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Abstract—The Automated Identification System (AIS) is an
indispensable tracking system employed in the maritime in-
dustry for vessel identification, location tracking, and collision
avoidance. While AIS messages provide essential information for
maritime traffic management, they also present challenges when
vessels aim to conduct operations discreetly or evade observation.
This phenomenon, referred to as ”dark activity”, involves inten-
tional AIS deactivation by vessel operators seeking to conceal
their actions, often related to illicit or illegal maritime activities
such as smuggling, piracy or illegal fishing. The detection and
monitoring of dark activities pose significant challenges for
law enforcement and security agencies. This paper explores
innovative approaches to address this issue by harnessing AIS
data and incorporating rule-based techniques, as well as machine
learning techniques to enhance maritime security efforts. We
adopted a local approach where a dark activity of a vessel is
detected by nearby ships depending on the previous signals. We
implemented a detailed simulation environment based on real and
realistic data to run the proposed algorithms. Simulation results
show that while rule-based approach is successful in detecting
dark activities, it tends to produce false alarms, and ML-based
approach provides better overall accuracy.

I. INTRODUCTION

In the vast expanse of open seas, vessels communicate crit-

ical information to ground stations through satellites or direct

means. This communication takes the form of an AIS signal,

which contains essential data like the vessel’s current position,

speed, course over ground, and heading [1]. These parameters

are updated automatically and broadcasted throughout specific

time intervals depending on vessel’s movement and message

type. However nothing can stop vessels from turning off

their AIS transmitters and going ”dark” intentionally. The

authorities cannot tell for sure whether a ship switched off

its AIS to hide its location for some illicit dark activities

(e.g., smuggling, fishing in restricted areas, or unauthorized

waste disposal) [2], or its AIS signal cannot be received due

to natural reasons such as heavy whether condition or signal

congestion. Particularly in the open seas, where satellite-based

AIS (S-AIS) is used, the ships can always deny this dark

activity because the signal can be lost the way to the satellite

especially in congested waters. Thus, only a nearby ship can

be aware of the dark activity. The ratio between lost signals

unintentionally due to conditions beyond AIS and deactivating

the transmitter on purpose is something between 1:10 and

1:20 depending on ship type and geographical area according

to Ron Crean, vice-president for commercial at Windward

Maritime Analytics [3]. However, we believe that vessels

working cooperatively can overcome this issue; obviously, not

if the AIS was turned off before sailing in the first place.

Recognizing the significance of AIS signals for maritime

security, we embarked on a mission to develop a rule-based

decision-making algorithm. This algorithm is designed to help

vessels meeting specific range criteria determine if a neigh-

boring vessel has entered a state of dark activity. To realize

our vision, we crafted a simulation environment that vividly

portrays vessel movements, including scenarios involving dark

activity. We harnessed machine learning models to enhance

the accuracy of predictions, utilizing data gathered from our

simulation experiments.

This paper stands as a fundamental tool, contributing to the

enhancement of maritime security by combatting smuggling

and curbing illegal activities on the high seas. Moreover, it

plays a pivotal role in safeguarding marine life and preserving

the delicate ecological balance by detecting illegal fishing ac-

tivities. Our primary objective revolves around the detection of

illegal vessel activities within specific sea regions. Leveraging

AIS signals, we pursued the following key steps:

• Creating a realistic simulation environment with a user-

friendly interface, enabling the visualization of vessel

movements and the adjustment of parameters related to

dark activity.

• Designing and implementing a rule-based decision-

making algorithm to identify vessels entering a state of

dark activity.

• Gathering a dataset from the simulation environment to

fuel machine learning algorithms.

• Simulating both algorithms within the environment and

assessing their accuracy

Through these endeavors, we aim to strengthen maritime

security, safeguard the environment, and ensure responsible

and legal conduct on the high seas.

A. Related Work

In the literature, there are several studies on dark activity

detection. Shahir et al. [4] addressed the critical issue of

maritime domain awareness, emphasizing its significance in

preventing smuggling and safeguarding vital sea-based struc-

tures. Their solution consisted of three phases: i) Engage-
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ment Detection: Vessels in close proximity were clustered

together; ii) Detection of Candidates: Candidates for engage-

ment were identified based on kinematic features, particularly

slow speeds and converging courses or close proximity; iii)

Scenario Detection: Leveraging the results of engagement

detection, scenarios were represented by left-to-right Hidden

Markov Models and classified using Support Vector Machines.

