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Abstract— In the contemporary landscape of Internet of Things 
(IoT) products, mere incorporation of IoT functionalities falls short 
of meeting the evolving consumer expectations. The paradigm has 
shifted towards more sophisticated approaches, collectively referred 
to as Artificial Intelligence of Things (AIoT), wherein IoT devices are 
empowered by the integration of Artificial Intelligence (AI) 
capabilities. However, transitioning from conceptualization to 
realization proves to be a formidable challenge. Proficiency in AI is 
a distinct discipline requiring specialized expertise; lacking such 
competencies can lead to potential pitfalls such as wrong or 
unintended or unreliable results. The attractiveness of AI 
capabilities remains, prompting stakeholders to explore ways to 
either achieve expertise or enable user-friendly routes, thereby 
gaining a competitive advantage.. This paper introduces a novel 
proposition: the seamless integration of black box AI capabilities 
into IoT products. This integration stands to be universally 
applicable across diverse IoT products. The solution eliminates the 
need for data science expertise, while also providing a significant 
level of flexibility for end-users to enhance AI capabilities as per 
their needs. This article outlines the foundational concept of the 
suggested integration and elaborates on its potential to transition 
traditional IoT products into the AIoT realm.

I. INTRODUCTION

In the contemporary technological world, we have lots of 
useful IoT devices serving various purposes, and there are also AI 
tools bringing value in unique ways. The idea of putting both IoT 
and AI together into so-called Artificial Intelligence of Things 
(AIoT) [1] [2] seems promising, as it could offer attractive benefits 
that customers desire. However, making this combination work is 
challenging. Especially for IoT companies without a strong data 
science background, forming a new team for this can be tough and 
expensive. Even companies that have both IoT and AI products 
face difficulties in making them work well together. This is 
because they have different teams handling each type of product, 
and getting these teams to collaborate can be challenging. Also, 
their software development lifecycles are quite different, so 
making them work seamlessly in sync is not easy, especially with 
agile methods. To mitigate these problems, AI teams often collect 
data from IoT devices, apply their business logic in a completely 
separate pipeline, and provide some useful reports with some 
latencies. In this approach, IoT and AI products will be abstracted 
from each other.

For the sake of better understanding, let us illustrate through a 
simple instance. Imagine a world of manufacturing company 
producing cars that employs an IoT system to monitor various 
stages of production using sensors and control actuators. This 
application elevates production efficiency and quality control by 
overseeing the manufacturing process. Additionally, the company 

receives monthly reports based on the collected sensor data. These 
reports incorporate machine learning algorithms to assess potential 
issues, such as the risk of a robot arm malfunction during the tire-
mounting process. This predictive analysis relies on diverse sensor 
measurements like vibration, temperature, and arm rotation speed 
to determine maintenance requirements for specific robot arms.
However, monthly reports may not adequately address the 
potential for abrupt robot arm failures. Relying solely on these 
reports might lead to unexpected breakdowns, as immediate 
failures can occur without prior indications. To preemptively 
identify anomalies, agile intervention is essential. This means that 
timely detection of irregularities is crucial. Failing to adopt an 
agile approach might result in missed opportunities for addressing 
impending issues before they escalate. Swift intervention would 
have facilitated comprehensive maintenance and minimized 
downtime, ensuring operational continuity. This approach is 
commonly referred to as "predictive maintenance" [3]. By 
anticipating issues in advance and promptly addressing them, the 
incidence of malfunctioning components within the factory is 
minimized. Consequently, this practice mitigates unanticipated 
costs and reduces instances of operational interruptions.

An AIoT product is expected to yield immediate outcomes 
from real-time data, delivering substantial value to consumers. 
Nonetheless, constructing precise and useful models that yield 
high accuracy often demands a substantial investment of time, 
spanning weeks, months, or even years. Moreover, these models 
necessitate ongoing adjustments and maintenance, which presents 
potential challenges when integrating them into IoT products,
including a requirement of dedicated and hands-on experienced
proficiency which is obviously a challenging process.

