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Abstract—Intensity inhomogeneity is a significant issue in
magnetic resonance imaging (MRI), where the presence of bias
field causes distortions in pixel values, resulting in inconsistent
and erroneous intensities across the image. This artifact not only
hampers accurate diagnosis by radiologists but also negatively
impacts the performance of computer-aided diagnosis algo-
rithms, particularly in tasks like segmentation. In our proposed
approach, we use a hybrid technique called KIFCM, which
integrates K-means and Fuzzy C-means to enhance brain tumor
segmentation. K-means provides computational efficiency, while
Fuzzy C-means improves accuracy by detecting missed tumor
cells. We employ a bias correction method based on the level set
framework, removing noise with a median filter and applying the
hybrid KIFCM technique for optimal segmentation. Our method
effectively addresses intensity variation challenges, ensuring pre-
cise brain tumor region segmentation. We compare our results
with DFCM and MFFLs, and the comparison shows the efficiency
of our proposed method by highlighting the superior quality
and accuracy of 81% achieved, requiring less computational
time. Consequently, our results demonstrate KIFCM’s potential
to boost both accuracy and speed in MRI-based brain tumor
detection through computer-aided diagnosis.

I. INTRODUCTION

Brain tumors pose significant challenges in their recognition

and detection due to the complexity of the brain structure. The

use of medical imaging devices is vital in delivering a vast

amount of anatomical and functional data, resulting in im-

proved diagnosis and patient care, particularly when coupled

with quantitative image analysis methods [1]. MRI is widely

recognized as a reliable modality for brain tumor diagnosis,

providing high-resolution and multiplanar imaging capabilities

that aid in tumor detection, localization, and characterization

[2], [3].

However, accurate segmentation of brain tumors from med-

ical images, especially MRI, is crucial for diagnosis and

treatment planning [4]. The presence of artifacts, such as noise,

poor image quality, and intensity inhomogeneity, hinders the

effectiveness of tumor segmentation algorithms. Therefore,

addressing intensity inhomogeneity is essential for accurate

image analysis [5].

Image acquisition serves as the initial step in determining

brain tumor diagnoses, consisting of modalities, patient data,

and software processed through mathematical operations to ac-

curately identify the entire pathological organ. Segmentation,

which plays a pivotal role in the medical image processing

pipeline, involves identifying, analyzing, detecting, and rec-

ognizing irregular regions within medical images [6]. It is an

essential step in facilitating accurate diagnosis and treatment

decision-making [7]. Numerous studies have focused on solv-

ing the challenges associated with brain tumor segmentation

using MRI modality [8], [1], [9], [10], [11].

Intensity inhomogeneity in MRI is a common issue that

hampers the accuracy of quantitative image analysis. It arises

from factors during image acquisition, causing variations in

luminance quality and imperfections in imaging devices. This

inhomogeneity complicates the precise identification of tumor

areas based on pixel values, especially when overlapping

intensity ranges occur between regions to be segmented. The

undesired smooth and varying bias field in MRI introduces

pixel inconsistencies within the same tissue, leading to reduced

tissue contrast and affecting interpretation [12]. This has

significant implications, particularly in conditions involving

white matter diseases, where intensity symmetry is crucial.

The bias field’s variation in true pixel intensity causes semantic

inconsistencies, adversely impacting tasks like computer-aided

diagnosis and image processing algorithms such as segmenta-

tion and registration.

The mathematical representation of the intensity inhomo-
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geneity artifact is expressed as in Eq.(1):

v(x, y) = u(x, y) · b(x, y) + n(x, y) (1)

where, v(x, y) represents the intensity inhomogeneity-

corrupted image, u(x, y) represents the intensity

inhomogeneity-free image, b(x, y) represents the bias field,

and n(x, y) represents the noise component. Unfortunately,

MRI images often suffer from issues such as intensity

inhomogeneity or nonuniformity, which arise from imperfect

image acquisition systems. Traditional segmentation methods

solely rely on spatial information of pixel intensities, making

them vulnerable to noise, intensity inhomogeneity (IIH), and

intensity nonuniformity (INU). To overcome these challenges,

The authors in [13] proposed a novel approach that leveraged

the fusion of multiple Gaussian surfaces to estimate and

correct INU in MRI brain images. Subsequently, the corrected

images underwent segmentation using a probabilistic fuzzy

c-means (FCM) algorithm, which combines both spatial

features and intensity corrections to achieve more accurate

and robust segmentation results.

