
Towards Automating Database Designing

Heli Helskyaho
Miracle Finland Oy
Helsinki, Finland

heli.helskyaho@miracleoy.fi

Abstract—Database designing is an important process for
enabling good quality data. Without designing the database
correctly, the database might contain the same data several times,
or it might contain data that is not usable for decision making.
The evolution of software development, programming languages,
increasing amount of data, different data models, different data
sources and many more have increased the importance of
designing databases to provide accurate data for decision
making. Designing databases manually is time consuming. If the
process can be automated, it would allow faster creation of good
quality databases.

The goal of this study is to investigate whether large language
models could be used for designing a Data Vault 2.0 raw database
to automate the designing process. In this study we introduce
database designing as a process, and describe the main principles
of Data Vault 2.0. We create an example data source, an example
Data Vault 2.0 raw database based on the source database for
reference, and then test the ChatGPTs capabilities for creating a
Data Vault 2.0 raw database based on instructions given in a
prompt. Finally, we analyze the results and discuss future works.

I. INTRODUCTION

The relational database management system (RDBMS) has
been de facto as a data model solution for decades, and for a
good reason: RDBMS is based on a solid theory and therefore
gives a standardized environment for storing and retrieving
data [1], [2]. The evolution of software development and
programming languages has brought new ideas on storing and
retrieving data to make the interaction of a programming
language and the database more fluent. First the objects were
introduced in programming languages giving pressure to create
object-oriented database management systems (OODBMS), a
database where an object can be stored as it is and called easily
by an object-oriented programming language [3]. Later these
features were added to a RDBMS making it an object-relational
database management system (ORDBMS) [4], [5]. The next
need in the software development was to be able to interchange
data between applications in a standard way, and Extensible
Markup Language (XML) was defined along with the XML
database management systems [6]. Then, JSON was created to
be a lighter version of XML and easily used by JavaScript
programs or REST API Calls. Document store NoSQL
databases were introduced to store JSON data natively. Later
both XML and JSON were fully supported by RDBMS and
eventually all the other data model needs have been
implemented in RDBMS.

There are also other so-called NoSQL databases [7] created
for specific data model purposes, for example key-value pair,

column-oriented, or graph. A key-value pair consists of two
related data elements: a key to identify the data and a value,
which is the actual data. A key-value store is considered as
semi-structured data, a combination of structured and
unstructured data. The key is structured and value (text) is
unstructured. A column-oriented, or a columnar store, stores
data in columnar structures instead of rows. A graph data
model stores data as relationships. All these new features have
demanded enlargements to SQL language to enable inserting
and retrieving all these data models to and from the RDBMS.

Not only the evolution of software development and
programming languages, but also the evolution of data has
given its demands for data stores:

 growth of amount of data (volume)
 various formats of data (variety), including for

example spatial or temporal data
 the speed of change of data, and the need to

analyze streaming data (velocity).

Also, due to various sources of data, including sources
outside the company domain, additional steps for database
designing might be needed because of the changes in the nature
of the data:

 the uncertainty of the data (veracity)
 the value of the data (value)
 the changing meaning of the data (variability)
 the need to validate that hypothesis before taking

further action (viability)
 the need to be able to present the data in a manner

that is readable and accessible (visualization).

 The evolution of processing power and algorithms has made it
possible to analyze large amounts of various kinds of data in a
short time to give the business more information on their data.
Therefore, it is even more important to be able to store all the
data in a form it can be used. If the data is saved without the
design process it cannot be used, because nobody knows what
the data is about, how it is related to other data etc.: the data is
stored but it cannot be used. With the current amount of data,
different data models, different data sources etc. it is no longer
possible to design databases only manually. The demand for
efficiency requires machines to do as much work as possible
leaving only a fraction of the work for humans to do.

 To be able to use the data, there are also other requirements.
All data, despite its location or format, should be able to be
queried with one single language using one single frontend [8].

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 41 --

Without this capability we will not be able to fulfill the need of
efficient data processing in retrieving the data. One key
element is that the various data must be able to identify how
they are related to each other, similar to a system as foreign
keys in RDBMS.

