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Abstract—With the rise of computing-intensive applications
like online gaming and telemedicine on user equipment (UE) and
the evolution of 5G technology, there is a surge in demand for
greater computing resources and power. Yet, UEs have limited
resources and batteries. Mobile Cloud Computing (MCC) has
emerged as a method to enhance UEs computing capabilities and
conserve energy by transferring tasks to the cloud. Mobile Edge
Computing (MEC) further aids by reducing delays, although it
faces issues like limited resources and unpredictable network
conditions. Unmanned Aerial Vehicles (UAVs) offer a remedy
by serving as mobile stations for MEC, but optimal offloading
decisions in UAV-assisted MEC remain intricate. Addressing this,
I propose using Reinforcement Learning (RL), specifically Q-
Learning, Deep Q Network (DQN), and Deep Deterministic Policy
Gradient (DDPG), to enhance decision-making for offloading.
Our focus is on energy efficiency and reduced service delay, and
our simulations prove our method’s efficacy in UAV-assisted MEC
environments.

I. INTRODUCTION

The introduction of 5G wireless communication technology

brings about considerable improvements in user equipment

(UE), such as higher data rates, reduced latency, and increased

capacity compared to earlier generations [1]. 5G technology

enables a large number of devices to connect at the same

time, creating a more comprehensive Internet of Things (IoT)

environment for user equipment (UEs) through its support

of massive machine-type communications (mMTC). In 5G’s,

enhanced mobile broadband (eMBB) capabilities provide users

with faster download and upload speeds, improved streaming

quality, and virtual reality experiences, thus increasing multi-

media consumption, real-time gaming, and video conferenc-

ing. Another innovative feature of 5G is network splitting,

which allows the creation of custom virtual networks for

specific applications or sectors. This feature enables UEs

to enjoy optimized network performance, enhanced security,

and greater reliability, tailored to their needs. Therefore, 5G

technology revolutionizes the potential of UEs, broadening the

range of applications and services they can experience with

better performance, responsiveness, and adaptability [2].

Mobile Cloud Computing (MCC) combines cloud servers’

computing strength with mobile devices’ portability, enhanc-

ing their performance. MCC allows mobile devices to transfer

computational tasks and data storage to the cloud, saving

energy, and tackling resource constraints. This gives devices

access to vast computing resources, software applications, and

on-demand data, broadening their functionality. It also ensures

consistent data access across various devices. However, con-

cerns arise regarding data privacy, security, and network de-

pendency in MCC. While MCC increases device capabilities,

data security and robust network infrastructure are essential

for its effective use [3], [4].

Mobile Edge Computing (MEC) is a modern computa-

tional method aimed at reducing delays, minimizing latency,

and improving network performance. MEC moves computing

resources to the network edge, embedding processing, and

storage directly into mobile network edge nodes. This allows

UEs to offload computational tasks to nearby edge servers,

enhancing system performance and reducing latency. UEs

can thus experience reduced transmission delays and greater

application responsiveness. Furthermore, MEC leverages the

superior resources of edge servers, allowing UEs to under-

take complex tasks beyond their device’s capacity. This also

facilitates data synchronization and sharing across devices,

enabling UEs to maintain data consistency and ensure smooth

transitions between devices [5], [6].

Unmanned Aerial Vehicles (UAVs) have increasingly been

recognized for their ability to improve wireless communi-

cations. They can function as aerial base stations, access

points, relays, and more, supporting various communication

applications like point-to-point and multi-user communica-

tions, data collection, secrecy communications, and device-

to-device (D2D) communications. This use of UAVs allows

wireless networks to expand beyond conventional coverage

areas, improving connectivity and accessibility for a broader

user base, thus promising significant potential for the future of

wireless communication technology [7]. UAVs are becoming

more common in various industries because of their size,

agility, and cost benefits. They play crucial roles in military

tasks such as attack, reconnaissance, and jamming. However,

their dynamic use and mobility come with challenges. Given
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today’s complex battle scenarios, there’s a growing need for

UAVs to operate autonomously. Therefore, the development of

decision-making algorithms for UAVs in contemporary aerial

combat is a significant research focus, as they require advanced

capabilities to navigate and decide in unpredictable conditions

[8].