To address the challenge of varying intensities caused by

different scanners and acquisition protocols, correcting the

magnetic field bias is crucial. This bias correction step is of

major importance in subsequent medical image analysis, and

this paper focuses on discussing this aspect as a key solution

to overcome the challenge. We present a novel contribution in

the field of brain tumor segmentation as follows:

• Using a hybrid technique called K-means integrated

with Fuzzy C-means (KIFCM). Our approach aims to

overcome limitations by combining the strengths of both

techniques. K-means clustering offers computational effi-

ciency and faster processing for detecting and identifying

brain tumors. On the other hand, Fuzzy C-means provides

higher accuracy by effectively identifying tumor cells that

may be missed by K-means alone.

• To further enhance the accuracy of segmentation, we

propose a bias correction method based on the level set

framework. Our proposed method begins by removing

noise using a median filter, followed by the application of

the hybrid KIFCM technique. This enables us to achieve

optimal segmentation results with a reduced number of

iterations and low computational time.

• Additionally, we address the challenge of intensity vari-

ation between regions to be segmented by employing

bias correction based on the level set. This approach

effectively mitigates the impact of intensity variations,

ensuring accurate segmentation of brain tumor regions.

Finally, the rest of this paper is organized as follows. Section II

introduces the methodology, which includes image acquisition,

median filtering, clustering algorithm, and level set method as

subsections. In Section III, results and analysis are discussed

as tech-driven urban green spaces exploration. Section IV

presents the evaluation metrics. Finally, a conclusion for this

paper is offered.

II. METHODOLOGY

Our research presents a novel method to tackle the issue

of intensity inhomogeneity in brain MRI image segmentation.

Our proposed method is shown in Fig. 1. To address the

presence of noise artifacts, we implemented the Median filter

[14], a nonlinear filtering technique. We aimed to harness

the strengths of both Fuzzy C-means and K-means clustering

methods by employing a combined approach called the K-

means integrated with Fuzzy C-means (KIFCM) algorithm.

The selection of these algorithms was driven by their compu-

tational efficiency in segmenting the images.

To ensure accurate segmentation despite intensity inhomo-

geneity, we utilized the level set framework. This framework

enabled us to assess the contour beyond the image boundaries

and subsequently apply bias correction. By integrating these

components, our objective was to specifically address the

challenge of segmenting images with intensity inhomogeneity,

while considering important factors such as computational

time, iteration count, and segmentation accuracy.

Loading brain MRI

Convert into gray-scale image

Filtering the image by nonlinear filter

Using KIFCM clustering technique

Determining contour using level set method

Minimizing the energy and distribution of the intensity

Bias Correction

Segmentation

End

Fig. 1. Our proposed method

A. Image Acquisition

In this part, we applied the proposed Method on a brain

MRI image dataset obtained from the website (http://www.

med.harvard.edu/AANLIB/home.html). The dataset consists of

approximately 60 images. For the experiments, we generated

the dataset by varying the parameter σ within the range of

4 ≤ σ ≤ 7 for all the images.

B. Median Filtering

Median filtering is a technique utilized for removing noise

and preserving edges in images. Several studies have provided

evidence supporting the superiority of median filtering over

linear filtering when it comes to noise removal in processed

images [15]. It operates by examining each pixel in the

image and replacing its value with the median value derived

from its neighboring pixels. The process commences with the
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arrangement of all pixel values within a designated window

into a numerical sequence. Subsequently, the pixel values are

substituted with the middle value of this sorted sequence.

Multiple steps are involved in determining the median value.

Initially, the pixel value to be processed, in conjunction with

its neighboring pixels, is read. Next, the pixel values are sorted

in ascending order. Ultimately, the value situated in the middle

of the sorted sequence is chosen as the new value for the pixel

(x, y) which is represented as follows in Eq.(2).

y[m,n] = median {x[i, j] | [i, j] ∈ Ω} (2)

where, y[m,n] represents the filtered output pixel at location

(m,n) in the image. The median operator, denoted by median,

is applied to the set of pixel values x[i, j] within a neighbor-

hood defined by Ω. The neighborhood is represented by the

set of indices [i, j] that satisfy [i, j] ∈ Ω.

By taking the median value of the pixel values within the

specified neighborhood, the median filter replaces the target

pixel at (m,n) with a value that is less affected by noise and

outliers, resulting in noise reduction in the filtered image. In

our work, to obtain the filtered image using the Median filter,

we divided the image into blocks of size 3 × 3 and sorted

the pixel values in ascending order. Subsequently, we selected

the middle value as the target pixel and replaced the original

pixel with this value. This process of sorting, selecting, and

changing the target pixel with the middle value was repeated

until the entire image was covered.