 The data must be identified by its label (first name =
fname), and by its content (John Doe = Doe John). Sometimes
the data must be transformed before saving. Some data might
be missing, some data might need to be converted to another
format so it will be aligned with the data from other data
sources. The data types must be defined correctly before
storing the data. For instance, dates are typically managed
differently in different kinds of data sources.

 Because all these steps are complex and varying depending
on the data source and the data itself, the steps might be
impossible to define in static programming, therefore machine
learning could be a solution.

How to automate the database designing? One option
to solve the problem would be using mathematics, for example
set theory and category theory. But that approach requires the
process to be defined in detail and implemented using a
programming language. The process of database designing is
complex, and often unstructured. When two database designers
design the same database, the result is rarely exactly the same.
The different solutions for the same problem can be explained
for example by the knowledge and experience on database
designing, the domain understanding, and the problem-solving
skills of the designer. Part of the database designing process is
commonsense reasoning. That part of the work is difficult to
get implemented using traditional programming techniques.
Since automating the database designing is important, there are
several attempts to solve it. Knowledge-based approaches have
been suggested to automate the design process to include the
domain knowledge, the human user experience and
commonsense to the process. Suggestions include for example
ontologies, semantics, expert systems and forms [9], [10], [11],
[12], [13], [14], [15], [16]. These approaches have not been
successful since there still is no tool to automate the process.

Could Large Language Models (LLMs) be the solution for
automating the database designing process? LLMs, as being
Generative AI, produce innovative outcomes that are similar to
the creative part of a designer’s work. Could LLMs be used to
automate the designing process of a Data Vault 2.0 database?

 In our study, we conducted tests using ChatGPT 3.5 to
provide DDLs for creating a Data Vault 2.0 database. Our
study consisted of the following:

 We defined a source database.
 We manually created a Data Vault raw database as a

reference.
 We used ChatGPT to generate the DDLs for creating a

Data Vault database.
 We investigate the results against the reference database

and the Data Vault 2.0 methodology.

The focus of this paper is the conceptual and logical design
process for relational data and how that can be automated.

There are several tools that are able to generate the physical
models based on the logical model, therefore automating the
creation of a logical model is more vital.

The remainder of this paper is organized as follows. Section
II introduces the process of database designing and its
complexity. Section III introduces Data Vault 2.0 methodology
and the principles of a Data Vault 2.0 raw database. Section IV
explains the tests made in understanding the potential of
ChatGPT 3.5 in automating Data Vault 2.0 raw database
designing process. In section V we discuss the validity of the
chosen approach. Finally, in section VI we conclude the paper
and discuss the future work.

II. DATABASE DESIGNING

A. The process of designing a database

In database design it is determined what data will be
stored, where, and using what data model. There are several
different data models and the correct choice depends on the
nature and use of the data. The data models available depend
on the Database Management System (DBMS). Examples of
data models are relational, columnar, document, spatial, or
graph. A DBMS supporting several data models is called a
multi-model database [8].

A typical database designing process consists of four
phases: requirement analysis, conceptual design, logical
design, and physical design [17]. In requirement analysis the
main target is finding and analyzing the requirements the
future end users have for the data and the system. The result of
this phase is specification of user requirements for data,
functionality, security, performance and so on. The next phase
is conceptual design during which those requirements will be
interpreted into a formal presentation: the conceptual model
and process models. In logical design the conceptual model is
transformed into a logical data model that the target DBMS
understands. For instance, in RDBMS that would be a logical
schema, or in NoSQL maybe a JSON schema, a Key-value
pair definition, column store definition, or the graph
structures: the nodes, edges, and properties. This is the phase
to understand which data model would fit the best and to
design a logical model for it. In relational data model the tool
for logical design is an Entity-Relationship (ER) diagram. In
the ER diagram the goal is to identify entities and how they
are related to each other. It is also important to discover
attributes of these entities and define the correct data types for
them. If an attribute can be defined to be mandatory, the best
practice is to do so. Missing values or wrong data types in the
attributes will lead to poor data quality. The physical design
depends on the selected database technology, and requires
excellent knowledge on that. The physical design includes, for
example, how the schema objects are implemented on disks, or
what kind of indexes are used for data retrieval optimization.