I suggest employing cutting-edge technologies like Rein-

forcement Learning (RL) to enhance computation-offloading

decision-making in UAV-supported MEC. However, the cur-

rent studies on intelligent maneuver decisions with UAVs

through deep reinforcement learning face limitations: (1) Most

simulations are predominantly in a three-dimensional (3D)

space, focusing on in-depth exploration and analysis. (2) These

studies often overlook the impact of radar and weaponry

on UAVs, making their application challenging in intricate

battlefield settings.

A. History of Research

The introduction of UAV technology has brought about

significant changes in various industries, offering various

applications such as photography, agriculture, surveillance,

and disaster response. Integration of UAVs and MEC is a

somewhat new trend that started gaining attention in the

research field around 2017 and has been growing ever since.

A visual representation of key milestones in the history of

the subject is presented in Fig 1.

Fig. 1. History of Research

B. The Research Motivations and Contribution

Drones, also known as UAVs, have been increasingly in

the spotlight due to their promising capabilities in various

industries, including MEC. The fusion of UAVs and MEC is

an exciting and exciting arena. The proposition entails utilizing

the UAV as a portable MEC server to facilitate task processing

closer to the ultimate users. This paper introduces the idea of

offloading computations, which is the process of transferring

intensive computing tasks from devices with limited resources

(e.g. mobile phones) to more powerful computing nodes (e.g.

UAVs with MEC capabilities).

Here are some key driving forces for optimization in the

context of UAV-supported MEC [9] and [10]:

1) Minimizing delays: By relocating computation to the

network’s fringe (through UAVs), we can noticeably

reduce the application response time, thus enhancing the

user experience.

2) Preserving battery longevity: Mobile devices have

restricted processing power and battery longevity. Inten-

sive computational activities can quickly deplete these

assets. Transferring computation duties to UAVs can help

prolong the life of the device’s battery.

3) Improving network efficiency: By delegating tasks to

the network periphery, the duration of data transmission

can be minimized. This can result in a decrease in

bandwidth consumption, reduced traffic congestion, and

improved overall network efficiency.

4) Enhancing reliability and robustness: UAVs can be

used in scenarios where the ground infrastructure may be

compromised or nonexistent, such as areas devastated by

disasters, providing reliable and resilient MEC services.

5) Improving processing capabilities: Offloading gives

devices with limited resources the opportunity to take

advantage of the processing power of UAV-MEC servers.

This process enables users to operate intricate applica-

tions that, without offloading, would either be unfeasible

or ineffective on their devices.

In this study, our contributions are as follows.

1) We proposed a MEC model supported by UAVs aimed at

enhancing user scheduling, UAV movement, and resource

allocation for optimal performance, considering the dy-

namic nature of channel conditions over time. To tackle

the computation offloading challenge, we frame it as a

non-convex problem.

2) We present a novel technique based on DDPG that is de-

signed to tackle the difficulties associated with continuous

action spaces, thus allowing decision-making in the realm

of computation offloading. Additionally, we compare

DDPG with another class of algorithms, namely DQN,

which is commonly used for environments with discrete

action spaces. We are utilizing the DDPG approach to

improve the performance and productivity of computation

offloading operations.

3) By conducting simulations across a range of system

parameters, our goal was to optimize and demonstrate

the efficacy of the DDPG algorithm. The results of our

simulations revealed that the service delay associated

with the DDPG methods we implemented is shorter than

that of the DQN algorithms. In these various tests, the

DDPG consistently outperformed other DQN algorithms,

showcasing its superior performance.

II. RELATED WORK

The computation offloading improvements in MEC systems

aided by UAVs are growing rapidly. The goal is to improve the

performance and productivity of these systems using UAVs as

essential computational tools. A summary of recent relevant

research, including a comparative analysis based on crucial

criteria, is presented in Table I. Chen et al. [11] introduced a
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decentralized approach to deep reinforcement learning (DRL)

aimed at establishing a coherent policy for dynamic power

distribution. Relying on traditional MEC services through

static infrastructures presents obstacles, especially in areas

with limited communication amenities or in the wake of

natural disasters.