Considering an alternative perspective, a conventional product 
is typically designed for universal application, offering a 
standardized user experience for all customers without bespoke 
modifications. Conversely, AI models diverge across customers 
due to disparities in sensor measurements, application domains, 
and use cases. The impracticability of crafting a uniform model for 
diverse clientele necessitates a dual approach: an underlying, 
shared IoT product designed to serve all customers uniformly, and
a tailored AI solution that adapts significantly between customers. 
This presents a paradox: the IoT product alone lacks the appeal to 
attract a substantial customer base, while the diversity of AI 
requirements of customers poses challenges in creating a unified 
AI model.

To resolve this problem, adopting an AI approach 
characterized by a self-improving, adaptable, and modular black 
box is prudent. By embedding rudimentary AI capabilities into the 
IoT product, customers can initiate usage with basic AI 
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functionality, which evolves over time as data accumulates. This 
progressive evolution culminates in the system reaching an 
optimal state where customers can maximize benefits.

This paper delves into the outlined problem through the lens of 
the aforementioned use case, "Predictive Maintenance", which 
serves to offer a tangible illustration and enhance comprehension.

A. RELATED WORK
In the literature, there are many useful applications of AIoT. 

Sipola et al. [4] describe applications of moving AI computation 
near the IoT data sources in various domains such as security, 
mobile networks, healthcare, voice and image analysis and 
associated frameworks. Sun et al. [5] have proposed a resilient AI 
system integrated atop the Internet of Things (IoT), which 
significantly enhances sensor accuracy for the precise 
identification of object grasps within a virtual retail environment.
Chen et al. [6] have demonstrated the merge of AI and image 
recognition technologies into sensor systems embedded within an 
IoT framework. This integration facilitates improved pest 
identification mechanisms within agricultural systems. Zhang et 
al. [7] have introduced a valuable framework tailored for tunnel 
construction operations. By collecting specific data, this 
framework trains models designed to predict operational 
parameters for both the shield and ground response during 
subsequent phases of construction. This AIoT-based system 
augments information granularity and automation throughout the 
construction process, streamlining decision-making processes and 
minimizing the occurrence of accidents. In another study, Chen S. 
W. et al. [8] scrutinize recent advancements in combating the 
COVID-19 pandemic through the symbiotic utilization of IoT and 
AI. The article delves into comprehensive strategies for addressing 
the pandemic and explores prospective technological avenues for 
such endeavors. Mamza [9] has presented an AIoT based system 
incorporating medical devices, sensors, and web/mobile 
applications to create a globally accessible medical resource, 
enabling monitoring of vital signs like heart rate and blood 
pressure, even in remote areas without nearby hospitals.

In a closely related study, Prado et al. [10] examine the 
evolving landscape of next-generation embedded ICT systems, 
which possess the capability to autonomously execute tasks while 
being interconnected and collaborative. This research underscores 
the increasing importance of Edge computing in seamlessly 
integrating artificial intelligence (AI) into our everyday lives, 
particularly given the growth of the embedded ICT market. 
Nevertheless, a substantial challenge emerges from the complexity 
associated with the harmonization of data, algorithms, and tools 
for deploying tailored AI solutions on embedded devices, which 
has impeded widespread adoption. To address this challenge, the 
authors propose a modular AI pipeline designed to simplify the 
integration process. This pipeline facilitates end-to-end AI product 
development for embedded devices and comprises four key stages: 
data ingestion, model training, deployment optimization, and IoT 
hub integration.

