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Abstract—This paper provides an in-depth overview of the
federated learning (FL) applications within the healthcare do-
main. Firstly, we discuss the background of FL, including its
relationship with other machine learning (ML) technologies, the
drawbacks of conventional ML methods in the field of healthcare,
and how FL can alleviate these drawbacks. Second, we present
three different FL frameworks based on data partitioning and
describe possible medical scenarios. Thirdly, we classify current
research on FL applications into two categories based on the
types of data employed. Finally, we summarize the investigated
work and propose a number of potential research directions for
FL applications in healthcare.

I. INTRODUCTION

Artificial intelligence (AI) is rapidly evolving and expanding

these days, with machine learning (ML) being a specific ap-

proach and driving force behind many AI applications. Google

introduced the concept of federated learning (FL) in 2016

[1], [2], which is an ML paradigm that develops a common

model via multiple independent participants. The relationships

between FL, distributed machine learning (DML), and central-

ized machine learning (CML) are depicted in Fig. 1. In fact,

the main difference between FL and other ML approaches is

how data are organized during model training. Unlike CML,

which uses a centralized dataset for model training, FL enables

data to remain distributed across multiple sites during training,

which is similar to other DML approaches. But unlike typical

DML based on data parallelism or model parallelism, where

each participant holds a portion of the entire dataset or focuses

on a particular part of the entire model, FL does not require

data exchange, and each participant trains a model on its local

dataset.

Fig. 1. Venn Diagram for FL, ML and AI

There have been numerous ML applications in healthcare,

serving a variety of purposes, such as disease diagnosis and

prediction [3], drug discovery [4], and personalized medicine

[5]. While ML has the potential to revolutionize healthcare,

there are challenges and potential problems that must be

addressed to ensure successful and responsible implementa-

tion. For one thing, healthcare data are highly sensitive and

subject to strict privacy regulations [6], [7], so using ML

on patient data may raise concerns about data privacy and

security breaches. For another, having access to a broad set

of data is critical when developing ML models, particularly

deep learning (DL) models. When data access is limited due

to privacy rules and data owners’ unwillingness to share their

data, the available datasets may be smaller, more homoge-

neous, or lack adequate diversity. As a result, ML models

trained on limited data may fail to reflect the entire complexity

of healthcare scenarios, resulting in poor performance and

incorrect predictions [8], [9].

Our study investigates the application of FL in the field of

healthcare. Firstly, we introduce three types of FL frameworks

and provide a potential healthcare scenario for each frame-

work. Secondly, we outline the various kinds of data used in

the investigated papers. Thirdly, based on whether the data

used by the authors consists of image and text data or sensor

data, we classify the current FL applications in healthcare. We

conclude our investigation with a few ideas for future research

directions.

II. FEDERATED LEARNING

FL flameworks can be divided into horizontal federated

learning, vertical federated learning, and federated transfer

learning based on the way data are partitioned across different

participants. Some of them inevitably require data alignment,

so encryption or other privacy-preserving techniques must be

employed in such cases.

A. Horizontal Federated Learning (HFL)

Datasets used in HFL have significant overlap in features

but less overlap in sample IDs [10], as shown in Fig.2. The

typical architecture and operation of HFL are shown in Fig.

3. A central server initializes and distributes a global model

to participating clients. Each client trains a local model with

the full feature space on its own dataset and sends the updated

model parameters to the central server. After that, the server
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Fig. 2. Data Partition in HFL

aggregates these model updates based on a specific algorithm

and updates the global model. These steps continue until

certain requirements are met (e.g., the global model converges

or time runs out), allowing the global model to benefit from

distinct datasets without data exchange.

Fig. 3. Architecture and Operation of HFL

Generally speaking, the goal of HFL is to minimize the

following objective function:

min
w

F (w),where F (w) :=
m∑

k=1

pkFk(w)

Here:

m is the number of clients;

pk is typically defined by the kth client, which specifies the

client’s relative impact; under the constrains of pk � 0 and∑
k pk = 1, the natural settings are pk = 1

n or pk = nk

n [1],

where n =
∑

k nk is the total number of data samples held

by all participating clients;

Fk is the local objective function for the kth client, often

defined as Fk(w) = 1
nk

∑nk

jk=1 fjk(w;xjk , yjk), where nk is

the number of data samples held by the kth client.

It is worth noting that the choice of local objective function

needs to be determined by the specific algorithms (e.g.,

Logistic Regression (LR)) or ML models (e.g., Convolutional

Neural Network (CNN)).

In a scenario of HFL for disease diagnosis, multiple hos-

pitals possess diverse sets of patient data related to a specific

disease and intend to develop a disease diagnosis model. Each

hospital trains the local model on its own dataset and just needs

to send model updates to the central server periodically.

B. Vertical Federated Learning (VFL)

Datasets used in VFL share a number of sample IDs but

have little in common in the feature space, as shown in Fig.

4. VFL training differs from HFL training in that the features

Fig. 4. Data Partition in VFL

of the same sample are distributed among various participants,

and each participant cannot complete model training with its

own dataset. To compute model updates, VFL requires two

additional steps: aligning datasets with the same sample IDs

and training models on these aligned datasets with privacy-

preserving techniques, as demonstrated in Fig. 5.