Li et al. [12] utilized RL to optimize UEs task migration per-

formance within UAV-assisted MEC systems. Their primary

goal was to enhance the efficiency of task transfers. Similarly,

Xiong and his team [13] introduced an optimization technique

to conserve energy in UAV-based MEC systems. Their strategy

focused on optimizing offloading decisions, allocating time,

and determining the flight path of UAV’s (trajectory) to achieve

maximum energy efficiency. The authors of [14] suggested

that Device-to-Device (D2D) communication could be used

as an additional way to transmit and offload analysis in

UAV-MEC systems. Studies on UAV-supported MEC systems

have been conducted extensively and have been applied in

practice. However, there are still some difficulties that need

to be addressed. The capability to assess user equipment and

environmental impediments, such as trees or buildings, can

have a major effect on system performance, particularly in

urban settings. Examining these factors can be essential to

optimize system performance [15].

In the study conducted by Cui et al. [16], a multilayer path

planning algorithm is proposed, utilizing the RL technique.

In contrast to the conventional Q-learning technique, the sug-

gested algorithm collects both global and local data, resulting

in a remarkable improvement in total performance. The RL

algorithm consists of two layers: The top layer focuses on local

data, representing a short-term strategy, while the bottom layer

considers global data, functioning as a long-term strategy.

Pham et al. [17] present a framework that employs an RL

algorithm for a UAV to locate missing individuals in the after-

math of a natural disaster. To address the challenge of multiple

expression structures and achieve faster convergence, they

propose a function-approximation-based RL algorithm. The

paper [18] emphasizes the importance of deep reinforcement

learning (DRL) in optimizing computation offloading in MEC

environments. It offers valuable information on the application

of RL techniques for task allocation and resource manage-

ment, showcasing their potential to improve performance and

efficiency in mobile edge computing systems. They utilized

the DDPG algorithm to discover the most efficient policy for

transferring code blocks in diverse settings.

III. RESEARCH METHODOLOGY

Ultimately, the effectiveness of the suggested approach is

gauged. The following section delves into the examination

process. Initially, the system architecture of the proposed

method is detailed. Then, the recommended algorithms are

scrutinized. Finally, the efficiency of the plan is evaluated.

A. System Model

1) Network Model: We analyze a MEC model that includes

UAVs, as illustrated in Fig.2. It comprises a set of ground

UEs, denoted as i ∈ M = {1, 2, 3, ...,M}, a group of UAVs

represented by j ∈ N = {1, 2, 3, ..., N}, and a collection of

edge servers (ESs) located on the ground, with k ∈ K =
{1, 2, 3, ...,K}. The position of the i-th UEs is indicated as

follows: pTi = (xi, yi, θ), where i ∈ M , and the location of

the k-th ES is denoted as pFk = (xk, yk, θ), where k ∈ K.
During each time interval, the UAV remains stationary and

establishes a connection with a single UEs for the purpose

of transmission. The UAV functions at a consistent altitude

H . The location coordinates of the UAV at position j can be

denoted as pUj = (xj , yj , H), where j is a member of the

set N . We divide the total time T into smaller intervals of Δ
time in order to facilitate system operations. Δ is chosen large

enough to ensure that the positions of the UEs and UAVs stay

nearly fixed within a single time period.

Fig. 2. Network Model

B. The RL algorithms
To address the challenges of determining efficient computing

offloading policies and selecting the optimal transmission

path for tasks relayed through multiple UAVs, RL methods

are proposed. Agents in RL interact with their environment,

continually improving their decision-making skills through

repeated learning from experience and testing. This study

conducts a comprehensive analysis of five fundamental compo-

nents that are integral to the process of RL: namely, the agent,

environment, state representation, action selection, and reward

function. To meet our research goals, we will utilize two

renowned RL algorithms: DQN and DDPG. Both algorithms

have demonstrated outstanding performance in numerous RL

tasks, making them well-suited for our research objectives.
1) DQN: This algorithm is frequently employed in deep

reinforcement learning. It merges deep learning and Q-

learning to tackle intricate RL problems characterized by high-

dimensional state spaces. DQN demonstrates exceptional per-

formance, especially in situations characterized by extensive

and continuous state and action spaces. Fundamentally, DQN

utilizes a deep neural network, often a convolutional neural

network (CNN), to approximate the Q-values associated with

various state-action pairs.
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TABLE I BRIEF SUMMARY ON THE REVIEWED STATE-OF-THE-ART
LITERATURES

Ref RL Approach Research Problem Objective
[19] Distributed-DQN Optimize offloading strategy Maximise the amount of computing tasks.
[20] DDPG Improve user scheduling, adjust the proportion of

task offloading and optimize the flight angle and
speed of the UAV

Minimize the maximum processing delay.