By applying this approach, we aimed to mitigate the effects

of noise and enhance the quality of the images in our dataset.

The utilization of the Median filter within a block-based

framework allowed for effective noise reduction, contributing

to improved image clarity and subsequent analysis. The result

of the median filtering can be observed in Fig. 2, where the

blurring effect is evident. And Algorithm 1 shows how the

median filter works to obtain filtered brain MRI images.

Fig. 2. (a and b) are original brain MRI images and (c and d) are filtered
images respectively

Algorithm 1 Median Filter Algorithm

Require: Brain MRI image

Ensure: Filtered brain MRI image by median filter

1: Read the brain MRI image.

2: Divide the image into blocks of size 3× 3.

3: for each block in the image do
4: Sort the values of pixels in ascending order.

5: Choose the middle value.

6: Change the target pixel with the middle value.

7: end for
8: return filtered brain MRI image

C. Clustering Algorithm

An automated and precise clustering technique for MRI

aims to divide the image space into distinct tissue classes, such

as gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF). The objective is to group objects within each

cluster that exhibit greater similarity to each other compared to

objects belonging to different clusters. This clustering process

relies on a similarity or dissimilarity metric and operates

without prior knowledge of the exact number of clusters [16].

Utilizing the KIFCM clustering technique serves the pur-

pose of leveraging the advantages of Fuzzy C-means in terms

of accuracy while maintaining a comparable iteration number

to that of Fuzzy C-means and K-means. This approach aims

to reduce the overall time consumption during program exe-

cution. The KIFCM algorithm is employed in the processing

of the data for achieving the desired results. The result of

KIFCM algorithm of filtered images can be observed in Fig.

3, where the filtered images are clustered into gray matter and

white matter. And Algorithm 2 shows how KIFCM clustering

algorithm works to Obtain white matters and gray matters

clustered brain MRI image.

Fig. 3. This figure shows that (a and b) and (c and d) are clustered images as
gray matter and white matter, respectively, after applying a hybrid algorithm
(KIFCM) of filtered images
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Algorithm 2 Hybrid Algorithm: KIFCM MRI Imaging Clus-

tering

Require: Filtered brain MRI image, number of clusters (K),

maximum iterations

Ensure: Obtained white matters and gray matters clustered

brain MRI images

1: Initialize cluster centers using K-means

2: Initialize membership matrix and centroid matrix using

FCM

3: Initialize iteration counter: t = 0
4: while t < maximum iterations do
5: Update membership matrix using K-means

6: Update centroid matrix using FCM

7: Update iteration counter: t = t+ 1
8: if Convergence criteria met then
9: Break loop

10: end if
11: end while
12: Output: Obtained white matter and gray matter clustered

brain MRI images

D. Level Set Method

Following the KIFCM MRI imaging clustering step, the

algorithm proceeds with the level set method for active contour

segmentation. It initializes the level set function with the

initial contour, iteratively updates the level set function using

the active contour energy function, and evolves the level set

function using the level set equation. The process continues

until the convergence criteria are met or the maximum number

of iterations is reached. Once the iterations are complete,

the algorithm obtains the segmented regions using the final

level set function. The level set function in the context of the

level set method for active contour segmentation is typically

represented by the symbol φ(x, y, t), where (x, y) are the

spatial coordinates and t represents time.

The level set equation is used to evolve the level set function

over time. One commonly used formulation is in Eq.(3) :

∂φ

∂t
= α · div

( ∇φ
|∇φ|

)
− β · dist(x, y) · |∇φ| (3)

where, α and β are positive constants that control the evolution

speed and curve smoothness, respectively. div denotes the

divergence operator, and ∇ represents the gradient operator.

dist(x, y) represents the signed distance function that measures

the distance between a point (x, y) and the contour represented

by the level set function. The active contour energy functional,

also known as the snake energy, is typically defined as a

combination of internal and external energy terms. It can be

represented as in Eq.(4):

Esnake(φ) =
∫
Ω

(
α|∇φ|2 + β|∇2φ|2) dxdy + ∫

Ω
g(x, y)|∇φ|dxdy

(4)

where, α and β are weighting coefficients that balance the

influence of the internal energy terms (curvature) and the

external energy term (image information), respectively. g(x, y)

represents the external image force that attracts the contour

towards image features of interest.

Post-processing techniques can be applied, such as smooth-

ing or morphology operations, to refine the segmented regions

if necessary. Algorithm 3 shows how it works.