Furthermore, leading companies in the IoT sector, such as 
Microsoft, offer a set of generic IoT services that can be enhanced 
through the incorporation of machine learning capabilities, thus 
transforming them into AIoT products. These AIoT products can 
be applied across a wide range of domains [11]. Amazon's AWS 

IoT Greengrass, for instance, provides the ability to perform on-
device inference at the edge while also offering cloud-based 
management. Although it supports a variety of edge devices, it's 
important to note that this service is currently available only in 
specific regions and conforms to Amazon's specific format [12]. 
In addition to enterprise-level AI services, there's an opportunity 
to shift our focus towards AI services oriented for edge computing, 
particularly those designed for vision-related tasks. One notable 
example is Eugene, a suite of machine intelligence services 
tailored specifically for IoT applications. Eugene encompasses 
various functionalities including data labeling, model training,
deployment optimization, and integration with IoT systems. This 
work not only showcases the efficient customization of deep 
neural networks but also introduces a runtime scheduling 
algorithm to optimize the selection of network depth [13]. 
However, it is important to recognize that these approaches 
generally require a prior understanding of machine learning in 
order to effectively integrate and utilize them within the intended 
solution.

II. OVERVIEW OF CURRENT IOT PRODUCT

In this section, we will begin by introducing the prevailing and 
basic design of an IoT product. On top of that, the proposed AI 
module will be introduced as well. A generic IoT product revolves 
around both real-time and historical data. Real-time data is 
particularly valuable for creating dynamic dashboards, facilitating 
ongoing monitoring, and enabling instant insights. On the other 
hand, historical data serves as a valuable resource for generating 
comprehensive reports and supporting data science endeavors. It
is important to note that historical data can be classified into 
different types. Short-term historical data, for instance, offers 
higher data freshness and is suitable for storage in hot-storage 
systems. It typically spans up to weekly data intervals. In contrast, 
long-term historical data possesses lower data freshness but 
comprises voluminous data, making it conducive for generating 
numerous reports and conducting meaningful data science 
analysis. This data type spans various time ranges, from days to 
years or even decades. While long-term historical data is 
particularly well-suited for data science activities, it is worth 
noting that short-term historical data also holds relevance for 
similar purposes. Although the outcomes may be constrained, they 
are immediate in nature, circumventing the need for prolonged 
data accumulation periods.

Fig. 1 High-level illustration of a basic IoT product.

Fig. 1 provides a high-level overview of a basic IoT product. 
A sensor initiates data generation, followed by a multiplexer that 
duplicates and transmits this data through Real-time and Historical 
Data channels. Below these channels, a set of services execute the 

ISSN 2305-7254________________________________________PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 193 ----------------------------------------------------------------------------



requisite business logic, and ultimately, the data is directed 
towards one or multiple databases. Real-time data is typically 
utilized immediately and discarded once its relevance wanes, 
whereas Historical data is persistently stored and actively 
employed for various purposes. In our context, historical data 
emerges as the optimal source to engage with and utilize. This 
preference stems from the imperative need for data, which serves 
as the nourishment vital to training our models. Indeed, data 
constitutes an essential cornerstone of models; a wealth of data 
enhances the precision of the models crafted.

In the IoT realm, you also possess entities that are subject to 
observation or control through sensors and actuators. These 
entities, referred to as assets, encompass tangible objects within 
your environment, including components such as a specific model 
of a robot arm, a section of a factory floor, a door, a production 
line, or a room. Additionally, asset types serve as foundational 
templates for assets. For instance, a robot arm could serve as an 
asset type for all robot arms within a factory. The fundamental 
attributes of a robot arm, such as vibration and angle sensors, as 
well as characteristics like model, material, and arm length, 
represent features inherent to this asset type. Each individual asset 
emanating from the robot arm asset type must adhere to these 
attributes. Telemetries like vibration and angle sensors become 
intrinsic to asset connections, while elements such as model, 
material, and arm length are stipulated within the system to render 
them operable. In practical terms, a factory might house numerous 
robot arms derived from this asset type—possibly numbering in 
the tens or hundreds. This construct mirrors the concept of an 
interface or a base class within object-oriented programming. 
Every piece of data generated within the system is linked to a 
specific asset. Consequently, it becomes feasible to retrace 
measurements through the asset's telemetries, simplifying 
monitoring and management processes. In the IoT context, these 
entities are commonly referred to as digital twins.