[21] Deep Learning Optimal offloading decision Attempt to reduce the amount of time and
energy expended.

[22] DDPG Offloading decision optimization Ensure equitable treatment of all users.
Our research DQN and DDPG Offloading decision optimization Minimizing the maximum processing de-

lay.

The Q-learning update equation used in DQN is as follows:

Q(st, at) ← Q(st, at)+α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(1)

The temporal difference error is calculated by subtracting

the updated Q-value from the original Q-value in each step.

The learning rate is applied to this difference and the result is

added to the original Q-value to give the updated Q-value.

The process is repeated over many episodes to gradually

improve the policy and value estimates. The aim of the

DQN algorithm is to iteratively update the Q-values, striving

for convergence towards the optimal Q-values that maximize

the total discounted rewards. The Q-learning update equation

ensures that the Q-values are adjusted according to the current

reward and the estimated future rewards. The Algorithm (1)

describes the DQN training process.

2) DDPG: This RL algorithm combines the advantages of

value-based and policy-based approaches. This software was

specifically created to address continuous action space issues,

making it ideal for tasks that involve continuous and high-

dimensional actions. DDPG relies on two primary elements:

the actor-network and the critic network. The actor-network

formulates a policy associating states with actions, enabling

the agent to decide according to the observed state.

The DDPG algorithm uses two distinct Deep Neural

Networks (DNNs) to simulate the actor-network l(s|θμ) and

the critic network Q(s, a|θQ). The actor network is responsible

for the policy implementation, while the critic network is

responsible for the Q-value calculation. Furthermore, the two

networks include target networks of the same design: the actor

target network, denoted as l0, utilizes parameter hl0 , while the

critic target network, represented as Q0, employs parameter

hQ0
. The formulations for these networks are provided below:

1) Actor-network:

∇θμJ ≈ 1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=μ(si|θμ)∇θμμ(s|θμ)|si
(2)

2) Critic network:

L(θQ)=
1

N

∑
i

(
yi −Q(si, ai|θQ)

)2
(3)

Algorithm 1 Deep Q-Network (DQN)

1: Start with a replay memory D set to a maximum limit of

N .

2: Initialize the action-value function Q with random weights

θ.

3: Establish the target action-value function Q̃ with weights

θ− = θ.

4: for each episode m ranging from 1 to M do
5: Define the sequence s1 as s1 = {x1} and preprocess to

get ψ1 where ψ1 = ψ(s1).
6: for each time step t from 1 to T do
7: if a randomly generated value ≤ ε then
8: Choose a random action at.
9: else

10: Select the action at that maximizes Q(ψ(st), a; θ).
11: end if
12: Execute action at, receive reward rt, and obtain the

image xt+1.

13: Using inputs st, at, and xt+1, modify the state to

st+1 and preprocess to determine ψt+1 = ψ(st+1).
14: Record the transition sequence (ψt, at, rt, ψt+1) into

D.

15: Draw a random subset of transition sequences

(ψj , aj , rj , ψj+1) from D.

16: if ψj+1 indicates a termination then
17: Assign the target value yj to be rj .

18: else
19: Calculate the target value yj using the formula rj+

γmaxa′ Q̃(ψj+1, a
′; θ−).

20: end if
21: Apply a gradient descent adjustment on the equation

(yj −Q(ψj , aj ; θ))
2, considering the weight θ.

22: if the time step t is a multiple of C then
23: Update the target network Q̃ to match Q.

