake of better understanding, let us
consider a scenario involving two applications that collaboratively
manage Historical Data. In this scenario, one application acquires
data from sensors and refines it, while the other retrieves the
refined data and populates multiple databases. These two
applications are treated as separate deployments within
Kubernetes, operating within distinct boundaries yet residing
within the same namespace.

Fig. 2 illustrates the distinct APIs, each functioning as an
independent containerized application within the Kubernetes
environment. Meanwhile, the utilization of a timeseries database
[15] emerges as an optimal choice for the storage of time-
dependent data. This database configuration empowers the
seamless retrieval of historical data by temporal or aggregated
parameters. Conversely, the hot storage database serves as an
efficient repository for accessing recent data. Unlike the expansive
timeseries database, the hot storage database operates as a cache
and is subject to defined data retention policies.

Fig. 2 In-depth exploration of the Historical Data Pipeline to gain detailed
insight into the basic IoT design.

In the case of a typical IoT device, let us imagine a customer
wants an extra functionality. They want to track the movement of
robot arms using sensors. Also, they need a system that can predict
when something might go wrong and let the customer know. This
project is about warning the customer ahead of time if there might
be a problem with the robot arm. This way, the customer knows
what's happening and can fix the robot arm before it breaks down
completely.

III. PROPOSED SOLUTION

In this section, we provide an elaboration of the proposed
solution. Leveraging the benefits conferred by the containerized
ecosystem offered by Kubernetes, our approach encompasses the
hosting of machine learning models within our system,
encapsulated as containers. So, any designated model requires
prior containerization as a prerequisite, often executed through the
creation of a Docker image [16]. Once a model is dockerized
(which can be hosted in a docker environment) [16], its portability
is assured, rendering it adaptable to any Kubernetes-supported
environment. Typically, data scientists construct their models
employing Python [17], a programming language with a diverse
array of machine learning libraries. It is important to note that
while Python is the conventional choice, other programming
languages remain viable alternatives. Within this encapsulated
environment, the machine learning process will hide itself into a
black box, so that any related parts of this, which is not limited to
programming language, but also enabling data wrangling, feature
engineering, training, and inference phases of data science will be
a minimal concern.

The acquisition of data is an imperative prerequisite for model
development. In the context of IoT products, we bear the
responsibility of ensuring a continuous stream of data. This
sustains the model's capacity to discern patterns, execute data
operations, and initiate the process of inference. However,
provisioning of the data is not an easy objective. That is, blindly
supplying extensive data spanning a year, daily snapshots, or an
exhaustive real-time feed encompassing all assets is unsuitable.
The parameters governing the extent and frequency of data supply
should be defined in accordance with the unique requirements of
each model, with the model itself possessing the most astute
comprehension of these needs. Within our system architecture,
Real-Time and Historical Data applications emerge as the ideal
sources for supplying the requisite data. For instance, if a model
necessitates data at hourly intervals on a per-minute basis, and its
purpose is solely to train on data related to robotic arms, then we
should exclusively provide this specific data to maintain efficiency
and focus. Furthermore, a model possesses the capability to
specify the communication protocol to be employed. This protocol

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 194 --

may encompass familiar standards such as HTTP, AMQP, or
alternative protocols. In the case of HTTP communication, the
model assumes the responsibility of exposing an endpoint for the
purpose of data consumption, and this endpoint should be defined
in advance, ensuring a smooth data exchange process.

An IoT product seeks valuable insights just as a model requires
data. In this scenario, a connection needs to be established with the
model to obtain outputs, which could include an anomaly score
and a warning level. These outputs can then be employed for
populating dashboards or initiating actions to alert users. It's
crucial to define these flexible inputs and outputs in advance. To
achieve this, we can create a manifest file once a specific model is
developed and utilize it to initiate the model hosting process.

Fig.3 illustrates a representative manifest file, a crucial
component in our system.