B. The process of adding new data sources to an existing
database

Designing a new database is a complex process but adding
new data sources to an existing database is even more

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 42 --

complicated because the process should also include analyzing
and comparing the existing data structures to the new ones.
There are two high level questions when adding a new data
source: does the structure for storing the data exist, and does
the data or part of it already exist in the database.

Data mapping is the process of mapping data from one
dataset to another dataset. Data mapping can be divided into
two categories: mapping the metadata (Entity matching) and
mapping the data (Content mapping). Entity matching includes
mapping the entity types and data labels. Mapping of entity
types includes discovering if the entity type already exists in
the database. To do that, we identify the entity type and
discover if that entity type (for instance a Customer, or an
Order) exists in the database.

If the entity type exists in the database:

 We need to decide if the new data will be stored in
the existing structure, or if we need to use a
different data model and somehow link it to the
existing data.

 If an existing structure is chosen, we need to verify
it has all attributes needed. If all attributes do not
exist, we need to decide how the new attributes
will be stored.

If the entity type does not exist in the database:

 We need to decide how and in what format the
data will be stored. For instance, if the new data
arrives in JSON, will we store it as JSON,
relational or graph.

 We need to discover how this entity type is related
to other entity types and how we want to
implement a relationship between these entity
types.

 Mapping of the data labels identifies the same data being
labeled differently in data sources. For instance, in one data
source the first name of the customer might be called
FirstName, in another First Name, and in the third data source
it might be FName. When storing the data, the system should
understand that these are labels for the same data.

 The next step is content matching. We identify each entity
on the new dataset to understand if that particular entity
(Customer John Doe) already exists in the database. Identifying
an entity is not an easy task because not all datasets have a
natural identifier that could be used for identifying. The
identifying process can be difficult and might include data
transformations, for example J. Doe -> John Doe, Doe John ->
John Doe.

 A dataset can include categorical data. Categories can be
ordinal or nominal. The difference is that ordinal categories
can be ordered, whereas nominal categories do not have
ordering. An example of an ordinal category is school
evaluations from A to D, and examples of nominal categories
are colors or zip codes. Each data source might have its own
categories for the same data and storing those different

categories as they are would cause a mapping challenge when
trying to use the data. If we store data as it is, we need to do
the mapping of different categories each time we query data,
instead of doing it only once when storing it. Harmonizing the
categories while saving the data is recommended.

When the database has been designed and all the mappings
are done, it is time to insert data into the database. It makes no
sense to store poor quality data, because that would not be
usable for any decision making; in the worst case it could
result in wrong decisions. Missing data and null values have
always been a problem with data. If the value is null, you do
not know what it means: the data does not exist, it is not
available at the moment, the user did not enter it for some
reason, you do not have access to that data, or something else.
If the data has no meaning at all, it is possible we will not store
it at all. If we can guess the value for the missing data using
defaults or estimation algorithms, we might add the value
using imputation. If we do not know what to do with it, we
might store it as it is. The decision depends on the data and the
insight we have on the data.

Multicollinearity means that one or several attribute/-s in
the dataset is/are dependent on another attribute/-s on the
dataset. This might affect the way we treat those attributes in
data discovery and it is a feature that must be recognized by
the process. There are several other challenges with the data.
For example:

 The data has inconsistent values. For instance, a phone
number in the field that should have the email address.
Some of these can be checked using data type checking:
all values in that column should be of type something,
for example number. This technique does not reveal all
the problematic data.

 The dataset contains duplicate values and duplicate data.
That can usually be detected by defining a meaningful
identifier that has the same value for all equal data rows
and would reveal the duplicate data.

 The data is too detailed. It might be the data is
restricted, confidential, or private and because of that
nature it can never be used as it is. In these cases, the
data needs to be aggregated or anonymized before
saving.