24: end if
25: end for
26: end for=0
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The algorithm is designed to execute multiple episodes,

each of which involves interactions with the environment and

the collection of experience tuples, which include the state,

action, reward, and subsequent state. The DDPG algorithm

uses neural networks that are trained with experience tuples

to create its actor and critic components. By taking advantage

of this training procedure, the actor network can be trained to

imitate the ideal policy, while the critic network can be trained

to imitate the related Q-values.

Each experience tuple consists of four elements:

A. State space
The state of the system can be determined by K UEs, a

UAV, and influences, it is represented as:

si = (Benergy(i),m1(i),m2(i), . . . ,mk(i),

n1(i), n2(i), . . . , nL(i), Rremain(i),

R1(i), R2(i), . . . , RL(i), g1(i), g2(i), . . . , gL(i))
(4)

Given: Benergy(i) signifies the remaining energy in the

UAV’s battery during the i-th time interval, mk(i) pro-

vides the positional details of the UAV, nL(i) corresponds

to the location data of the UEs accessed by the UAVs,

Rremain(i) stands for the cumulative tasks the system must

finish within the designated duration, The notation RL(i)
signifies the scale of the task spontaneously produced by

the UEs during the i-th period, and gL(i) determines if

the UE’s signal faces obstructions due to any blockages.

B. Action space
Considering the current state of the system and the

environment that has been observed, the behavior of the

system can be described in the following manner.

Given the current status of the system and insights from

the environment, the system’s behavior can be articulated

as:

aj= (u(i) + α(i) + w(i) + Tu(i)) (5)

Where u(i) signifies the UEs to be served and u(i) ∈
[0, u], α(i) symbolizes the flight angle of the UAV and

α(i) ∈ [0, 2π], w(i) represents the flight speed of the

UAV and w(i) ∈ [0, wmax], and Tu(i) denotes the task

offloading ratio and Tu(i) ∈ [0, 1].
C. Reward

The performance of the DDPG framework is significantly

influenced by the rewards an agent obtains. Creating an

appropriate reward system is essential to direct the agent’s

actions. Our research primarily aims to minimize infor-

mation processing time, thereby maximizing the agent’s

reward. The ri is designated as the reward function and

is expressed as follows:

ri = R(si, ai) = −Δdelay(i) (6)

Where Δdelay(i) symbolizes the processing delay at step

’i’:

Δdelay(i) =
Y∑

j=1

aj(i)max{flocal,j(i), tUAV,j(i) + ttr,j(i)}
(7)

And, for aj(i), we define it as:

aj(i) =

{
1 if j = j0

0 otherwise

Where, R represents the reward, Δdelay is the processing

delay, and j is the new index running from 1 to Y, j0 is

the specific index where aj(i) is 1.

D. State normalization
The state normalization algorithm is used to adjust and

standardize state variables within a machine learning

system. We recommend this algorithm as an initial step to

minimize the impact of varying magnitudes on the input

data. In our research, we apply the state normalization

algorithm to fine-tune the variables we use.

The state normalization algorithm has five scaling factors,

which are represented by γb, γx, γy , γrm, and γUE.

The following expression denotes each scaling factor:

-γb: Using this method decreases the battery capacity of

the UAV.

-γx, γy: The objective is to minimize the coordinates of

UEs and UAV x and y.

-γrm: The objective is to reduce the total number of tasks

that remain to be completed throughout the duration.

-γUE: The objective is to minimize the amount of time

each user equipment task requires in the i-th time slot.

E. DDPG algorithm training and testing
This algorithm is widely used in reinforcement learning

to train continuous action spaces, which are a combi-

nation of deep learning and policy gradient techniques.

This algorithm simultaneously learns a Q function and a

policy. The core idea of DDPG is to use a single neural

network to directly determine the optimal policy and a

second network to calculate the expected value of taking

a certain action in a given state.

The DDPG algorithm employs an actor-critic model

where the actor proposes actions and the critic assesses

their value. During its training process, DDPG leverages

experience replay to enhance learning and implements

soft updates for maintaining stability. For exploration

within continuous action spaces, it uses noise, notably

from the Ornstein-Uhlenbeck process. Additionally, train-

ing stability is augmented by normalizing both features

and rewards.

As it shifts to the testing phase, actions are solely dictated

by the actor network, eschewing the exploratory noise

prominent in training for more deterministic outcomes.