Fig. 5. Architecture and Operation of VFL

In a scenario of VFL regarding remote patient monitoring,

wearable health devices and medical records are utilized to

provide patients with customized medical care. To ensure that

companies holding data from wearable devices and hospitals

holding record data can align the same sample IDs, an

encryption-based alignment technique [11], [12] is employed.

Secure multiparty computation with secret sharing is one

implementation method for VFL [13]. Each participant shares

their own features with the other participants using the secret

sharing method at the beginning of the learning process.

Hence, each participant possesses encrypted features in all

dimensions. Then they use the encrypted features to train

local models, which are later decrypted to obtain plaintext

parameters.

C. Federated Transfer Learning (FTL)

FTL combines the methodology of transfer learning. Trans-

fer learning typically involves two domains: the source do-

main, where the model is pretrained, and the target domain,

where the model needs to be adapted or refined. A model

is pretrained on a large dataset from the source domain,
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which functions as a knowledge base containing the learned

general features and patterns from the source domain. Once

the pretraining is complete, the model parameters are typically

fine-tuned with data from the source domain to make the

model appropriate for the target domain.

The basic idea of FTL is that the features learned during the

source task can be useful for the target task, despite differences

in data distribution, data scale, or context between the tasks.

FTL is applicable in situations where datasets have limited

overlap in both samples and features [14], as depicted in Fig.

6. But FTL does not have a fixed framework: FL can be used

to train a model in the source domain before adapting to the

target domain [15]; it can also be used to aggregate the models

after adapting to the target domain [16].

Fig. 6. Data Partition in FTL

In a scenario of FTL where two medical institutions in

different cities hold different types of medical images, they

can leverage each other’s data to improve the accuracy of

the model for disease detection and diagnosis as follows:

each institution pretrains a local model on its own image

dataset; then, they share a portion of their model’s weights

as knowledge transfer prior to building the global model.

D. Benefits and Challenges

FL has emerged as a promising approach for various health-

care applications. For one thing, it enables model training on

decentralized data sources without sharing raw data, which

preserves patient privacy. For another, since the size of model

updates is typically much smaller than that of an actual dataset,

FL helps to reduce communication costs associated with raw

data transmission (e.g., latency and transmit power [17]–[20].

However, FL still faces challenges [17], [19], [21], includ-

ing:

1) Statistical Heterogeneity: Data distributions at each

client are likely to differ, and data quality is not guar-

anteed, resulting in poor global model performance.

2) Security Issues: Assuming that all of the clients are trust-

worthy is impossible, so additional privacy-preserving

techniques are necessary to protect medical data from

untrustworthy clients or third-party attackers.

3) Real-time Data Stream: real-time data produced by edge

devices such as wearables is typically fast, massive, and

dynamic, and must be handled in real time.

4) Client Selection: FL requires selecting eligible clients to

participate in the training process based on some criteria.

This can be challenging when the clients have limited

resources or when the network is large. It also requires

selecting clients in a fair and unbiased manner to ensure

that all clients have an equal opportunity to participate.

III. LITERATURE ANALYSIS

A. Research Methodology

Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) has become a widely acknowledged

standard for presenting evidence from systematic reviews in

health-related organizations and journals. Although our study

is more of an extensive investigation than a systematic review,

its research methodology is still guided by PRISMA.

B. Research Sources

The literature search is based on a variety of databases,

including IEEE Xplore, ACM Digital Library, ScienceDirect,

Springer, Web of Science, PubMed, and JMIR.

C. Inclusion and Exclusion Criteria

1) Publication Date: Our study includes articles published

from 2018 to July 2023. Although FL was proposed in

2016, we observed that research on the application of

federated learning in the healthcare field has only begun

to grow significantly since 2018.

2) Research Type: Only journal articles and conference

proceedings were included, while conference abstracts

only, books, editorials, and commentaries were not.

3) Search Keywords: The search was carried out using key-

word combinations such as “federated learning” AND

(“healthcare” OR “medical*”).

4) Initial Analysis: The title and abstract help in making an

initial screening to exclude those that are not directly rel-

evant to the intersection of FL and healthcare. Studies on

COVID-19 were excluded because the common datasets

used in these studies remain rooted in the past compared

to the rapidly mutating virus and the growing variety of

symptoms, which may make these studies, particularly

the early ones, lack a high degree of adaptability.

5) Duplicate Removal: Papers from various sources were

integrated, and duplicates were removed.

Based on PRISMA and the inclusion and exclusion criteria,

35 articles were included in our investigation.

IV. FL APPLICATIONS IN HEALTHCARE

Disease diagnosis and prognosis are essential aspects of

healthcare, which involve analyzing medical data, such as

clinical records, imaging scans, laboratory results, and other

relevant data sources, to determine the presence of a particular

disease or predict the likelihood of its occurrence in the

future. In addition, remote monitoring plays a significant role

in disease diagnosis and prediction by enabling continuous

and real-time monitoring of patients outside of traditional

healthcare settings.