 The data in the dataset is stored in a way that it will not
be usable in the future and it needs to be transformed to
something more useful. For example, Age would not be
the same after a year or two, so instead of storing the
age, it might be useful to convert it to the year of birth.

 The data type used in the dataset is completely wrong or
not in the same format as the other data in the target
database. Typically, the data type for dates is something
that needs to be checked. Also, decimals, character sets,
and data length are worth checking.

The nature of the data structure affects how it can be
discovered. For instance, structured data is handled differently
from semi-structured or unstructured data, and time series are
handled in its own way.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 43 --

III. A DATA VAULT 2.0 DATABASE

Data Vault 2.0 is a methodology for implementing large
scale analytic solutions and data warehouses. Part of the
methodology defines standards and best practices for the
logical and physical database design [18], [17]. One of the
foundational principles of the Data Vault 2.0 methodology is
that new data sources can be added with minimal to zero
impact on the existing solution and the applications using it. A
Data Vault 2.0 logical data architecture may consist of several
different physical or virtual databases or layers. It includes a
staging area for highly performant source-to-stage loading
processes, a raw data warehouse layer for all the auditable,
historical data stored over time, and layers for business users
to see and use the data. In this paper our focus is on the raw
data vault layer.

In the raw data vault layer, there are three different kinds of
entities: Hubs, Links, and Satellites. A Hub is defined to be a
unique list of business keys. A business key is the identifier
the business uses for selecting a specific row in an entity.
Preferably the business key is not a surrogate key. Each Hub
entity represents a business concept, such as Customer,
Employee, Facility or Product. A Link is defined to be a
unique list of relationships, associations, events, or
transactions between two or more business keys. Satellites
include delta-driven descriptive information; the data that
changes over time. A raw data vault layer is designed
primarily using these three elements. There might also be
some special entities, for example Stand-Alone tables, or
Reference tables. Data Vault 2.0 documentation covers the
guidelines and recommendations for all these entities, also
including solutions for several modeling problems. Let’s
observe some guidelines for the three main entity types: Hubs,
Links, and Satellites.

A. A Hub

1) The business key: a Hub must have at least one business
key driven attribute.

2) Relationship to Satellites: The description, slowly
changing historical data about the Hub’s business key.

3) Technical attributes: A Hub must include some
technical attributes for the loading process and for the
auditability. Examples of these attributes are the Load Date
Time Stamp and the Record Source.

B. A Link

1) The intersection: A Link is a m:n relationship between
two or more Hub business keys. A Link can never depend on
another Link, and a Link never includes any temporality
regarding the start or end dates of the relationship that exists
between the business keys

2) Technical attributes: A Link must include some
technical attributes, for example Load Date and Record
Source.

C. A Satellite

1) Satellites are associated with: Hubs or Links.
2) A Satellite hosts the descriptive, time variant content:

the data about a Hub or a Link.

3) Technical attributes: A Satellite must include some
technical attributes for the loading process and for the
auditability. Examples of these attributes are Load Date Time
Stamp and Record Source. Optional attributes include for
example Hash Difference which helps in detecting if the
descriptive data has changed and determining if a new row
should be inserted.

IV. DESIGNING A DATA VAULT 2.0 DATABASE USING

CHATGPT

We chose Data Vault 2.0 methodology and its raw database
as the test database to be designed. The reason for this is that
Data Vault 2.0 has commonly known principles that have been
documented and are available on the internet. We chose
LLMs to generate Data Definition Language (DDL)
commands for creating a Data Vault 2.0 raw database based on
DDL commands of the source database and other guidance
given in a prompt. A prompt is the input to the LLM to
stimulate the generation of a response. The process of
designing and optimizing prompts to achieve better outcomes
is called Prompt engineering. ReAct (Reasoning and Acting),
as a prompting framework, allows LLMs to generate reasoning
traces and actions specific to the given task. Once an LLM
generates an action, the action can be carried out externally,
and the output of the action can be included in the next prompt
as further information to the LLM. A token is the atomic unit
for LLM to represent its input and output. Tokens are
enumerations of words, characters, or other segments of text or
programming code.