The algorithm’s effectiveness is measured through metrics
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like average reward and success ratio, complemented by

visual analysis to decode the agent’s decisions. Both

the actor and critic networks are trained using randomly

selected experiences.

To gauge the effectiveness of the DDPG employed in

the computation offloading technique, we adopt a two-

phase approach: training followed by testing. As de-

tailed in Algorithm (2), the training phase comprises

continuous adjustments to the parameters of both the

critic and actor networks of the behavior policy. These

adjustments aim to optimize the process of computation

transfer. During the testing stage, the previously trained

actor-network, denoted as θμ, is employed to execute

computation offloading in a real-world setting. The steps

of the procedure are outlined in Algorithm(3).

Algorithm 2 DDPG Training Algorithm

1: Input: Episode duration E, Sample size I , Learning rate

for Critic αcritic, Learning rate for Actor αactor, Discount

factor γ, Replay memory buffer Bm, Batch dimension

N , Gaussian noise n with mean μe = n0, and uniform

standard deviation σe,i = σe.

2: Initialize actor network weights θμ and critic network

weights θQ randomly.

3: Set target network weights: θμ ← θμ
′

and θQ ← θQ
′
.

4: Clear the replay buffer Bm.

5: for episode e = 1 to E do
6: Reset UAV-assisted MEC model simulation parameters

and get initial state s1.

7: for i = 1 through I do
8: Convert state si to normalized form ŝi.
9: Calculate action a using the actor network θμ and

the noise component ni as:

a = clamp(θμ(ŝi, θ
μ) + ni,−1, 1).

10: Implement action ai, attain reward ri, and note the

resulting state si+1.

11: Convert the following state si+1 to its normalized

version ŝi+1.

12: if storage buffer Bm has available space then
13: Archive the tuple (ŝi, ai, ri, ŝi+1) within Bm.

14: else
15: Overwrite a random tuple in Bm using

(ŝi, ai, ri, ŝi+1).
16: Draw a mini-batch of I random tuples

(ŝj , aj , rj , ŝj+1) for each j from 1 to I in

Bm.

17: Calculate yj as rj + γQ
′(ŝj+1, μ

′(ŝj+1|θμ′
), θQ

′
).

18: Update critic network’s weights θQ to minimize

the loss.

19: Enhance actor network’s weights θμ using the

determined policy gradient.

20: end if
21: end for
22: end for
23: return Actor-network μ(ŝ|θμ). =0

Algorithm 3 DDPG Testing Algorithm

1: Input:
2: Testing episode length E′

3: Testing step length N
4: Trained actor network μ(ŝ|θμ)
5: Initial states:

Benergy(i),m1(i),m2(i), . . . ,mk(i),

n1(i), n2(i), . . . , nL(i),

Rremain(i), R1(i), R2(i), . . . , RL(i),

g1(i), g2(i), . . . , gL(i)

6: Normalization parameters: γb, γx, γy, γDrm, γDUE

7: Output: Reward ri
8: for episode e from 1 to E′ do
9: STATE Initialize state si by resetting UAV-assisted

MEC model parameters

10: for step i from 1 to I do
11: Compute normalized state ŝi from si
12: Determine action using actor network: ai = μ(ŝi|θμ)
13: Execute action ai to receive reward ri
14: end for
15: end for=0

IV. SIMULATION RESULTS AND DISCUSSIONS

A. Parametric analysis

First, we conduct a series of experiments to determine

the optimal values of the important hyperparameters used

in the algorithm comparisons. The convergence outcomes

of the recommended algorithms (DQN, DDPG) vary based

on diverse parameters such as control exploration, discount

factors, and learning rate, as detailed below:

1) The control exploration: The exploration parameter sig-

nificantly influences how well the DDPG algorithm converges

shown in Fig .

It demonstrates the performance differences of the DDPG

algorithm concerning processing delay when various explo-

ration parameters σ are applied. The figure illustrates the

control exploration for DDPG across various episodes, evalu-

ated using different exploration parameter values (σ). As the

number of episodes increases, the rewards for different values

of σ appear to converge, with the curve for σ=0.05 showcasing

a steeper ascent compared to the others before plateauing.