ML empowers healthcare professionals with advanced tools

to accurately diagnose diseases and predict their occurrence.
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Manual analysis of medical data is time-consuming and error-

prone in traditional procedures. ML provides an engine for

identifying and utilizing complex patterns, correlations, and

features in data. However, while conventional ML techniques

have made significant progress in healthcare, FL offers unique

advantages that can amplify the accuracy, robustness, and

ethical considerations of disease diagnosis and prognosis.

Our research categorizes FL healthcare applications into two

primary categories based on the nature of the training data they

use: image and text data, and sensor data.

1) Image and text data can be derived from the sources

listed in Table I, which appear frequently in the papers

we examined.

TABLE I EXAMPLES FOR IMAGE AND

TEXT DATA

Name Description

Whole Slide Image (WSI) [22], [23]
a high-resolution digital scan of entire glass slides comprising
biopsied tissue samples

Cancer Genome Atlas (TCGA) [24], [25]

a large-scale, collaborative research endeavor launched in the
US by the National Cancer Institute (NCI) and the National
Human Genome Research Institute (NHGRI) to better
understand the molecular basis of cancer

Magnetic Resonance Imaging (MRI) [26]

a common and non-invasive medical imaging technique that
employs a combination of strong magnetic fields and radio
waves to facilitate the in-depth visualization of internal
structures within the human body

Electrocardiogram (ECG or EKG) [27], [28]
a medical test that measures the heart’s electrical activity and
can be used to evaluate the heart’s rhythm, rate, and overall
condition

Electroencephalogram (EEG) [29]
a medical test that measures the brain’s electrical activity and
can be used to diagnose various neurological conditions and
monitor brain activity during various states

Electronic Health Record (EHR) [30], [31]
a digitalized compilation of a patient’s medications,laboratory
results, imaging reports, and clinical documentation

2) Sensor data are derived from various sensors embedded

in medical devices, wearables, or other equipment that

monitor specific physiological or environmental parame-

ters and collect real-time data from patients, individuals,

or the surrounding environment. In this case, sensor data

are typically numerical measurements and readings and

do not include image or text data.

Within each of these two categories, many studies have been

conducted to examine the application of FL in different use

cases.

A. Applications using Image and Text Data

1) Cancer: Cancer is a complex group of diseases with

diverse manifestations and outcomes. Cancer and tumors are

closely related. Tumor is a broad medical term that refers

to any abnormal lump or mass of tissue. Tumors can be

benign (non-cancerous) or malignant (cancerous) and cancer is

a specific type of malignant tumor. The term ”cancer” typically

refers to a group of diseases characterized by the presence of

malignant tumors. These malignant tumors can occur in vari-

ous parts of the body. Tumor segmentation involves outlining

the exact boundaries or contours of a tumor within an image

(e.g., MRI). This allows medical professionals to visualize the

size, shape, and location of the tumor.

1) Brain Cancer
Brain tumor segmentation is a critical component of

brain cancer detection, diagnosis, treatment, and re-

search.

Sheller et al. [32] first introduced FL to multi-

institutional collaboration. For comparison, the authors

use models based on institutional incremental learning

(IIL), where each institution trains the model and then

passes it to the next institution for training until all insti-

tutions have trained once, and CIIL (cyclic IIL), where

IIL is performed in rounds with prescribed numbers of

epochs. The experimental results show that FL models

reach a performance comparable to models based on

CML and outperform models based on IIL and CIIL

approaches.

Differential privacy is a mathematical framework that

enables the analysis of data without disclosing sensitive

information by adding noise to the data in a way that

preserves the overall statistical properties of the dataset

while obscuring the data contribution. Li et al. [33]

implement the first FL system for medical image anal-

ysis that protects patient data with differential privacy.

The experimental results show a tradeoff between model

performance and protection costs. The authors finally

conclude that, even with a robust differential privacy

assurance, the allocation of privacy costs is conservative.

Bercea et al. [34] propose the Federated Disentan-

glement (FedDis) for the collaborative training of an

unsupervised deep convolutional autoencoder on MRI

scans from four distinct institutions. These institutions

train the parameters of shape to model the anatomical

structures of a healthy brain. The experimental results

show that FedDis improves anomaly segmentation re-

sults for tumors over locally trained models.

2) Lung Cancer
Rajendran et al. [35] focus on predicting the risk of

tobacco- and radon-related diseases, both of which are

closely associated with lung cancer and chronic ob-

structive pulmonary disease. The experimental results

show that applying the FL process did not improve the

LR model’s performance as much as that of artificial

neural network models, due to the LR algorithm’s lower

complexity and lack of iterative training.

Adnan et al. [36] combine FL with differential privacy to

develop models for medical image analysis. Specifically,

the training process for each local model consists of two

steps: bag preparation and multiple-instance learning.

Lung cancer images from the TCGA dataset are used to

build a simulated environment to validate the approach.

According to the experimental results, the suggested

method achieves about the same level of performance

as CML with extra privacy protection.

3) Breast Cancer
Along with gigapixel WSIs from several institutions,

Lu et al. [37] use FL, multiple instance learning, and

differential privacy to help with breast cancer histo-

logical subtyping classification tasks. The experimental

results show that models trained with the proposed FL

technique perform as well as or better than models based

on CML.
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Classifying breast density helps determine how much

fibroglandular tissue increases breast cancer risk [38].