This file contains a description of the model, the preferred
communication protocol, a score endpoint which serves as the
destination for collecting data, a health check endpoint which
regularly monitor the healthiness of model (the logic for assessing
them model’s health is embedded within the model itself), hosted
location which indicates the real location of model (it is
noteworthy that a model can be hosted either within the system or
externally, with the latter scenario involving the use of the
manifest purely for data collection and proxying to an external
model), docker container [18] image information which can be
used to pull the model for deployment, trigger type which specifies
the type of data the model is interested in (this could be real-time
data, where the model receives data as it is generated by the IoT
product, or it could be time-window-based, where data is sent
periodically with a specified frequency (e.g., per minute) and time
window size (e.g., hourly data).), required inputs, and expected
outputs that should be clarified as per model. In the given example
it will consume temperature data and will return an anomaly score
and warning level.

This manifest file possesses human-readable attributes, and it
is also capable of being recognized by our system, allowing for
seamless configuration. To effectively manage models across
various customers, it is imperative to integrate a model
management application into the system. This application will
have the ability to identify these manifest files, deploy the
associated models within the system, establish their operational
status, configure the requested data streams, transmit data,
monitor the models during operation, assess their health, collect
their outputs, and remove models as needed.

Within this application domain, two principal components play
a pivotal role, as depicted in Fig. 4. The first component is the Data
Companion API, which is created for each model. Its primary
responsibility is to collect essential data from the system and feed
it into the model as required. Additionally, it directly
communicates with the model container to gather outputs, assess
the model's health, and perform other related tasks. The second
component is the Model Management API, which empowers users
to submit manifest files to the system. It guides users in
configuring essential settings within the manifest file, such as
mapping inputs to telemetries of assets or asset types within the
system and mapping outputs to relevant telemetries.

Fig. 3 An overview of a manifest file for a temperature anomaly detecting
model.

Users can also employ this API to halt the execution of
models, deploy Model Containers along with Data Companion
APIs into the system, and define Data Companion API scopes to
collect only the necessary data based on specified conditions in
the manifest file. Furthermore, the Model Management API
facilitates the collection of insights from the Data Companion API
regarding the Model Container. In cases where the model's health
is compromised and deemed irrecoverable, the Model
Management API has the authority to cease all operations related
to that particular model. In essence, the Model Management API
serves as the system administrator for model management, while
the Data Companion API functions as tightly coupled companion
to specific model containers.

The central avenue for our data collection and data output
transmission will be the Real-Time and Historical Data Service,
which encompasses both the Data Collector API and the Data
Pusher API. Through this service, we will gather data in real-time
and archive historical data. All outputs generated by our models
will serve as telemetry data points associated with specific assets.
For instance, the anomaly score telemetry of a robot arm will be
enriched with these output data, facilitating their display in user
interfaces or triggering predefined actions.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 195 --

Fig. 4 An overview of Model Management Application with all components and
business processes.

In Fig. 4, we observe that the Data Companion API and the
Model Container are distinct applications, or Pods, within the
Kubernetes environment. These applications are deployed or
removed by the Model Management API into separate
Kubernetes namespaces, which are also created by this API.
Furthermore, the Model Management API is responsible for
enforcing certain policies concerning the model containers in
alignment with Kubernetes policies. These policies ensure that the
created model containers do not excessively consume resources
within the Kubernetes cluster. Additionally, they dictate that
model containers can only communicate with their respective
Data Companion API and must be managed by a non-root,
unprivileged user within the container, adhering to well-
established Kubernetes security guidelines [19]. The primary
motivation behind deploying these models into separate
namespaces is to establish isolation between them. This
segregation is crucial because our product operates in a multi-
tenant IoT environment [20], demanding meticulous attention to
security concerns.