By observing the trajectories and the reward values, the

exploration parameter σ=0.05 seems to achieve the highest

reward in the fewest episodes, indicating it may be the most

optimal value for exploration among the presented parameters.

2) The discount factors: Fig 4 illustrates the impact of
different discount factors (γ) on the DDPG algorithm’s per-

formance across various episodes. As the discount factor rises,

there’s a noticeable improvement in the rewards obtained.

For lower values like γ=0.1 and γ=0.001, the performance is

notably weaker, indicating that these settings place minimal

emphasis on future rewards, potentially leading to short-

sighted decision-making. The curve for γ=0.5 shows moderate
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Fig. 3. Performance variation of the rewards across different settings of the
exploration parameter

performance, suggesting a more balanced consideration be-

tween immediate and future rewards. Meanwhile, γ=0.9 offers

better results, emphasizing the significance of longer-term

rewards without completely maximizing them. In comparison

to these, γ=0.999 offers the highest rewards, but the nuances

in performance across different discount factors underscore

the importance of fine-tuning this parameter based on specific

problem contexts and desired outcomes. Thus, γ=0.999 is the

optimal discount factor here.

Fig. 4. Performance analysis of the DDPG algorithm’s convergence with
varying discount factors

In Fig 5, the performance of the DQN algorithm is

influenced by various discount factors (γ) across a series of

episodes. On the y-axis, we observe the rewards, and the x-

axis represents the episodes. The curve for γ=0.1 remains

largely below other curves, suggesting a weaker convergence

when prioritizing immediate rewards. The γ=0.01 and γ=0.001

trajectories depict more fluctuations, indicating potential in-

stability or sensitivity to certain episodes. Interestingly, γ=0.5

showcases an initial dip in rewards before stabilizing, while

γ=0.9 exhibits significant volatility, highlighting the unpre-

dictable nature of certain discount factors. Notably, while most

discount factors exhibit fluctuating performances, the γ=0.99

curve demonstrates a relatively smoother and higher reward

trajectory, especially toward the later episodes. This suggests

a superior balance between short-term and long-term rewards

for this discount factor. In this context, γ=0.99 appears to be

the optimal discount factor for the DQN algorithm.

Fig. 5. Performance analysis of the DQN algorithm’s convergence with
varying discount factors

3) The learning rate: Fig 6 delineates the performance
of the DDPG algorithm at varying learning rates for both the

actor and critic networks over a series of episodes. Observably,

the pair with αactor = 0.01 and αcritic = 0.02 showcases a

superior and more stable reward trajectory compared to other

combinations. On the other hand, extremely low learning rates

like αactor = 0.0001 and αcritic = 0.0002 result in the least

rewarding outcomes, suggesting an inability to adapt quickly

to the environment. In this context, the optimal learning rate

combination for the DDPG algorithm appears to be αactor =
0.01 and αcritic = 0.02.

In Fig 7, the performance trajectory of the DQN algorithm

for different learning rates over numerous episodes. Evidently,

a learning rate of α = 0.01 offers the most consistent and

optimal reward curve, demonstrating stability and promising

results. In contrast, the highest learning rate α = 0.1 seems to

oscillate substantially, indicating potential overfitting or erratic

learning. The extremely low learning rates, α = 0.001 and α =
0.0001, present less favorable outcomes, suggesting they might

be too conservative for rapid
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Fig. 6. Performance analysis of the DDPG algorithm’s convergence with
varying learning rate

environment adaptation. Therefore, α = 0.01 emerges as the

most suitable learning rate for the DQN algorithm based on

the depicted results.

Fig. 7. Performance analysis of the DQN algorithm’s convergence with
varying learning rate

B. Performance comparison

We analyze a two-dimensional (2D) square region in the

MEC model assisted by UAVs, with the simulation parameters

listed in Table (II). The two-dimensional area is the platform

on which the system operates, and the simulation parameters

provide the details and configurations required to carry out the

simulations.

Three methods of utilizing this model are outlined below:

• The Offload-only approach: In this model, the UEs hand

over all their computational duties to the UAV for a

certain period of time. A UAV that is positioned at a

fixed location in the region can provide computational

assistance to UEs by sending the tasks to the MEC server

that is located within it.