Roth et al. [39] employ FL to build a breast density

classification model based on medical imaging and the

Breast Imaging Reporting & Data System proposed by

the American College of Radiology in 1986. Seven

clinical institutions from around the globe participated

in the experiments, and the results show that FL models

perform better on average than models trained using only

local data from one institute.

4) Liver Cancer
Hepatocellular carcinoma (HCC) detection is a typical

component of liver pathology image analysis. However,

HCC detection might fail when patches cover a small

tissue area without enough information about the sur-

rounding cell structure, since tumor and benign liver

tissue exhibit similar apoptosis, necrosis, and steato-

sis. To address this issue, Yang et al. [40] propose

the Feature Aligned Multi-Scale Convolutional Network

architecture, which is based on WSIs and integrates

elements from different magnification levels to reference

additional surrounding information.

5) Prostate Cancer
Cross-client variation in medical image data poses a

significant challenge for practical applications. To mit-

igate this issue, Yan et al. [41] propose a variation-

aware federated learning framework where the variations

among clients are minimized by transforming images

of all clients onto a common image space with a

privacy-preserving generative adversarial network. The

experimental results indicate that models trained with

the proposed framework perform comparably to those

trained with CML and better than models trained on

single datasets or even with typical HFL.

6) Skin Cancer
Cai et al. [42] show a way to find skin cancer using FL

and a deep generation model called DualGANs (which

is used to deal with the issue of incomplete data). The

authors test and compare how well the proposed model

works in a number of different situations, including IID

and non-IID data, as well as fully connected and sparse

convolutional neural networks. The experimental results

show that the proposed method attains a high skin cancer

detection rate with high accuracy.

2) Neurological Disorders: Neurological disorders are dis-

eases of the central and peripheral nervous systems, which

include stroke, Parkinson’s disease, and Alzheimer’s disease.

1) Stroke
A stroke occurs when the blood supply to a portion of

the brain is interrupted or when a blood vessel in the

brain ruptures. Several studies on the improvement of

stroke diagnosis using ML have been undertaken during

the last few decades [43].

WeBank and Tencen’s tech experts created and im-

plemented a federated version of a stroke prediction

model, based on Tencen’s previous work on the model,

WeBank’s self-developed privacy-preserving framework,

and FATE (an industrial-level open-source secure com-

puting framework) [44]. This is the second implemen-

tation of WeBank’s new privacy-protecting technology,

which could help millions of people prevent strokes.

Victor et al. [45] present FL-PSO, a FL-based system

for brain stroke prediction that employs particle swarm

optimization for model optimization. The experimental

results show that selecting the best hyperparameters for

global model training can increase accuracy.

2) Parkinson’s disease
Dipro et al. [46] use an open-access dataset and biosam-

ple library of Parkinson’s disease, such as single-photon

emission computed tomography and MRI, to train three

types of CNN models (VGG19, VGG16, and Incep-

tionV3) for the detection of Parkinson’s disease. The

experimental results show that FL with VGG19 has the

highest accuracy.

There have been data-driven computational methods

relying on a large number of high-quality clinical assess-

ments. Reyes et al. [47] investigate the data imputation

and reconstruction of clinical scores from the Parkinson

Progression Marker Initiative. They also compare the

performance of two aggregation algorithms: FedAvg and

precision-weighted FL. The experimental results show

that the former provides more precise reconstruction,

whereas the latter is better suited to handle data het-

erogeneity.

3) Alzheimer’s Disease
Huang et al. [48] propose Federated Conditional Mutual

Learning (FedCM), a framework for federated mutual

distillation. Their work is the first to apply FL to the

classification of Alzheimer’s disease. FL with knowl-

edge distillation [49] uses all available data without dis-

closing local private data. This method was previously

employed by Federated Learning via Model Distillation

(FedMD) [50]. FedCM’s authors argue that, despite

FedMD’s current success, particularly on synthesized

datasets, there are challenges in applying the framework

to actual medical applications. FedCM considers clients’

local performance and similarity, enabling client-aware

mutual learning. The experimental results show that

FedCM performs better than FedMD.

3) Dermatological Diseases: Dermatological diseases, also

referred to as skin diseases, are a broad range of conditions

affecting the skin.

Dermatology medical images are susceptible to attacks

during transmission, which will result in malicious tampering

or privacy data disclosure. To address the security issue, Han

et al. [51] propose an FL-based robust zero-watermarking

scheme. The experimental results reveal that the proposed

scheme is more resistant to conventional and geometric attacks

than six other zero-watermarking schemes. The proposed

scheme is suitable for specific requirements of medical images,
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as it neither modifies important information contained in

medical images nor discloses personal information.

Multiple FL studies presume that all data are labeled, which

is impractical in many situations in the real world. Further-

more, the lack of labels renders supervised FL implausible. Wu

et al. [52] propose Federated Contrastive Learning (FCL), an

on-device framework for diagnosing dermatological diseases

that takes into account inadequate data labeling. Specifically,

FCL initializes the model using distributed unlabeled data and

then conducts disease diagnosis using a limited number of

labeled data. The experimental results show that FCL outper-

forms the other four pre-training baseline models (Random

init, Local CL, Rotation, and SimCLR).