We tested creating a Data Vault 2.0 database with the free
LLM based tool called ChatGPT that is using GPT-3. The first
test is to create a Data Vault 2.0 raw database using the DDLs
of the source database. The simple source database is shown in
Fig. 1. It consists of four tables: Customer, Product, Order and
Orderline. The database is designed using Oracle SQL
Developer Data Modeler, and the DDLs are generated based
on the design.

Fig. 1. The source database

We manually created a reference Data Vault 2.0 raw
database for the source database. The expected result of a Data
Vault 2.0 raw database is shown in Fig. 2.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 44 --

Fig. 2. An expected Data Vault 2.0 raw database design for the data source

To generate the DDLs for creating the Data Vault 2.0 raw
database we prompted ChatGPT with the DDLs of the source
database.

The DDLs for the database are following:

CREATE TABLE Customers (customerno VARCHAR2 (10) NOT
NULL, customername VARCHAR2 (100) NOT NULL)
TABLESPACE data1 LOGGING;

ALTER TABLE Customers ADD CONSTRAINT customers_pk
PRIMARY KEY (customerno);

CREATE TABLE orderlines (lineno NUMBER (5) NOT NULL,
orders_orderno VARCHAR2 (10) NOT NULL, amount NUMBER
(10, 2) NOT NULL, pcs NUMBER (10) NOT NULL,
product_productid VARCHAR2 (16) NOT NULL) LOGGING;

ALTER TABLE orderlines ADD CONSTRAINT orderlines_pk
PRIMARY KEY (lineno, orders_orderno);

CREATE TABLE orders (orderno VARCHAR2 (10) NOT NULL,
orderdate DATE NOT NULL, customers_customerno
VARCHAR2 (10) NOT NULL) LOGGING;

ALTER TABLE orders ADD CONSTRAINT orders_pk PRIMARY
KEY (orderno);

CREATE TABLE product (productid VARCHAR2 (16)
NOT NULL, productname VARCHAR2 (100) NOT NULL,
description VARCHAR2 (200) NOT NULL) LOGGING;

ALTER TABLE product ADD CONSTRAINT product_pk
PRIMARY KEY (productid);

ALTER TABLE orderliness ADD CONSTRAINT
orderlines_orders_fk FOREIGN KEY (orders_orderno)
REFERENCES orders (orderno) NOT DEFERRABLE;

ALTER TABLE orderliness ADD CONSTRAINT
orderlines_product_fk FOREIGN KEY
(product_productid) REFERENCES product (productid)
NOT DEFERRABLE;

ALTER TABLE orders ADD CONSTRAINT
orders_customers_fk FOREIGN KEY
(customers_customerno) REFERENCES customers
(customerno) NOT DEFERRABLE;

ALTER TABLE orderliness ADD CONSTRAINT
orderlines_orders_fk FOREIGN KEY (orders_orderno)
REFERENCES orders (orderno) NOT DEFERRABLE;

ALTER TABLE orderliness ADD CONSTRAINT
orderlines_product_fk FOREIGN KEY
(product_productid) REFERENCES product (productid)
NOT DEFERRABLE;

ALTER TABLE orders ADD CONSTRAINT
orders_customers_fk FOREIGN KEY

(customers_customerno) REFERENCES customers
(customerno) NOT DEFERRABLE;

When this set of DDLs was given to ChatGPT in May
2023, with a prompt “Please generate the DDLs for the target
following the Data Vault 2.0 methodology.”, the outcome was
a set of DDLs that did not have correct column names; they
were called attribute1, attribute2 etc. When prompting
ChatGPT to correct the column naming, the result was better,
but not good. With further prompting the column names were
created correctly but many other flaws still existed. The
diagram created based on the DDLs ChatGPT provided is
shown in Fig. 3.

Fig. 3. The Data Vault 2.0 raw database created in May 2023 using DDLs
generated by ChatGPT

Another attempt was made in September 2023. Then,
ChatGPT was able to perform better. We prompted it with the
same prompt as before.