Algorithm 3 Level Set Method for Brain MRI Image Seg-

mentation
Require: Clustered Brain MRI image, initial contour, maxi-

mum iterations, threshold

Ensure: Segmented regions in the brain MRI image

1: Initialize the level set function with the initial contour

2: Set the iteration counter: t = 0
3: while t < maximum iterations do
4: Update the level set function using the active contour

energy functional

5: Evolve the level set function using the level set equa-

tion

6: Update iteration counter: t = t+ 1
7: if Convergence criteria met then
8: Break loop

9: end if
10: end while
11: Obtain the segmented regions using the final level set

function

12: if Post-processing required then
13: Apply post-processing techniques (e.g., smoothing,

morphology operations)

14: end if
15: Output: Segmented regions in the brain MRI image

III. RESULTS AND ANALYSIS

In this section, we conducted experiments using the pro-

posed Method on a brain MRI image dataset. After applying

our clustering algorithm on the filtered brain MRI images,

we obtained the values of the initial cluster center and final

cluster center of both clustered white and gray images based

on the number of iterations. the results are shown in TableIII.

Consequently, we conducted a performance evaluation of our

proposed method by comparing it with two other algorithms,

namely distributed Fuzzy C-means algorithm (DFCM) [17]

and median filter with fuzzy level set (MFFLs)algorithm [18].

The comparison was based on the difference between the

final cluster center and initial cluster center, considering the

number of iterations for both gray matter and white matter.

The results of this comparison can be found in Table II for

gray matter and TableIII for white matter respectively. In

order to implement active contour using the level set method,

we propose the following approach. The image is divided into

regions iteratively, initializing the boundaries as closed curves.

These boundaries are then updated using shrink or expansion

methods, taking into account the imposed constraints. The

utilization of the level set method enhances flexibility, resulting

in a highly efficient segmentation process that outperforms

traditional techniques. Consequently, by employing the level
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TABLE I INITIAL CLUSTER CENTER AND FINAL CLUSTER CENTER OF CLUSTERED WHITE AND GRAY MATTER IMAGES BASED ON NUMBER OF
ITERATIONS

Case Number of Iterations Sigma Initial Cluster Center Final Cluster Center Time (s)
Case1 30 4 3.4781 47.8827 26.040326
Case2 200 6 9.5042 65.4276 73.80081
Case3 30 4 14.0652 79.6800 26.332371
Case4 10 4 3.0022 44.4409 4.49490

TABLE II DFCM, MFFLS AND OUR PROPOSED METHOD COMPARISON BETWEEN FINAL CLUSTER CENTER AND INITIAL CLUSTER CENTER ON A NUMBER

OF ITERATIONS FOR GRAY MATTER

Comparison Initial cluster center Final cluster center Number of itera-
tions

Case1 Case2 Case1 Case2
DFCM 1.1 2.5 1.100 79.667 13
MFFLs 2.0062 3.4427 88.7257 99.3391 15
Proposed method 3.4781 14.0652 47.8827 79.6800 30

TABLE III DFCM, MFFLS AND OUR PROPOSED METHOD COMPARISON BETWEEN FINAL CLUSTER CENTER AND INITIAL CLUSTER CENTER ON A NUMBER

OF ITERATIONS FOR WHITE MATTER

Comparison Initial cluster center Final cluster center Number of iterations
Case1 Case2 Case1 Case2

DFCM 1.1 2.5 1.100 79.667 13
MFFLs 3.7634 4.1807 102.5521 103.4951 15

Proposed method 9.9565 10.7809 61.0270 44.5564 30

set method, we can accurately determine the final contour

as outlined below in Fig. 4 after several iterations and with

σ = 4, 6. Brain MRI images often suffer from intensity

Fig. 4. This figure shows the final contour for case (a) after 30 iterations with
σ = 4 and for case (b) after 200 iterations with σ = 6 and for case (c) after
30 iterations with σ = 4, and for case (d) after 10 iterations with σ = 4.

inhomogeneity due to various factors. Intensity inhomogeneity

can result in uneven illumination across the image, leading

to inconsistencies in the intensity values of different regions.

This can make it difficult to distinguish between tumor regions

and normal brain tissue accurately. According to our results,

Fig. 5 shows an inhomogeneity field of both gray and white

clustered images after minimizing the energy and distribution

of the intensity, and followed by solving the problem to show

the bais corrected of gray and white clustered images as in

Fig.6.