Elayan et al. [53] propose a framework to train DL models

for skin disease detection, which employs FL and transfer

learning to address the problem of limited healthcare data

availability. They also propose an algorithm for the automated

acquisition of training data. One of the Keras application

DL models based on CML, ResNet50, was used to initialize

the FL global model and as a baseline for comparison.

The experimental results show that the proposed FL method

achieves generally better performance and is more privacy-

preserving than the basic ResNet50 model, but the increased

model conversion time may compromise the quality of service

to the user.

4) Cardiovascular Diseases: Cardiovascular diseases are a

group of disorders of the heart and blood vessels. Arrhyth-

mia is one type of cardiovascular disease that refers to an

abnormal heart rhythm. ECGs provide extensive information

about the cardiac rhythm and are vital to clinical treatment.

Zhang et al. [54] propose a FL-based arrhythmia detection

algorithm for auxiliary diagnosis and therapy. Since ECG data

collected from different medical institutions are typically non-

IID, which may lead to the non-convergence of FL-based

algorithms, the authors optimize their algorithm by combining

partial ECG data from each medical institution. Compared to

baseline algorithms such as FedAvg [1] and FedCurv [55],

their algorithm obtains significant improvements on non-IID

ECG.

Raza et al. [56] design a federated healthcare framework

with ECG, explainable artificial intelligence (XAI) and CNN.

Specifically, CNN-based autoencoders and classifiers sort ar-

rhythmias into different groups; an XAI-based module ana-

lyzes classification results and helps clinical practitioners make

quick and reliable decisions. The experimental results show

that the proposed classifier outperforms existing arrhythmia

detection methods using either noisy or pristine data.

5) Autism Spectrum Disorder (ASD): Autism spectrum

disorder is a term used to describe individuals with early-

appearing social communication deficits, repetitive sensory-

motor behaviors, and/or highly restricted interests that are

associated with a strong genetic component and other causes

[57].

Functional Magnetic Resonance Imaging (fMRI) measures

the small changes in blood flow that occur with brain ac-

tivities [58]. Li et al. [59] focus on identifying ASD based

on resting-state fMRI data from the Autism Brain Imaging

Data Exchange dataset. They employ a privacy-preserving

FL technique that uses a randomization mechanism to alter

shared local model weights. Besides, they propose two do-

main adaptation methods, considering systemic differences in

fMRI distributions at various sites. The experimental results

show that it is promising to use multi-site data without data

sharing to improve the performance of neuroimage analysis

and identify reliable disease-related biomarkers.

6) Psychiatric Disorders: Psychiatric disorders refer to a

broad range of problems that disturb a person’s thoughts,

feelings, behavior, or mood.

1) Depression
Depression is a common disease in the real world.

Currently, the diagnosis of depression relies almost

exclusively on the opinions of the physician and is

determined through communication with the patient and

relevant questionnaires.

To train a sophisticated DL model, large and diverse

patient data are required. However, DL models trained

on restricted datasets have poor clinical performance in

a new location with different data. Ahmed et al. [60]

propose a method for extracting depression symptoms

from text based on FL, Natural Language Processing

(NLP), and attention-based learning. The experimental

results indicate that FL has practical advantages over

traditional supervised learning methods.

Chhikara et al. [61] propose a FL-based schema that

derives features from images and audio for automatic

emotion recognition, which can detect depression for

an individual at an earlier stage and recommend that

the individual consult with a therapist. The classifier

for facial expression recognition is a CNN-SVM model.

The experimental results show that applying typical HFL

to the CNN-SVM classifier can enhance the classifier’s

performance by achieving greater accuracy.

2) Inpatient Violence
Inpatient violence is a serious issue in psychiatry that

concerns hospital staff and patients. Knowing who is

likely to become violent can affect personnel levels and

reduce severity. Borger et al. [62] examine the applica-

tion of FL and NLP to violence risk assessment. The ex-

perimental results show that the FL model outperforms

local models and is comparable to the model based on

CML, implying that FL can be applied successfully in

a cross-institutional scenario and support novel clinical

note-based applications.

7) Adverse Drug Reactions: An adverse drug reaction is

a significantly harmful or unpleasant reaction resulting from

an intervention related to the use of a medicinal product. It

can be used to predict the targeted treatment, dosage regimen

adjustment, or product withdrawal. [63].
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among opioid drug users and extrapyramidal symptoms among

antipsychotic drug users. In addition, they present two new

local model aggregation techniques to improve the global

model’s prediction. For two types of adverse drug reactions,

the experimental results show that the proposed FL approach

obtains comparable performance to models based on CML and

outperforms models based on local learning.

8) Predict Hospitalization: FL with clinical data, including

EHRs, holds promise for enhancing mortality and hospital stay

predictions. EHRs provide a wealth of patient data, including

medical history and demographics, enabling FL to collabora-

tively build accurate prediction models while respecting data

privacy.

Brisimi et al. [65] develop the iterative cluster Primal Dual

Splitting (cPDS) algorithm to solve the sparse Support Vector

Machine (SVM) problem. They used cPDS on heart disease

patients’ de-identified electronic heart records from the Boston

Medical Center. Demographics, diagnoses, admissions, and

other medical histories are combined to define each patient.