• The offloading algorithm that employs DQN is compared

to DDPG. DQN functions in a conventional discrete

action space, whereas DDPG utilizes a continuous action

space.

• The algorithm evaluates the performance of computation

offload using DDPG. This approach employs a continu-

ous action space to tackle the intricacies of computation

offloading.

We investigated the performance disparities between the value

approximation and the policy approximation in RL algorithms,

specifically in the sequential cases of DQN and DDPG, consid-

ering factors such as delay, UEs, and the offloading ratio. The

observation made, based on Figure (8), that DDPG showed a

lesser delay than DQN in the episodes examined is consistent

with the structural differences between the two algorithms.

This doesn’t mean DDPG is always superior to DQN, but in

the specific context of the study and in environments where

the continuous nature of actions is crucial, DDPG might offer

advantages in processing speed.

However, when deciding between these algorithms in prac-

tical applications, it’s essential to consider other factors like

stability of learning, ease of implementation, and overall

performance, not just processing delay.

Fig. 8. Performance analysis of delay under various RL algorithms

In Fig 9, this figure visually contrasts the performance of

two algorithms, DDPG and DQN, in relation to the average

processing delay as the number of UEs changes. The choice

between the two would depend on the specific s cenario and

the number of UEs involved. The comparison of average

processing delay for varying numbers of UEs (from 0 to 0.5)
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TABLE II DEFAULT SIMULATION
PARAMETERS

Par Value Description Par Value Description
K 4 Num Of UEs S 1000 c/bit CPU Cycle per bit
L,W,H 100 m UAV(Hight, width) MUAV 9.65 kg UAV gross mass
T 400 s Whole time period I 40 Time slots
vmax 50 m/s Maximum UAV flight speed tfly 1 s Flight time of UAV
α0 - 50 dB Channel power gain B 1 MHz Transmission bandwidth
σ2 - 100 dBm Noise power of the receiver PNLOS 20 dB Penetration loss
Pup 0.1 W Transmission power of UEs Eb 500 kJ UAV battery capacity
fUE 0.6 GHz Computing capability of the UEs

server
fUAV 1.2 GHz Computing capability of the MEC

server

highlights that the DDPG algorithm seems to have a higher

processing delay compared to the DQN algorithm for a specific

user equipment set.

Fig. 9 Performance of DQN and DDPG under different UEs

In Fig 10, the offloading ratio for DDPG is moderate.

However, as training progresses, the algorithm seems to prefer

offloading almost all tasks/data (as seen by the ratio approach-

ing 1.0). This suggests that with more experience or training,

DDPG finds i t more beneficial to offload. However, the DQN

starts with a higher offloading r atio c ompared t o i ts eventual

performance but rapidly reduces its offloading preference. This

indicates that, over time, DQN may find local processing more

efficient t han o ffloading. Th e co ntrasting be havior between

DDPG and DQN is evident. While DDPG tends to offload

more as it gains more experience, DQN does the opposite,

reducing its offloading preference.

The DDPG algorithm was found to have the least amount of

delay compared to the other schemes. Its capacity to enhance

continuous activities and determine an ideal control strategy

can be credited to it.

V. CONCLUSION

In light of the growing demands of computing-intensive

applications on UEs and the challenges posed by limited re-

Fig. 10. Offloading ratio performance of DQN and DDPG

sources, solutions such as MCC and MEC have been explored.

Though MEC presents its set of challenges, the introduction

of UAVs offers a promising solution. Our proposal to employ

Reinforcement Learning techniques, specifically Q-Learning,

DQN, and DDPG, has been shown to effectively optimize

computation offloading decisions in UAV-assisted MEC sce-

narios. Simulations validate our approach’s superiority in

enhancing system performance in terms of energy efficiency

and minimizing service delay compared to other existing

methodologies. The simulation data suggests that the DDPG

algorithm surpasses the DQN algorithm concerning processing

delay. In subsequent studies, we intend to examine the efficacy

of our algorithm in conjunction with other reinforcement

learning policy approximation methods like TRPO and PRO2.
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