Moreover, an additional phase was introduced for anomaly

detection, extending the scope of scenario detection to rectify

misclassified scenarios.

Mantecon et al. [5] address the challenge of maritime

threats and illegal activities, and employ convolutional neural

networks (CNN) to derive navigation patterns based on ship

speed, direction, and maneuverability, using a dataset called

DeepMarine, derived from historical AIS data. Then both AIS

and Radar trajectories can be used to identify various vessel

behaviors. The proposed method requires both the positional

data and ship information to detect illegal activities such as

fishing in non-allowable areas. The authors in [2] presented

an anomaly detection methodology to discriminate between

AIS messages that are not received by base stations due to

communication channel-related effects and those that were not

broadcasted at all to cover dark activities. The strength of the

received signal RSSI is analyzed to detect On/Off switching of

the ship’s transponder. A training set of known good AIS data

is used for comparison with received data, an alert is triggered

when signal dropouts exceed a defined threshold. Eaton et al.

[6] introduced a novel dark activity detection concept called

Sensors and Platforms for Unmanned Detection of Dark Ships

(SPUDDS), which combines hardware and software compo-

nents. SPUDDS involves an autonomous buoy equipped with

various sensors and software called CROWSNEST, designed

for ship identification and classification. The system accurately

categorizes detected ships, including sailboats, merchant ships,

and fishing vessels, using a highly precise machine learning

algorithm. CROWSNEST relies on a convolutional neural

network and data-driven ODF for ship classification. The

integration of a 360-degree camera on the buoy enhances its

capabilities for safeguarding maritime security. Paolo et al

[7] suggests using Synthetic Aperture Radar (SAR) images

and automated machine learning in order to detect illegal

fishing activities. They constructed and released xView3-SAR

dataset for maritime object detection and characterization, and

combine AIS and human annotations for labeling the data.

Bereta et al. [8] employed satellite imaging techniques to

achieve a 95% accuracy rate in detecting Dark Activities. They

emphasized the limitations of relying solely on AIS signals,

leading them to propose a hybrid approach using satellite

data, specifically Copernicus Sentinel imaging, in conjunction

with Marine Traffic AIS data to monitor ship density in areas

of potential Dark Activity. The project involved acquiring

data from the Alaska Satellite Facility and Copernicus Data

Hub, followed by preprocessing to remove irrelevant image

portions and filtering out cloud-obscured images, reducing

data volume from terabytes to gigabytes. The data fusion step

synthesized satellite and AIS data, aligning the satellite image

time with AIS data from 30 minutes before and after the image

capture. Utilizing the K-nearest neighbors (KNN) method,

they matched satellite images with AIS data, identifying ships

present in images but absent from AIS records as potential

participants in Dark Activity.

This paper introduces a distinct approach from previous

studies. Due to the fact that only nearby ships can notice

a vessel turning off its AIS transponder, ships working co-

operatively can be crucial in detecting dark activities. Thus,

instead of depending on external sources like satellite imagery,

buoys with 360-degree cameras, or X-band radar systems, we

solely rely on local AIS signals. We put forward rule-based and

machine-learning-based algorithms to identify dark activities

of nearby vessels in real-time when their AIS transmitters

are deactivated. Our approach offers a cost-effective solution

compared to alternative methods and can be used alongside

more expensive solutions to enhance the overall efficacy of

illegal activity detection.

II. METHODOLOGICAL BACKGROUND

We consider a system model where every vessel may verify

the activities and status of nearby vessels through AIS signals.

The horizontal range of vessel-to-vessel AIS signals is 20-30

nautical miles under most atmospheric conditions [9]. AIS is

obligatory for ships that meet specific criteria. According to

IMO (International Maritime Organization), passenger vessels

irrespective of size, all ships engaged on international voyages

with size of 300 gross tonnage, and cargo ships of 500 gross

tonnage are required to have AIS transmitter[10]. AIS signals

should be transmitted at intervals ranging from 2 to 180

seconds, with the specific interval determined by the velocity

and the change in the course of the vessels [11].

When a vessel broadcasts an AIS signal, nearby vessels

equipped with AIS receivers within the coverage area will

receive it. Therefore, if vessel A receives the AIS signal from

vessel B but then stops receiving it, there could be three

possible reasons: i) Vessel A has moved out of the coverage

area of vessel B due to mobility, ii) Signal collision and

interference have occurred, iii) Vessel B has entered dark

activity.