The experimental results show that cPDS can predict hos-

pitalization within a specified year, and that cPDS improves

convergence rates and lowers communication costs compared

to traditional CML and DML solutions.

Huang et al. [66] propose the Community-based Federated

Machine Learning (CBFL) algorithm to address the problem

of non-IID ICU patient data. CBFL clusters EMR data into

multiple communities and simultaneously trains one model per

community, resulting in a more efficient learning process. In

both mortality and stay time prediction tasks, the experimental

results show that CBFL converges to higher predictive accu-

racy in fewer communication rounds than the typical HFL

model.

B. Applications using Sensor Data

Internet of Medical Things (IoMT) refers to the network

of interconnected medical devices, sensors, wearable devices,

and healthcare systems that collect, transmit, and exchange

medical data and information over the Internet. FL plays

a crucial role in IoMT, especially in monitoring and data

analysis. This segment focuses on leveraging FL’s capabilities

to support medical diagnoses and addressing some of the

challenges encountered by FL-based applications within the

IoMT domain.

1) Support Medical Diagnoses:

1) Arterial Blood Pressure (ABP)

Doctors employ ECGs and blood pressure measures to

understand heart health. Given that continuous ABP

monitoring is invasive and expensive, Brophy et al.

[67] propose a federated framework that infers ABP

from one optical photoplethysmogram (PPG) sensor (a

simple non-invasive optical technique used to detect

volumetric changes of blood in peripheral circulation).

The study compares the proposed framework with a non-

federated framework, both of which employ the same

type of ML model. The experimental results show that

the federated framework’s models have slightly degraded

performance compared to models trained using the non-

federated framework. Since the federated framework has

the advantage of preserving data privacy by not requiring

data centralization, it still shows promising results in

modeling ABP.

2) Depression
Xu et al. [68] implement FL to analyze and diagnose

depression using data from a study based on BiAffect, a

free mobile application. The authors develop a general

multiview FL framework that employs multi-source data.

They also fix conflicting multiview data time series

with later fusion techniques. The experimental results

show that FL with enough participants results in greater

accuracy for depression prediction than local training.

3) Daily Activities
Daily activities have a significant i mpact o n people’s

health. Recent advancements in wearable technologies

assist individuals in understanding their health status

through activity monitoring with devices such as smart-

phones, wristbands, and smart glasses.

Chen et al. [15] propose FedHealth, the first FTL frame-

work for wearable healthcare. FedHealth aggregates data

with FL and then creates relatively personalized models

via transfer learning. Transfer learning allows for the

use of pre-trained models and knowledge from other

domains to improve the accuracy and efficiency o f the

models. This is especially useful in scenarios where

user data is limited or difficult t o o btain. Wearable

activity recognition experiments and real Parkinson’s

disease auxiliary diagnosis applications have evaluated

that FedHealth performs better than traditional methods

(K-Nearest Neighbor, Random Forest, and SVM) trained

on single datasets.

Fan et al. [69] propose the Federated Learning Driven

IoMT (FLDIoMT) framework that facilitates flexible

deployment of IoMT services while addressing privacy

and security concerns. FLDIoMT implements iSmile, a

system providing sleep monitoring and emotion-aware

services to support psychological analysis. The exper-

imental results show that the model accuracy of the

Choudhury et al. [64] propose a FL-based method to

build a global ADR prediction model using decentralized

health data from multiple local sites. To demonstrate the

effectiveness of their strategy, they predict the chronic use
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learn from each user’s input separately and produce

personalized predictions. The experimental results show

that the personalized server model and the personalized

federated model have the highest accuracy, whereas the

nonpersonalized server model and the nonpersonalized

federated model have lower accuracy.

2) Address Technical Challenges: The research fields of

the following studies are at the intersection of medical health

and FL, but their focus is on solving certain technical chal-

lenges, particularly those likely to be encountered when FL is

combined with IoT.

1) Imbalanced and Non-IID Data
Due to the diversity of sensor devices and their limited

storage capacity, the size of a single local dataset will

be small while the data types can be broad.

Wu et al. [71] propose FedHome, a cloud-edge FL

framework for personalized in-home health monitoring.

FL enables participants to train anomalous health detec-

tion models in collaboration while keeping health data

private. FedHome further uses a generative convolutional

autoencoder to address the issue of uneven and non-IID

data. The study evaluates the performance of FedHome

against several other models, including those based

on traditional CML and typical FL. The experimental

results show that FedHome outperforms other models

in terms of test accuracy and communication overhead.

2) Class Imbalance

Zhang et al. [72] propose FedSens, a FL framework that

can address the challenge of class imbalance. FedSens

employs both a new local update scheme inspired by

the curiosity-driven reinforcement learning model and

an adaptive global update scheme using online regret

minimization. These two parts allow each edge device

to choose the best local and global update strategy. This

can make the AHD model more accurate when there is a

3) Willingness to Participate (WTP)

Aside from privacy concerns, varying levels of WTP

are a source of concern. In an FL system, some users

may be more intrinsically motivated to contribute if the

development of an application directly benefits them,

whereas others may intend to take advantage of others’

efforts [73], [74]. Moreover, many IoT-based healthcare

applications rely on longitudinal data collected over

an extended period of time [75], but the WTP of a

user might change over time. Therefore, an incentive

scheme should be developed to guarantee the long-term

participation of users with dynamic WTP values in the

presence of information asymmetry.