The process of managing a model within a Kubernetes system
involves various life cycles. The orchestration of these life cycles
is overseen by the Model Management API. To achieve an
optimal state management, the Saga orchestration [21] pattern is
adopted, ensuring that each state triggers corresponding
operations. A detailed representation of this process can be found
in Fig. 5. Every model adheres to this predetermined life cycle as

illustrated in the state diagram, and they persist in an active state
unless explicitly removed from the system while in the "draft"
phase. Prior to removal, a model must transition into the "draft"
state by following the appropriate protocol. In situations where an
irreparable health issue arises, the model gracefully reverts to the
"draft" state after a series of attempts.

Fig. 5 State diagram of life cycle of a model.

Fig. 6 A fresh start for data science team where they create a useful model.

Firstly, the data science team may require data to conduct
testing and validation of their models. To facilitate this, we offer
access to our Real-Time and Historical Data APIs, allowing them
to acquire the requisite data. Subsequently, the data science team
proceeds to craft a high-end anomaly scoring model. They also
generate a template project, incorporating essential HTTP
endpoints to enable communication with our Data Companion
API. This model is then containerized and uploaded to a registry,
where it can be later retrieved by the Model Management API for
deployment. Additionally, the data science team creates a
manifest file in adherence to our predefined structure. This
manifest file is prepared for submission into our system, ensuring
it complies with our established guidelines and requirements. This
procedure can be barely observed as in Fig. 6.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 196 --

Upon submission of a manifest file and the definition of input
and output mappings, this information undergoes interpretation
and is subsequently stored within a SQL database. A database
schema, as illustrated in Fig. 7, can be adopted for this purpose.
In this schema, the "Container Registry" table allows customers
to store their container registry details, enabling the system to
retrieve their container images. Within the "Model" table,
comprehensive information related to the model, sourced from the
manifest, is stored. Additionally, vital data pertaining to the
model's health and its current state are regularly recorded. The
"Model Template Mappings" table encompasses template input
and output data, which are initially generated by the data science
team. These templates correspond to the input and output sections
delineated in the manifest's JSON file. Furthermore, the "Model
Mappings" table captures the asset mappings associated with the
inputs and outputs specified in the manifest file. For instance, if a
manifest file contains "temperature" as an input and "anomaly
score" as an output, this table facilitates the mapping of
"temperature" to a real "Temperature (Celsius)" telemetry and
"Anomaly Score (%)" telemetry for the "Robot Arm X1" asset
within our system.

The "AssetTypeMappings" table serves as a critical
component when opting to run models against asset types rather
than individual assets. In essence, this approach allows for the
deployment of a versatile model capable of accommodating any
asset falling under a specific asset type, such as "Robot Arm”. For
example, consider five robot arms denoted as X1, X2, Y1, Z1, and
A2, all of which belong to the "Robot Arm" asset type. These
robot arms can effectively utilize the same model. When a user
establishes a mapping through the asset type, it becomes
necessary to internally deconstruct this mapping into individual
assets just before deploying the model. This ensures that each
asset receives the appropriate model inference. Furthermore, it is
crucial to notify the model whenever a new asset is added or
removed within a specific asset type. This allows for the seamless
inclusion or exclusion of assets in the model's inference process,
maintaining its adaptability and accuracy as the asset inventory
evolves.

In order to have better understanding of the design, we can
refer to Fig. 8. In this diagram, a model is depicted as being
stateful, implying that it continuously receives real-time data,
gradually undergoing training and acquiring knowledge from this
incoming data. It's essential to note that the model's effectiveness
increases in proportion to the volume of data it receives. This
model becomes fully integrated into our system, establishing
itself as an integral component of our operations.

Fig. 9 provides a comprehensive view of the entire state
diagram, offering valuable insights into the sequence of states and
operations. Within this diagram, we also encounter a stateless
model, which operates differently compared to its stateful
counterpart. In the case of a stateless model, it retrieves a batch of
data and conducts both training and inference operations within
the confines of this specific dataset, yielding results accordingly.
Subsequent batches of data entirely replace the previous ones,
initiating a distinct training process and inference cycle. This
"statelessness" arises from the model's reliance on batches of data
as opposed to individual real-time data points, as demonstrated in
Fig. 8.