For a more comprehensive examination of the technical 
dimensions of this product, it is essential to delve deeper. This 
product is formulated within a containerized environment, 
specifically residing within Kubernetes [14]. The significance of 
Kubernetes technology cannot be overemphasized; it indeed 
stands as a leading-edge solution for hosting applications. While 
the specifics of Kubernetes are not extensively addressed within 
this paper, we will harness its preeminent advantages. Within this 
framework, each application is contained as an individual unit 
within Kubernetes. For the sake of better understanding, let us
consider a scenario involving two applications that collaboratively 
manage Historical Data. In this scenario, one application acquires 
data from sensors and refines it, while the other retrieves the 
refined data and populates multiple databases. These two 
applications are treated as separate deployments within 
Kubernetes, operating within distinct boundaries yet residing 
within the same namespace.

Fig. 2 illustrates the distinct APIs, each functioning as an 
independent containerized application within the Kubernetes 
environment. Meanwhile, the utilization of a timeseries database 
[15] emerges as an optimal choice for the storage of time-
dependent data. This database configuration empowers the 
seamless retrieval of historical data by temporal or aggregated 
parameters. Conversely, the hot storage database serves as an 
efficient repository for accessing recent data. Unlike the expansive 
timeseries database, the hot storage database operates as a cache 
and is subject to defined data retention policies.

Fig. 2 In-depth exploration of the Historical Data Pipeline to gain detailed 
insight into the basic IoT design.

In the case of a typical IoT device, let us imagine a customer 
wants an extra functionality. They want to track the movement of 
robot arms using sensors. Also, they need a system that can predict 
when something might go wrong and let the customer know. This 
project is about warning the customer ahead of time if there might 
be a problem with the robot arm. This way, the customer knows 
what's happening and can fix the robot arm before it breaks down 
completely.

III. PROPOSED SOLUTION

In this section, we provide an elaboration of the proposed 
solution. Leveraging the benefits conferred by the containerized 
ecosystem offered by Kubernetes, our approach encompasses the 
hosting of machine learning models within our system, 
encapsulated as containers. So, any designated model requires 
prior containerization as a prerequisite, often executed through the 
creation of a Docker image [16]. Once a model is dockerized 
(which can be hosted in a docker environment) [16], its portability 
is assured, rendering it adaptable to any Kubernetes-supported 
environment. Typically, data scientists construct their models 
employing Python [17], a programming language with a diverse 
array of machine learning libraries. It is important to note that 
while Python is the conventional choice, other programming 
languages remain viable alternatives. Within this encapsulated 
environment, the machine learning process will hide itself into a
black box, so that any related parts of this, which is not limited to 
programming language, but also enabling data wrangling, feature 
engineering, training, and inference phases of data science will be 
a minimal concern.

The acquisition of data is an imperative prerequisite for model 
development. In the context of IoT products, we bear the 
responsibility of ensuring a continuous stream of data. This 
sustains the model's capacity to discern patterns, execute data 
operations, and initiate the process of inference. However, 
provisioning of the data is not an easy objective. That is, blindly 
supplying extensive data spanning a year, daily snapshots, or an 
exhaustive real-time feed encompassing all assets is unsuitable. 
The parameters governing the extent and frequency of data supply 
should be defined in accordance with the unique requirements of 
each model, with the model itself possessing the most astute 
comprehension of these needs. Within our system architecture, 
Real-Time and Historical Data applications emerge as the ideal 
sources for supplying the requisite data. For instance, if a model 
necessitates data at hourly intervals on a per-minute basis, and its 
purpose is solely to train on data related to robotic arms, then we 
should exclusively provide this specific data to maintain efficiency 
and focus. Furthermore, a model possesses the capability to 
specify the communication protocol to be employed. This protocol 
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may encompass familiar standards such as HTTP, AMQP, or 
alternative protocols. In the case of HTTP communication, the 
model assumes the responsibility of exposing an endpoint for the 
purpose of data consumption, and this endpoint should be defined 
in advance, ensuring a smooth data exchange process.

An IoT product seeks valuable insights just as a model requires 
data. In this scenario, a connection needs to be established with the 
model to obtain outputs, which could include an anomaly score 
and a warning level. These outputs can then be employed for 
populating dashboards or initiating actions to alert users. It's 
crucial to define these flexible inputs and outputs in advance. To 
achieve this, we can create a manifest file once a specific model is 
developed and utilize it to initiate the model hosting process.