In light of this, Lim et al. [76] propose a dynamic

contract design for the FL network that addresses the
challenges of WTP. A self-revealing mechanism of

contract design ensures that each user only chooses

the contract that is designed for its type. By providing

appropriate incentives that match their WTP, users can

be incentivized to participate in the training process.

The network also uses a profit function, a mathematical

representation of the model owner’s profit derived from

the FL-based collaborative model training process, and

takes into account model accuracy, data quantity, and

contract rewards. The experimental results show that

the dynamic contract scheme can lead to higher profit

than the uniform pricing scheme (a fixed data quantity-

contract reward bundle offered to all users).

4) Constrained Resources

Given the growing size and complexity of current neural

network models, training models on wearable devices

with limited resources becomes inefficient, if not im-

possible.

Guo et al. [77] propose the Federated Edge Learn-

ing (FEEL) system that boosts training efficiency with

an edge-based training task offloading strategy and

strengthens privacy protection through differential pri-

vacy. Models based on CML and local training are

used as baselines in the experiments to evaluate the

performance of FEEL. The experimental results show

that the CML model has optimal and stable performance;

the performance of FL is comparable to that of CML

while satisfying privacy requirements; the average per-

formance of models trained on local datasets is the worst

and fluctuates greatly with different data distributions.

Table II shows the a summary of the papers examined in

this study.

class imbalance. The experiments on the stress detection

application show that FedSens achieves a higher level of

performance than the best-performing baseline, Astraea,

which employs a weighted loss function to resolve the

class imbalance problem.

FL mechanism is close to that of the CML mechanism

and higher than that of local training. The study also

discusses the potential of the FL mechanism to achieve

a more significant increment in accuracy as the number

of local clients increases.

Liu et al. [70] apply ML to the publicly available

Wearable Stress and Affect Detection dataset to pre-

dict individual stress levels and emotional states. The

study examines the effectiveness of various ML models,

including personalized and nonpersonalized FL models

and server models (trained on a centralized dataset

maintained on the server). A personalized model is an

ML model tailored to the distinctive features of each

user. Specifically, p ersonalized m odels a re constructed

by adding user embeddings to the neural network, which

encode user-specific v ariables a nd e nable t he m odel to
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TABLE II LITERATURE SUMMARY

No. Ref. Research
Area

Training
Data

FL
Framework Contributions

1 [40]
HCC;

liver tumor
WSI HFL

Mitigate the challenge of HCC detection failure caused by similarities between tumor and benign
liver tissue, especially in cases where patches cover a limited tissue region without adequate
surrounding cell structure information.

2 [37]
breast cancer;

renal cell
cancer

WSI HFL
Combining FL and weakly supervised multiple instance learning; Consider the challenges of the lack
of detailed annotations.

3 [41]
prostate
cancer

ADC image HFL
Mitigate the challenge posed by cross-client variation in medical image data and outperform HFL
frameworks for the automated classification of prostate cancer.

4 [35]
lung cancer;

COPD
EHR HFL

Investigate and evaluate several FL implementations that predict the risks of tobacco and radon
related diseases.

5 [36] cancer TCGA HFL
Combining FL and DP; Investigate effects from IID and non-IID data, the number of healthcare
providers, and dataset sizes; Achieve comparable performance to conventional training and offer
a high privacy guarantee.

6 [42] skin cancer skin image HFL
Evaluate the performance of the proposed model under several conditions: IID/non-IID data and
sparse/fully connected CNNs; Attain a high skin cancer detection rate.

7 [39] breast density BI-RADS HFL
Show that the FL model performs better on average than models trained with only local data from
an institute.

8 [32] brain tumor MRI HFL
Present FL for multi-institutional collaboration for the first time; Achieve comparable performance
to models trained based on sharing data.

9 [33] brain tumor MRI HFL Combining FL and DP; Implement the first privacy-preserving FL system for medical image analysis.

10 [34] brain tumor MRI HFL
Improve anomaly segmentation results of locally trained models; particularly helpful for institutes
with both healthy and anomaly data.

11 [48]
Alzheimer’s

disease
MRI HFL Attain the highest recognition rates compared to FedM and some other frameworks.

12 [47] PD PPMI HFL
Evaluate two types of aggregation algorithms in distributed learning environments for data imputation
and reconstruction of clinical assessment.

13 [44] stroke
EHR;

prescription;
inspection

HFL The second implementation of the new privacy-preserving technology of WeBank.

14 [45] stroke text HFL Indicate that selecting the best hyperparamete for global model training can increase accuracy.

15 [51]
dermatological

diseases
dermatology

medical image
HFL

Provide an FL-based robust zero-watermarking scheme; Address privacy and security issues; being
more resistant to conventional and geometric attacks than previous zero-watermarking schemes.