In our system model, vessels have the capability to verify

the activities of nearby vessels and determine if they have

entered dark activity. These vessels are referred to as detector

vessels. To provide a clear explanation, we will concentrate on

a scenario involving a single detector, represented as vessel

5 in Fig.1. As depicted in the figure, each vessel has a

predefined broadcasting range for its AIS signal, which varies

depending on its type. The green zones indicate areas where

vessels’ signals can be received by the selected detector vessel,

while the red zones signify that their broadcasting range is

insufficient to transmit their AIS signal to the detector vessel.

At time t, vessel 5 receives signals from vessels 1 and 4 but

cannot receive signals from vessels 2 and 3. In the subsequent

time step, vessel 3 comes within range, while vessel 4 goes out

of range. Even though vessel 4’s signal is no longer received,

vessel 5 refrains from making a dark activity decision because
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this situation was expected based on the vessel’s location,

course, and speed in the previous time step. However, at time

t+2, the signal from vessel 1 is unexpectedly not received,

prompting a dark activity decision. Even if vessel 1 reactivates

its AIS signal after a period of dark activity, the decision of

”possible dark activity” persists.

III. DARK ACTIVITY DETECTION

To accurately detect dark activities, a critical challenge lies

in predicting a ship’s future position based on the AIS data

received at the current moment. A straightforward method

involves utilizing vessel kinematics, considering factors like

location, speed, and course. However, this approach may yield

incorrect results if the vessel alters its course, speed, or other

parameters. To enhance prediction accuracy, a machine learn-

ing approach becomes imperative. The subsequent subsections

will elaborate on the proposed methods.

A. Rule-based Dark Activity Detection (R-DAD) Algorithm

A detector vessel continuously monitors AIS signals from

nearby vessels, recording their transmitted parameters. It cal-

culates the expected positions of these vessels in the next

time step by applying fundamental physics principles to the

received AIS data. These calculated positions, along with the

corresponding AIS parameters, are stored. During each time

step, the detector vessel checks whether the estimated positions

of nearby vessels from the previous time step fall within its

reception range. If a vessel’s estimated position is within the

detector vessel’s reception range but no corresponding AIS

signal is received, it triggers a potential alert for dark activity

detection.

To monitor nearby vessels, the detector vessel maintains a

database of received AIS signals, as depicted in the flowchart

presented in Fig. 2. Subsequently, based on the AIS signal

intervals, a designated time period is established to assess

the potential occurrence of dark activities. Fig. 3 displays

the procedural workflow of the R-DAD algorithm. When the

AIS signal from a vessel was previously acquired but is

absent in the current temporal segment, a verification process

is conducted concerning the estimated vessel location. This

estimation is derived from previously acquired AIS parameters

and utilizes kinematic principles for computation.

Fig. 3 Flowchart of the Rule-based Dark Activity Detection (R-
DAD) algorithm

In this context, we employ the Haversine formula to

compute both the expected vessel location and the distance

between vessels. The Haversine formula serves as a precise

method for calculating the distance d between two points on

the surface of a sphere, based on their respective latitudes (φ1,

φ2) and longitudes (λ1, λ2). It is defined as follows:
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a =

√
sin2(

φ2 − φ1
2

) + cosφ1 · cosφ2 · sin2(λ2 − λ1
2

) (1)

d = 2R · arcsin(a) (2)

where longitudes and latitudes are defined in radians and R

is the radius of the Earth.

To find the estimated location of a vessel, we first calculate

the covered distance with its given speed, assuming that

the speed is constant. Then given the initial latitude (φ1)

and longitude (λ1), initial bearing (θ, clockwise from north),

and the covered distance, the estimated location (φ2,λ2) is

calculated with the following formula [12]:

φ2 = arcsin(sinφ1 · cos δ + cosφ1 · sin δ · cos θ) (3)

λ2 = λ1+arctan 2(sin θ · sin δ · cosφ1, cos δ− sinφ1 · sinφ2)
(4)

where δ is the angular distance d/R.

If the estimated location is out of range of the detector

vessel, in other words if the distance calculated by (2) is

more than the AIS range, this scenario is categorized as a

typical operational condition. However, when the estimated

location resides within the range, yet no AIS signal is detected,

then this is interpreted as a potential dark activity, and an

alert is triggered. It is noteworthy that one can establish a

probabilistic assessment of the likelihood of dark activity

based on the proximity of the anticipated position to the

boundary of the AIS signal range. This approach necessitates

further investigative exploration and research.