Fig. 7 Database schema for storing model information in SQL upon submission
of a manifest file.

Fig. 8 Sequence diagram illustrating a stateful model completely hosted within
the IoT system.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 197 --

The stateless model's primary function lies in its ability to detect
anomalies within a given dataset. It provides a level of control and
predictability, making it a preferred choice in situations where
absolute trust in the model's continual learning capabilities may
be lacking.

Fig. 9 Sequence diagram illustrating a stateless model completely hosted within
the IoT system, providing full visibility of the state diagram.

Fig. 10 provides an illustrative depiction of how we can
accommodate a model external to our system for various
compelling reasons. These reasons may include scenarios where
a model cannot be containerized or is too resource-intensive to be
hosted within our IoT system. In such cases, all data-related
operations are executed within this external model. However, a
model container is designed to facilitate communication with our
IoT system, ensuring the collection of data in compliance with
established standards, and forwarding this data to the external
model.

Fig. 10 Sequence diagram illustrating model logic hosted externally with Model
Container acting as a data proxy for transmitting data to the external model,
retrieving results, and integrating them into the system.

Within this diagram, another noteworthy feature is the use of
callback URLs, which come into play when an asynchronous
model is required. It is important to recognize that not all models
can provide immediate data inference. Some models may
necessitate significant time, potentially hours, to process
extensive datasets or reach a suitable training threshold before
they can commence inference operations. To address this,
callback URLs are incorporated into the process. They are
included in the requests both from the Data Companion API to
the Model Container and from the Model Container to the
Externally Hosted Model. This enables an asynchronous waiting
mechanism, allowing other operations to proceed while awaiting
the completion of the task. This approach ensures efficient
handling of tasks that require extended processing times,
contributing to a responsive and effective system.

This essentially encapsulates the fundamental workings of
model management. The only requirement is that developers
adhere to the specified object structure proposed by the Data
Companion API when developing an endpoint and return data in
the expected structure. Moreover, this proposal suggests the
storage of simple yet generic models, such as temperature
anomaly detection, in a separate repository along with their
manifest files and corresponding model images. This facilitates
the accessibility of these models to customers who may not have
their own models yet. Customers can easily navigate the model
library, select a basic model, and import its manifest file to initiate
a new model for assets equipped with temperature sensors. While
these pre-defined models may not achieve high precision, they
provide quick and reusable solutions, thereby adding value in an
efficient manner.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 198 --

IV. CONCLUSION

In this study, we have introduced a resilient and adaptable
framework for augmenting AIoT capabilities within an IoT
product. This framework shifts the responsibility of model
development to individual stakeholders, providing them with the
flexibility to design and deploy models that suit their specific
needs. Additionally, we offer a repository for fundamental yet
shareable models contributed by tenants, fostering a collaborative
environment that benefits all customers. For customers equipped
with data science teams, the framework offers full autonomy to
design and seamlessly integrate their custom models into our
ecosystem. The only requirement is adherence to our established
IoT system data provisioning standards, simplifying the
integration process. As IoT product owners, we eliminate the
necessity of building extensive in-house data science teams.
Instead, we can establish strategic partnerships with external data
science companies, allowing us to readily access reusable,
generic, and highly precise models when required. This
collaborative approach provides a valuable "nice-to-have" asset
in our ongoing pursuit of enhancing our IoT product and
delivering cutting-edge solutions to our customers.

ACKNOWLEDGMENT

This work is supported by Priva BVA.

REFERENCES

[1] Dong, B., Shi, Q., Yang, Y., Wen, F., Zhang, Z., & Lee, C. (2021).
Technology evolution from self-powered sensors to AIoT enabled smart
homes. Nano Energy, 79, 105414.

[2] Nahr, J. G., Nozari, H., & Sadeghi, M. E. (2021). Green supply chain
based on artificial intelligence of things (AIoT). International Journal of
Innovation in Management, Economics and Social Sciences, 1(2), 56-63.