This time ChatGPT replies:

“Data Vault 2.0 methodology involves modeling the
data warehouse in a specific way to enable better
flexibility and scalability in managing data. To
generate DDLs for a target database following the
Data Vault 2.0 methodology, you would typically
create the following structures: Hubs, Links, and
Satellites. Below, I'll provide DDLs for tables
representing these structures based on your existing
tables.

Hubs - These are business key entities.

-- Hubs

CREATE TABLE hub_customers (hub_customerno
VARCHAR2(10 BYTE) NOT NULL, record_source
VARCHAR2(100), load_date DATE, record_hash
VARCHAR2(64), CONSTRAINT hub_customers_pk PRIMARY
KEY (hub_customerno));

CREATE TABLE hub_orders (hub_orderno
VARCHAR2(10 BYTE) NOT NULL, record_source

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 45 --

VARCHAR2(100), load_date DATE, record_hash
VARCHAR2(64), CONSTRAINT hub_orders_pk PRIMARY KEY
(hub_orderno));

CREATE TABLE hub_product (hub_productid
VARCHAR2(16) NOT NULL, record_source
VARCHAR2(100), load_date DATE, record_hash
VARCHAR2(64), CONSTRAINT hub_product_pk PRIMARY KEY
(hub_productid));

Links - These represent relationships between
hubs.

-- Links

CREATE TABLE link_customer_order (link_id
NUMBER GENERATED BY DEFAULT AS IDENTITY,
hub_customerno VARCHAR2(10 BYTE) NOT NULL,
hub_orderno VARCHAR2(10 BYTE) NOT NULL,
record_source VARCHAR2(100), load_date DATE,
record_hash VARCHAR2(64), CONSTRAINT
link_customer_order_pk PRIMARY KEY (link_id),
CONSTRAINT link_customer_order_customer_fk FOREIGN
KEY(hub_customerno)REFERENCES
hub_customers(hub_customerno), CONSTRAINT
link_customer_order_order_fk FOREIGN KEY
(hub_orderno) REFERENCES hub_orders(hub_orderno));

CREATE TABLE link_order_product (link_id
NUMBER GENERATED BY DEFAULT AS IDENTITY,
hub_orderno VARCHAR2(10 BYTE) NOT NULL,
hub_productid VARCHAR2(16) NOT NULL,
record_source VARCHAR2(100), load_date DATE,
record_hash VARCHAR2(64), CONSTRAINT
link_order_product_pk PRIMARY KEY (link_id),
CONSTRAINT link_order_product_order_fk FOREIGN KEY
(hub_orderno) REFERENCES hub_orders(hub_orderno),
CONSTRAINT link_order_product_product_fk FOREIGN KEY
(hub_productid) REFERENCES
hub_product(hub_productid));

Satellites - These tables store descriptive and
historical data.

-- Satellites

CREATE TABLE sat_customer (hub_customerno
VARCHAR2(10 BYTE) NOT NULL, sat_record_source
VARCHAR2(100), sat_load_date DATE, sat_record_hash
VARCHAR2(64), customername VARCHAR2(100) NOT NULL,
CONSTRAINT sat_customer_pk PRIMARY KEY
(hub_customerno), CONSTRAINT sat_customer_hub_fk
FOREIGN KEY (hub_customerno) REFERENCES
hub_customers(hub_customerno));

CREATE TABLE sat_order (hub_orderno
VARCHAR2(10 BYTE) NOT NULL, sat_record_source
VARCHAR2(100), sat_load_date DATE,
sat_record_hash VARCHAR2(64), orderdate DATE NOT
NULL, customers_customerno VARCHAR2(10 BYTE) NOT
NULL, CONSTRAINT sat_order_pk PRIMARY KEY
(hub_orderno), CONSTRAINT sat_order_hub_fk FOREIGN
KEY (hub_orderno) REFERENCES
hub_orders(hub_orderno), CONSTRAINT
sat_order_customer_fk FOREIGN KEY
(customers_customerno) REFERENCES
hub_customers(hub_customerno));