Fig. 5. This figure shows an inhomogeneity field of gray and white clustered
images

IV. EVALUATION METRICS

In order to evaluate the accuracy of the performance anal-

ysis, commonly used methods are employed. These methods

can be categorized into two groups: those that rely on pixel dif-

ferences, such as Mean Squared Error (MSE) and Peak Signal-
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Fig. 6. Bias corrected of gray and white clustered images

to-Noise Ratio (PSNR), and those that utilize measurements

based on the human visual system, such as Structural Similar-

ity Index (SSIM). These evaluation metrics provide valuable

insights into the quality and fidelity of the analyzed results.

Performance analysis and accuracy parameters for FCM and

K-means, including MSE, PSNR, and SSIM, are presented in

Table IV. Additionally, Table V illustrates the performance

analysis and accuracy parameters for the segmented images

using KIFCM and FCM, respectively.

1) Mean Squared Error (MSE):
The Mean Squared Error (MSE) is a metric used to

quantify the average squared intensity difference be-

tween the original and deformed pixels in an image. It

can be calculated using Eq.(5):

MSE =
1

XY

X−1∑
x=0

Y−1∑
y=0

e(x, y)2 (5)

where e(x, y) represents the error difference between

the input and deformed images. The MSE provides

a numerical value that reflects the overall discrepancy

between the two images, with a lower MSE indicating

higher similarity and better alignment.

2) Peak Signal-to-Noise Ratio (PSNR):
Signal-to-Noise Ratio (SNR) is a mathematical metric

commonly employed to assess the quality of output im-

ages in comparison to their corresponding input images.

SNR is determined by calculating the ratio of the signal

power to the noise power, and it can be expressed using

Eq.(6):

PSNR = 10 log10

(
s2

MSE

)
(6)

The value of s is commonly set to 255, which corre-

sponds to an 8-bit image.

3) Structural similarity index (SSIM):
This method is employed to assess the quality of an

image by partitioning both the input and deformed

TABLE IV PERFORMANCE ANALYSIS PARAMETERS FOR SEGMENTED

IMAGES USING FCM AND K-MEANS

Cases MSE PSNR (dB) SSIM
Case1 0.08 59.25 0.7993
Case2 0.07 59.75 0.8080
Case3 0.04 62.50 0.7311
Case4 0.04 62.50 0.7311

TABLE V PERFORMANCE ANALYSIS PARAMETERS FOR SEGMENTED

IMAGES FOR KIFCM AND FCM.

Cases MSE PSNR (dB) SSIM
Case1 0.25 66.95 0.8063
Case2 0.27 56.72 0.8786
Case3 0.26 74.96 0.8825
Case4 0.24 66.81 0.9221

images into windows of size n × n and converting

the resulting square matrices into vectors. It relies on

three components: luminance (L), contrast (C), and

structural (S). The calculation of this method involves

the following steps:

SSIM(x, y) = L(x, y)α · C(x, y)β · S(x, y)γ (7)

We also employed the Dice coefficient as another

method to compare our proposed approach with previous

methods in Table VI. The Dice coefficient was calculated

for our dataset, and the summarized results are as

follows: After conducting our experiments, we evaluated

TABLE VI COMPARISON OF THE PROPOSED METHOD WITH THE

FAMOUS LEVEL SET–BASED ALGORITHMS IN TERMS OF ACCURACY

BASED ON DICE COEFFICIENT FOR BRAIN IMAGES.

Method GKFCMCV GKFCM-
Lankaton

GKFCM-
FTC

Proposed
method

Accuracy
(%) (Dice
coeffi-
cient)

65 48 80 81

the accuracy performance of the proposed method by

comparing it with previous studies, namely GKFCMCV

[19], GKFCM-Lankaton [20], and GKFCM-FTC [21].

This comparison demonstrated the effectiveness of our

results, highlighting the superior quality and accuracy

achieved by our proposed approach while requiring less

computational time.

V. CONCLUSION

In order to address the challenge of segmenting brain

MRI images with intensity inhomogeneity, we proposed

a robust method. Our approach involved applying a

median filter to a dataset of approximately 60 MRI im-

ages, which effectively enhanced the results by reducing

artifacts. The presence of intensity inhomogeneity poses
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a significant difficulty in accurately segmenting these

complex tissue images. Our method aimed to prioritize

both accuracy and computational efficiency. Compar-

ative analysis with other algorithms demonstrated the

excellent performance of our approach in effectively seg-

menting brain MRI images with intensity inhomogeneity

with an accuracy of 81% that was achieved with less

computational time. In the future, we aim to propose

deep learning techniques to improve the quality of brain

MRI image segmentation.
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