Fig.3 illustrates a representative manifest file, a crucial 
component in our system.

This file contains a description of the model, the preferred 
communication protocol, a score endpoint which serves as the 
destination for collecting data, a health check endpoint which 
regularly monitor the healthiness of model (the logic for assessing 
them model’s health is embedded within the model itself), hosted
location which indicates the real location of model (it is
noteworthy that a model can be hosted either within the system or 
externally, with the latter scenario involving the use of the 
manifest purely for data collection and proxying to an external 
model), docker container [18] image information which can be 
used to pull the model for deployment, trigger type which specifies 
the type of data the model is interested in (this could be real-time 
data, where the model receives data as it is generated by the IoT 
product, or it could be time-window-based, where data is sent 
periodically with a specified frequency (e.g., per minute) and time 
window size (e.g., hourly data).), required inputs, and expected 
outputs that should be clarified as per model. In the given example 
it will consume temperature data and will return an anomaly score 
and warning level.

This manifest file possesses human-readable attributes, and it 
is also capable of being recognized by our system, allowing for 
seamless configuration. To effectively manage models across 
various customers, it is imperative to integrate a model 
management application into the system. This application will 
have the ability to identify these manifest files, deploy the 
associated models within the system, establish their operational 
status, configure the requested data streams, transmit data, 
monitor the models during operation, assess their health, collect 
their outputs, and remove models as needed.

Within this application domain, two principal components play 
a pivotal role, as depicted in Fig. 4. The first component is the Data 
Companion API, which is created for each model. Its primary 
responsibility is to collect essential data from the system and feed 
it into the model as required. Additionally, it directly 
communicates with the model container to gather outputs, assess 
the model's health, and perform other related tasks. The second 
component is the Model Management API, which empowers users 
to submit manifest files to the system. It guides users in 
configuring essential settings within the manifest file, such as 
mapping inputs to telemetries of assets or asset types within the 
system and mapping outputs to relevant telemetries.

Fig. 3 An overview of a manifest file for a temperature anomaly detecting 
model.

Users can also employ this API to halt the execution of 
models, deploy Model Containers along with Data Companion 
APIs into the system, and define Data Companion API scopes to 
collect only the necessary data based on specified conditions in 
the manifest file. Furthermore, the Model Management API 
facilitates the collection of insights from the Data Companion API 
regarding the Model Container. In cases where the model's health 
is compromised and deemed irrecoverable, the Model 
Management API has the authority to cease all operations related 
to that particular model. In essence, the Model Management API 
serves as the system administrator for model management, while 
the Data Companion API functions as tightly coupled companion 
to specific model containers.

The central avenue for our data collection and data output 
transmission will be the Real-Time and Historical Data Service, 
which encompasses both the Data Collector API and the Data 
Pusher API. Through this service, we will gather data in real-time 
and archive historical data. All outputs generated by our models 
will serve as telemetry data points associated with specific assets. 
For instance, the anomaly score telemetry of a robot arm will be 
enriched with these output data, facilitating their display in user 
interfaces or triggering predefined actions.
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Fig. 4 An overview of Model Management Application with all components and 
business processes.

In Fig. 4, we observe that the Data Companion API and the 
Model Container are distinct applications, or Pods, within the 
Kubernetes environment. These applications are deployed or 
removed by the Model Management API into separate 
Kubernetes namespaces, which are also created by this API. 
Furthermore, the Model Management API is responsible for 
enforcing certain policies concerning the model containers in 
alignment with Kubernetes policies. These policies ensure that the 
created model containers do not excessively consume resources 
within the Kubernetes cluster. Additionally, they dictate that 
model containers can only communicate with their respective 
Data Companion API and must be managed by a non-root, 
unprivileged user within the container, adhering to well-
established Kubernetes security guidelines [19]. The primary 
motivation behind deploying these models into separate 
namespaces is to establish isolation between them. This 
segregation is crucial because our product operates in a multi-
tenant IoT environment [20], demanding meticulous attention to
security concerns.