CREATE TABLE sat_product (hub_productid
VARCHAR2(16) NOT NULL, sat_record_source
VARCHAR2(100), sat_load_date DATE, sat_record_hash
VARCHAR2(64), productname VARCHAR2(100) NOT NULL,
description VARCHAR2(200) NOT NULL, CONSTRAINT
sat_product_pk PRIMARY KEY (hub_productid),
CONSTRAINT sat_product_hub_fk FOREIGN KEY
(hub_productid) REFERENCES
hub_product(hub_productid));

Please note that Data Vault modeling can vary
depending on your specific requirements and business

rules. These DDLs represent a basic structure
following the Data Vault 2.0 methodology. You may
need to adapt them to your specific needs, and
consider adding additional columns for tracking
lineage, data quality, and more, as required by your

organization.”

The design created by ChatGPT in September 2023 is
shown in Fig. 4.

Fig. 4. A Data Vault 2.0 raw database designed by ChatGPT in September
2023

ChatGPT did not create an identical database to the
reference database (Fig. 2). In Data Vault 2.0 there is a
concept called a Dependent Child. This concept is for treating
weak entities, for example Orderline in our example. ChatGPT
did not handle this situation correctly: all the data about a
weak entity Orderline is missing from the design. Instead,
there is a foreign key reference between Hub_customer and
Hub_order which is against the methodology. Also, the design
is missing hash keys as primary keys.

For Hubs ChatGPT names the hash keys wrongly and they
are of the wrong data type. A hash key should be of type
binary. The technical columns should not be optional, and load
date should be stored with timestamp, not only date. In Oracle
the data type date holds the time element, but in general it is
better to define load date including the time. All Hubs have a
column called record_hash. If that is the hash difference
(hashdiff) defined in the Data Vault methodology, it should
not be in a hub and it should be of type binary.

For Links ChatGPT has similar issues: naming conventions,
technical columns defined as optional, and load date defined
as date, not as timestamp. Links should not have a column
record_hash. The definition for the primary key (link_id
NUMBER GENERATED BY DEFAULT AS IDENTITY) is
wrong. The primary key should be a hash-based value of the
business key of each hub.

For Satellites the most crucial mistake is the primary key. It
has been defined wrongly and would not allow storing history
data as Satellites should. The primary key of a Satellite should
be a combination of hash key and load date, the minimum. The
sat_record_hash column that assumably is the hash difference,
should be of type binary, not varchar. The technical columns
should be mandatory, and the load date should include the
timestamp.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 46 --

The design for the Data Vault database ChatGPT generated
was not correct. ChatGPT advises: “Please note that Data
Vault modeling can vary depending on your specific
requirements and business rules. These DDLs represent a basic
structure following the Data Vault 2.0 methodology. You may
need to adapt them to your specific needs, and consider adding
additional columns for tracking lineage, data quality, and
more, as required by your organization.”. Based on our tests
the adaptation required is more demanding than creating the
design manually. Therefore, it is important to get ChatGPT to
generate as correct DDLs as possible.

Since LLMs are guided by prompting, we tested prompting
ChatGPT with these details:

“Please generate the DDLs for the target database following
the Data Vault 2.0 methodology. Please note that ordelines is a
dependent child in Data Vault 2.0. Also note that some of the
technical columns in Data Vault 2.0 must be mandatory and
load_date needs to be datetime. Also note that hash diff
columns only exist in satellites. Hash keys must be of type
binary. Hubs should not include descriptive data, that should
be in a satellite. Hubs should include the mandatory technical
columns, the business key and the hash key.”

With this prompt ChatGPT is able to define Hubs and
Satellites correctly, but the hash keys are missing from Links
and all foreign keys are missing. The dependent child has been
solved almost correctly: there is only an extra link
(link_orderline_orders) that should not exist.