[3] Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da
Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the
Industry 4.0: A systematic literature review. Computers & Industrial
Engineering, 150, 106889..

[4] Sipola, T., Alatalo, J., Kokkonen, T., & Rantonen, M. (2022, April).
Artificial intelligence in the IoT era: A review of edge AI hardware and
software. In 2022 31st Conference of Open Innovations Association
(FRUCT) (pp. 320-331). IEEE.

[5] Sun, Z., Zhu, M., Zhang, Z., Chen, Z., Shi, Q., Shan, X., ... & Lee, C.
(2021). Artificial Intelligence of Things (AIoT) enabled virtual shop
applications using self‐powered sensor enhanced soft robotic
manipulator. Advanced Science, 8(14), 2100230

[6] Chen, C. J., Huang, Y. Y., Li, Y. S., Chang, C. Y., & Huang, Y. M.
(2020). An AIoT based smart agricultural system for pests detection.
IEEE Access, 8, 180750-180761.

[7] Zhang, P., Chen, R. P., Dai, T., Wang, Z. T., & Wu, K. (2021). An AIoT-
based system for real-time monitoring of tunnel construction. Tunnelling
and Underground Space Technology, 109, 103766.

[8] Chen, S. W., Gu, X. W., Wang, J. J., & Zhu, H. S. (2021). AIoT used for
COVID-19 pandemic prevention and control. Contrast media &
molecular imaging, 2021.

[9] Mamza, E. S. (2021). Use of AIOT in health system. International
Journal of Sustainable Development in Computing Science, 3(4), 21-30.

[10] De Prado, M., Su, J., Saeed, R., Keller, L., Vallez, N., Anderson, A., ...
& Pazos Escudero, N. (2020). Bonseyes AI pipeline: bringing AI to you.
ACM Transactions on Internet of Things.

[11] Barnes, J. (2015). Azure machine learning. Microsoft Azure Essentials.
1st ed, Microsoft.

[12] Das, A., Patterson, S., & Wittie, M. (2018, December). Edgebench:
Benchmarking edge computing platforms. In 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion) (pp. 175-180). IEEE.

[13] S. Yao, Y. Hao, Y. Zhao, A. Piao, H. Shao, D. Liu, S. Liu, S. Hu, D.
Weerakoon, K. Jayarajah, A. Misra, and T. Abdelzaher. 2019. Eugene:
Towards Deep Intelligence as a Service. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). 1630–1640

[14] Luksa, M. (2017). Kubernetes in action. Simon and Schuster.
[15] Rhea, S., Wang, E., Wong, E., Atkins, E., & Storer, N. (2017, May).

Littletable: A time-series database and its uses. In Proceedings of the
2017 ACM International Conference on Management of Data (pp. 125-
138).

[16] Rad, B. B., Bhatti, H. J., & Ahmadi, M. (2017). An introduction to docker
and analysis of its performance. International Journal of Computer
Science and Network Security (IJCSNS), 17(3), 228.

[17] Python, W. (2021). Python. Python Releases for Windows, 24.
[18] Rad, B. B., Bhatti, H. J., & Ahmadi, M. (2017). An introduction to docker

and analysis of its performance. International Journal of Computer
Science and Network Security (IJCSNS), 17(3), 228.

[19] Ferreira, A. P., & Sinnott, R. (2019, December). A performance
evaluation of containers running on managed kubernetes services. In
2019 IEEE international conference on cloud computing technology and
science (CloudCom) (pp. 199-208). IEEE.

[20] Aytaç, K., & Korçak, Ö. (2022, November). Multi-tenant management
in secured iot based solutions. In 2022 32nd Conference of Open
Innovations Association (FRUCT) (pp. 56-64). IEEE.

[21] Rudrabhatla, C. K. (2018). Comparison of event choreography and
orchestration techniques in microservice architecture. International
Journal of Advanced Computer Science and Applications, 9(8).

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 199 --