B. Machine Learning Based Dark Activity Detection (ML-
DAD) Algorithm

In order to improve the precision of detecting dark activities,

we employ a machine-learning technique. Initially, we create a

dataset through a realistic simulation detailed in Section IV-A,

which encompasses the attributes listed in Table I. Each data

instance is also paired with a target value denoting whether it

corresponds to a dark activity or not. The dataset comprises

information about the detector vessel’s course, heading and

speed, as well as those of the selected nearby vessel. Addi-

tionally, the distance between two vessels and the AIS range

of the nearby vessel is also used. Notably, a unique feature

included in the dataset is the distance to the turn point, a

parameter not typically conveyed in current AIS messages. It

is worth mentioning that the AIS protocol accommodates a

total of 64 message types, with 27 of them already allocated

for specific purposes. The introduction of a novel message type

featuring the distance to the turn point holds the potential to

enhance maritime traffic control, and this study presupposes

its utilization for improved accuracy.

Utilizing the dataset we constructed, we train a machine-

learning model through a supervised learning algorithm. Sub-

sequently, for each nearby vessel whose AIS signal was

received in the previous time step but is currently not being

received, we employ the model to make predictions regarding

TABLE I FEATURES USED IN MACHINE LEARNING

Features Target
ais range
distance from nearby vessel
nearby vessel heading
nearby vessel course
nearby vessel speed
nearby vessel distance to turn point
heading
course
speed
distance to turn point

dark activity

the presence of dark activity. Fig. 4 illustrates the ML-DAD

algorithm. Instead of location estimation, dark activity decision

is done according to the trained model.

IV. SIMULATION

A. Simulation Setup

To overcome the cost associated with obtaining real-time

S-AIS data, we created a realistic dataset by leveraging actual

port locations, established routes, and real-time vessel location

data from MarineTraffic [10]. This dataset is stored in JSON

format and comprises three static data types: ports, routes, and

vessel data.

The ports data represents widely used ports and includes

three fields: name, latitude (lat), and longitude (long). We

initially compiled this static data by observing real maritime

networks.

The routes data, also static, contains five fields: ”from,”

”to,” ”density,” ”noise,” and ”coordinates.” ”From” and ”to”

denote the starting and final ports, respectively. ”Coordinates”

is an array containing the latitude and longitude of intermedi-

ate turning points along the route. ”Density” and ”noise” are
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Fig. 5 A snapshot from the simulation map

arrays in which density[i] and noise[i] specify vessel density

and noise levels between coordinates[i] and coordinates[i+1].

Vessel data is randomly generated along the predefined

routes. The number of vessels between coordinates is de-

termined by the corresponding density value from the route

data. These vessels are randomly distributed between two

coordinates, with their distance from the route randomly

chosen within the range of -noise to +noise. Vessel data en-

compasses attributes such as Maritime Mobile Service Identity

(mmsi), type, AIS range, AIS Interval, course, heading, speed,

longitude, and latitude. The course of the vessel is calculated

according to the following equation:

θ = arctan(
sinΔλ · cosφ2

cosφ1 · sinφ2 − sinφ1 · cosφ2 · cosΔλ ) (5)

where φ1, λ1 and φ2, λ2 are latitudes and longitudes (in

radians) of starting point and ending point respectively, and

Δλ is the difference in the longitudes. Additionally, a binary

variable named ”dark activity” is defined to simulate vessel

dark activity.

We focused our study on the Marmara Sea area and sim-

ulated a scenario involving 87 vessels following predefined

routes. Circular routes were designated for fishing vessels,

and Fig. 5 provides a snapshot of a specific time instance

within this scenario. Our simulation environment allowed for

the selection of any vessel as the detector vessel, while any

vessel other than the detector could be chosen to enter dark

activity.

Fig. 6 shows another snapshot from simulation screen,

where the detector vessel is selected and shown by red color,

and the nearby vessels whose signals are detected are shown

by yellow color. AIS signals of the vessels that are shown in

dark blue color do not reach to the detector vessel, either due

to long distance, or due to switching of the AIS transmitter

and entering to dark activity.

Fig. 7 illustrates the basic system architecture of the simu-

lation environment.