16 [52]
dermatological

diseases
dermatology

medical image
HFL

Consider the problem of insufficient data labeling; have a greater diagnostic accuracy than current
methods in experiments on dermatological disease datasets with diverse skin colors .

17 [53]
dermatological

diseases
dermatology

medical image
FTL

Use transfer learning to overcome the challenge of restricted healthcare data availability; have
higher AUC, accuracy, precision, recall, and F1 score.

18 [54] arrhythmia ECG HFL
Combining FL, partial ECG and elastic weight consolidation; Obtain significant improvements in
recall and precision for non-IID ECG.

19 [56] arrhythmia ECG HFL Outperform existing detection methods based on either noisy or pristine data.

20 [59] ASD fMRI HFL

Provide privacy-preserving FL with a randomization mechanism to alter shared model updates;
provide two domain adaptation methods considering systemic differences use multi-site data without
sharing to improve the performance of neuro image analysis and identify reliable disease-related
biomarkers.

21 [60] depression text HFL
Combining FL, NLP and attention-based learning; propose a method that extracts depression
symptoms from text; show that FL has practical advantages over traditional supervised learning
methods.

22 [61] depression
image;
audio

HFL
Propose a schema extracting features from images and audio to solve the problem of automatic
emotion recognition for a specific individual.

23 [62]
inpatient
violence

text HFL
The the federated model outperforms local models and is comparable to data-centralized models;
imply that FL can supports novel clinical note-based applications.

24 [65] hospitalization EHR HFL
Predict hospitalization within a specified year, solve the sparse SVM problem and improves
convergence rates and communication costs.

25 [66] hospitalization EHR HFL
Address the issue of non-IID ICU patient data and outperform basic FL in predicting mortality and
ICU stay time.

26 [64]
adverse drug

reaction
EMR HFL

Introduce an FL-based strategy to build a global ADR prediction model from decentralized data; the
aggregation methods outperform state-of-the-art techniques.

27 [67] ABP sensor data HFL
The first example of a GAN with continuous ABP generation from an input of PPG signal from a
sensor; prevent invasive and expensive monitoring.

28 [68] depression sensor data HFL
Develop a general multiview FL framework; fix the conflicting multiview data time series with later
fusion techniques; show that FL with enough participants predicts better depression scores than local
training.

29 [15] PD sensor data FTL The first FTL framework for wearable healthcare.

30 [69]
sleep and
emotion

sensor data HFL
Provide sleep monitoring and emotion-aware services to support the psychological analysis; facilitate
flexible deployment of IoMT services while addressing privacy and security concerns.

31 [70] mental state sensor data HFL
Show that the FL model performs better than models based on data-centralized training and
individualized training in state prediction for experiment subjects.

32 [71]
statistical

heterogeneity
sensor data HFL Provide personalized in-home health monitoring; Solve the imbalanced and non-IID data problem.

33 [72]
statistical

heterogeneity
sensor data HFL

FedSens enhances the accuracy of AHD models in the presence of a severe class imbalance while
reducing the energy consumption of edge devices.

34 [76]
incentive

mechanism
sensor data HFL

Provide a system with a contract-theoretic incentive mechanism that encourages users to participate
in FL-based collaborative model training.

35 [77]
constrained

resource
sensor data HFL

Have higher training efficiency, better inference performance and stronger privacy protection for
training tasks on resource-constrained wearable devices.
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V. CONCLUSION

Our study analyzes current research on the implementation

of FL in the healthcare domain and emphasizes comparative

experiments and their outcomes to demonstrate the advances

of FL applications in this domain.

As a result of the diverse study emphases shown in prior

studies, several potential research areas can be identified,

which are as follows:

1) Healthcare datasets are highly diverse, including images,

EHRs, genomic data, and more. The diversity of data

within the healthcare domain requires researchers to

investigate various FL frameworks that correlate with

the specific dataset types. In addition, the effectiveness

of FL methods varies depending on sample size and

the characteristics of the datasets; for example, HFL

often performs well with large datasets, while FTL can

adapt to fewer, more specialized datasets. Given that the

majority of current studies are based on HFL, future

research can utilize various FL frameworks to develop

flexible FL healthcare applications to enhance diagnosis

and prognosis support.

2) The number of investigated studies on some diseases is

significantly higher than on others, though this is partly

due to the availability of training data, with healthcare

research heavily depending on the availability of high-

quality medical data. For diseases like cancer, data are

often more comprehensive and accessible due to the

frequency of cases and extensive research history. In

contrast, diseases like Alzheimer’s may have limited

datasets available for study. Ensuring sufficient and reli-

able training data is essential for conducting meaningful

research on any disease. If conditions are sufficient,

future research can investigate more types of diseases.

3) Many researchers have proposed solutions to FL’s chal-

lenges outside of the healthcare domain, but these solu-

tions are not always applicable to the healthcare domain.

Consequently, it is necessary to develop solutions that

address challenges specific to the healthcare sector, such

as regulatory compliance, interoperability, and clinical

relevance. While some general solutions from other

domains may provide inspiration, the distinctive nature

of healthcare requires research efforts to tackle the chal-

lenges associated with FL’s application in healthcare.
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R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. X. Song,
W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma,
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