The process of managing a model within a Kubernetes system 
involves various life cycles. The orchestration of these life cycles 
is overseen by the Model Management API. To achieve an 
optimal state management, the Saga orchestration [21] pattern is 
adopted, ensuring that each state triggers corresponding 
operations. A detailed representation of this process can be found 
in Fig. 5. Every model adheres to this predetermined life cycle as 

illustrated in the state diagram, and they persist in an active state 
unless explicitly removed from the system while in the "draft" 
phase. Prior to removal, a model must transition into the "draft" 
state by following the appropriate protocol. In situations where an 
irreparable health issue arises, the model gracefully reverts to the 
"draft" state after a series of attempts.

Fig. 5 State diagram of life cycle of a model.

Fig. 6 A fresh start for data science team where they create a useful model.

Firstly, the data science team may require data to conduct 
testing and validation of their models. To facilitate this, we offer 
access to our Real-Time and Historical Data APIs, allowing them 
to acquire the requisite data. Subsequently, the data science team 
proceeds to craft a high-end anomaly scoring model. They also 
generate a template project, incorporating essential HTTP 
endpoints to enable communication with our Data Companion 
API. This model is then containerized and uploaded to a registry, 
where it can be later retrieved by the Model Management API for 
deployment. Additionally, the data science team creates a 
manifest file in adherence to our predefined structure. This 
manifest file is prepared for submission into our system, ensuring 
it complies with our established guidelines and requirements. This 
procedure can be barely observed as in Fig. 6.
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Upon submission of a manifest file and the definition of input 
and output mappings, this information undergoes interpretation 
and is subsequently stored within a SQL database. A database 
schema, as illustrated in Fig. 7, can be adopted for this purpose. 
In this schema, the "Container Registry" table allows customers 
to store their container registry details, enabling the system to 
retrieve their container images. Within the "Model" table, 
comprehensive information related to the model, sourced from the 
manifest, is stored. Additionally, vital data pertaining to the 
model's health and its current state are regularly recorded. The 
"Model Template Mappings" table encompasses template input 
and output data, which are initially generated by the data science 
team. These templates correspond to the input and output sections 
delineated in the manifest's JSON file. Furthermore, the "Model 
Mappings" table captures the asset mappings associated with the 
inputs and outputs specified in the manifest file. For instance, if a 
manifest file contains "temperature" as an input and "anomaly 
score" as an output, this table facilitates the mapping of 
"temperature" to a real "Temperature (Celsius)" telemetry and 
"Anomaly Score (%)" telemetry for the "Robot Arm X1" asset 
within our system.

The "AssetTypeMappings" table serves as a critical 
component when opting to run models against asset types rather 
than individual assets. In essence, this approach allows for the 
deployment of a versatile model capable of accommodating any 
asset falling under a specific asset type, such as "Robot Arm”. For 
example, consider five robot arms denoted as X1, X2, Y1, Z1, and 
A2, all of which belong to the "Robot Arm" asset type. These 
robot arms can effectively utilize the same model. When a user 
establishes a mapping through the asset type, it becomes 
necessary to internally deconstruct this mapping into individual 
assets just before deploying the model. This ensures that each 
asset receives the appropriate model inference. Furthermore, it is 
crucial to notify the model whenever a new asset is added or 
removed within a specific asset type. This allows for the seamless 
inclusion or exclusion of assets in the model's inference process, 
maintaining its adaptability and accuracy as the asset inventory 
evolves.

In order to have better understanding of the design, we can 
refer to Fig. 8. In this diagram, a model is depicted as being 
stateful, implying that it continuously receives real-time data, 
gradually undergoing training and acquiring knowledge from this 
incoming data. It's essential to note that the model's effectiveness 
increases in proportion to the volume of data it receives. This 
model becomes fully integrated into our system, establishing 
itself as an integral component of our operations.