The simulation was executed through a total of 10 iterations,

each spanning 1000 time steps. Every 10 time steps, a detector

vessel was randomly chosen, and during each time step, a

vessel was selected at random to engage in dark activity. We

conducted experiments employing both R-DAD and ML-DAD

algorithms. Within the ML-DAD algorithm, we utilized a va-

riety of supervised machine learning techniques, including K-

Nearest Neighbors, Decision Trees, Artificial Neural Networks

(with bagging), Support Vector Machines, Logistic Regression,

and AdaBoost Random Forest. 30% of the data is allocated

for the training set, while the remaining 70% is designated for

the test set.

B. Numerical Results

Following the execution of the simulation involving both R-

DAD and ML-DAD algorithms, with the latter employing var-

ious machine learning models, we assess the outcomes based

on the accuracy of dark activity detections. We categorize these

assessments into the following cases:

• True Positive (TP): A vessel is not involved in dark

activity, and the prediction is accurate.

• False Negative (FN): A vessel is not involved in dark

activity, yet the prediction is incorrect.

• False Positive (FP): A vessel is involved in dark activity,

but the prediction is incorrect.

• True Negative (TP): A vessel is involved in dark activity,

and the prediction is correct.

Then, the accuracy is calculated according to the following

equation:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Accuracy ratio for R-DAD algorithm is found to be 0.892,

while the accuracy of the ML-DAD algorithm can be seen

in Table II. AdaBoost random forest emerges as the best-

performing supervised machine-learning algorithm with an

Fig. 7 System architecture of the simulation environment
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TABLE II ACCURACY RESULTS OF ML-DAD FOR

VARIOUS MACHINE LEARNING ALGORITHMS

ML Algorithm Accuracy
K-Nearest Neighbors 0.942
Decision Tree 0.952
Artificial Neural Networks 0.898
Suppor Vector Machines 0.942
Logistic Regression 0.864
AdaBoost Random Forest 0.961

accuracy ratio of 0.961. Table III displays the confusion

matrix for the R-DAD algorithm, while Table IV presents

the confusion matrix for the ML-DAD algorithm utilizing the

AdaBoost random forest model. It is worth noting that, in the

machine-learning-based approach, although there is a slight

increase in false positive cases, there is a significant decrease

in false negatives, resulting in a substantial improvement in

the overall accuracy ratio.

TABLE III CONFUSION MATRIX FOR R-

DAD ALGORITHM

Positive 504 74Actual
Condition Negative 5 151

Positive Negative
Predicted condition

TABLE IV CONFUSION MATRIX FOR ML-DAD ALGORITHM

Positive 574 4Actual
Condition Negative 20 136

Positive Negative
Predicted condition

V. CONCLUSION

This paper has addressed the crucial issue of detecting dark

activities within AIS-based maritime networks, with a primary

focus on enhancing security and safety at sea, particularly

in identifying illicit engagements. Our examination primarily

centers on a localized detection scenario, where vessels that

deactivate their AIS transmitters are identified by nearby

vessels based on historical signals received from them.

We introduced two distinct approaches to address this chal-

lenge. Firstly, we proposed a rule-based method grounded in

kinematic estimations. Subsequently, we presented a machine

learning approach leveraging a dataset created from a realistic

simulation environment, which was designed with a graphical

user interface using real data. Both approaches were evaluated

within a scenario wherein a random subset of vessels engaged

in dark activity.

The rule-based dark activity detection algorithm demon-

strated strong performance in identifying dark activities but ex-

hibited limitations, particularly in instances where AIS signals

were not received due to changes in vessel movement param-

eters, leading to false alarms. On the other hand, the machine-

learning-based dark activity detection approach yielded im-

proved prediction accuracy and a reduced occurrence of false

predictions in lawful cases, provided an appropriate supervised

model was selected.

This research contributes valuable insights into the detection

of dark activities in maritime networks, shedding light on

the effectiveness and limitations of rule-based and machine-

learning-based approaches. Further exploration of these meth-

ods and their integration into real-world maritime security

systems holds promise for enhancing safety and security

at sea. A potential avenue for future research involves the

development of a collaborative system wherein multiple de-

tector vessels engage in intercommunication to collectively

identify proximate illicit activities. Another promising area

of investigation entails the utilization of machine learning

techniques to ascertain regions with elevated susceptibility to

covert activities. Subsequently, this spatial information can be

incorporated into dark activity detection algorithms to enhance

the overall accuracy of the obtained results.
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