Fig. 9 provides a comprehensive view of the entire state 
diagram, offering valuable insights into the sequence of states and 
operations. Within this diagram, we also encounter a stateless 
model, which operates differently compared to its stateful 
counterpart. In the case of a stateless model, it retrieves a batch of 
data and conducts both training and inference operations within 
the confines of this specific dataset, yielding results accordingly. 
Subsequent batches of data entirely replace the previous ones, 
initiating a distinct training process and inference cycle.    This 
"statelessness" arises from the model's reliance on batches of data 
as opposed to individual real-time data points, as demonstrated in 
Fig. 8.

Fig. 7 Database schema for storing model information in SQL upon submission 
of a manifest file.

Fig. 8 Sequence diagram illustrating a stateful model completely hosted within 
the IoT system.
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The stateless model's primary function lies in its ability to detect 
anomalies within a given dataset. It provides a level of control and 
predictability, making it a preferred choice in situations where 
absolute trust in the model's continual learning capabilities may 
be lacking.

Fig. 9 Sequence diagram illustrating a stateless model completely hosted within 
the IoT system, providing full visibility of the state diagram.

Fig. 10 provides an illustrative depiction of how we can 
accommodate a model external to our system for various 
compelling reasons. These reasons may include scenarios where 
a model cannot be containerized or is too resource-intensive to be 
hosted within our IoT system. In such cases, all data-related 
operations are executed within this external model. However, a 
model container is designed to facilitate communication with our 
IoT system, ensuring the collection of data in compliance with 
established standards, and forwarding this data to the external 
model.

Fig. 10 Sequence diagram illustrating model logic hosted externally with Model 
Container acting as a data proxy for transmitting data to the external model, 
retrieving results, and integrating them into the system.

Within this diagram, another noteworthy feature is the use of 
callback URLs, which come into play when an asynchronous 
model is required. It is important to recognize that not all models 
can provide immediate data inference. Some models may 
necessitate significant time, potentially hours, to process 
extensive datasets or reach a suitable training threshold before 
they can commence inference operations. To address this, 
callback URLs are incorporated into the process. They are 
included in the requests both from the Data Companion API to 
the Model Container and from the Model Container to the 
Externally Hosted Model. This enables an asynchronous waiting 
mechanism, allowing other operations to proceed while awaiting 
the completion of the task. This approach ensures efficient 
handling of tasks that require extended processing times, 
contributing to a responsive and effective system.

This essentially encapsulates the fundamental workings of 
model management. The only requirement is that developers 
adhere to the specified object structure proposed by the Data 
Companion API when developing an endpoint and return data in 
the expected structure. Moreover, this proposal suggests the 
storage of simple yet generic models, such as temperature 
anomaly detection, in a separate repository along with their 
manifest files and corresponding model images. This facilitates 
the accessibility of these models to customers who may not have 
their own models yet. Customers can easily navigate the model 
library, select a basic model, and import its manifest file to initiate 
a new model for assets equipped with temperature sensors. While 
these pre-defined models may not achieve high precision, they 
provide quick and reusable solutions, thereby adding value in an 
efficient manner.
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IV. CONCLUSION

In this study, we have introduced a resilient and adaptable 
framework for augmenting AIoT capabilities within an IoT 
product. This framework shifts the responsibility of model 
development to individual stakeholders, providing them with the 
flexibility to design and deploy models that suit their specific 
needs. Additionally, we offer a repository for fundamental yet 
shareable models contributed by tenants, fostering a collaborative 
environment that benefits all customers. For customers equipped 
with data science teams, the framework offers full autonomy to 
design and seamlessly integrate their custom models into our 
ecosystem. The only requirement is adherence to our established 
IoT system data provisioning standards, simplifying the 
integration process. As IoT product owners, we eliminate the 
necessity of building extensive in-house data science teams. 
Instead, we can establish strategic partnerships with external data 
science companies, allowing us to readily access reusable, 
generic, and highly precise models when required. This 
collaborative approach provides a valuable "nice-to-have" asset 
in our ongoing pursuit of enhancing our IoT product and 
delivering cutting-edge solutions to our customers.
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