We changed the prompting by adding a hint about foreign
keys:

“Please generate the DDLs for the target database following
the Data Vault 2.0 methodology. Please note that ordelines is a
dependent child in Data Vault 2.0. Also note that some of the
technical columns in Data Vault 2.0 must be mandatory and
load_date needs to be datetime. Also note that hash diff
columns only exist in satellites. Hash keys must be of type
binary. Hubs should not include descriptive data, that should
be in a satellite. Hubs should include the mandatory technical
columns, the business key and the hash key. All tables should
have foreign keys as defined in Data Vault 2.0”

As a result, ChatGPT was able to create the foreign keys
and the dependent child structures correctly, but “forgot” that
the Hubs should have both the hash key and a business key
creating only one column as a mixture of those. It did not
create a link for Orders and Customers.

Based on these tests, ChatGPT was able to generate DDLs
that are syntactically correct and mostly follow the Data Vault
2.0 methodology, but it seems there are too many rules in Data
Vault 2.0 for ChatGPT 3.5 to manage. Therefore, it does not
follow all the rules given in the prompt.

V. DISCUSSION

ChatGPT was able to create syntactically correct DDLs for
Data Vault 2.0 database generation but in every test round the
DDLs were missing something. Since a model is as good as
the data used to train it, one explanation for this is that the data
from the internet that was used to train the LLM model has

enough correct data on DDLs but does not have enough data
about Data Vault 2.0 methodology and/or has plenty of wrong
practices of Data Vault 2.0. To get the model more accurate on
DDLs for Data Vault 2.0 raw database designing we could use
for example fine-tuning or Retrieval-Augmented Generation
(RAG). Fine-tuning is a process to further train the model
using smaller, more specific datasets to improve its
performance on the specific target task or domain. On the
other hand, RAG provides a way to optimize the output of an
LLM with targeted, domain-specific information without
modifying the LLM model by allowing it to use additional
data resources without retraining. These additional data
resources can be databases, documents (for example naming
conventions or Data Vault 2.0 best practices), or any kind of
data available. RAG uses a vector database that would bring
an additional benefit: semantic search. Traditional search finds
keywords while semantic search uses the meaning of a
question and source data to retrieve more accurate results. The
source of the information in the RAG’s vector database can be
identified. Therefore, incorrect information in the RAG can be
corrected or deleted.

Due to the nature of an LLM the same prompt can result in
different results and the flaws of the DDLs cannot be predicted
and corrected automatically. It would be possible to define the
Temperature parameter, that affects the randomness of the
generated content, to zero to limit the randomness and get the
results nearly deterministic, but that would disable the
creativity of the process. One of the reasons we chose LLM
was that it can create new content in a similar way as a human
designer does. Creativity is good but hallucination is a
pervasive problem for LLMs. Hallucination means that the
LLM can create fictitious output that is not based on any facts.
Hallucination can be partly tackled with fine-tuning and RAG
but it cannot be guaranteed there will be no hallucination.
Because humans also make mistakes the manual process of
database designing includes a verification process to guarantee
the quality of the model. Similar process would be needed for
automated design. This process could be manual or automated.
We could use reinforcement learning from human feedback or
from existing reference databases against which to benchmark
output from the process and use the result to train the model
further. Also, any automated testing techniques might be used
to evaluate the result. Techniques for understanding what the
model knows and how the prompt should be created [19]
might be beneficial to improve the accuracy. There is a lot of
research on LLM verification going on. Examples of the latest
ideas are for example chain-or-verification [20] and self-
verification [21].

The DDLs generated by ChatGPT do not include
instructions on using the columns. For example, what should
be stored in the hashdiff column? The methodology defines
that the hashdiff should not include the business key column
and it should always be generated using the same hash
function and the same datatype. How can data and process
governance be implemented in the process? For example, how
can we be sure the same hash function is always used? Could
the process governance be guided using RAG? The
information for the process could be in tables or documents
and the LLM model could read that. Could also the problem

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 47 --

with business keys and any business-related data be managed
using RAG?

VI. CONCLUSION AND FUTURE WORK

Based on the tests, large language models (LLMs) seem to
be a possible solution for automating Data Vault 2.0 raw
database designing. There are several open questions before
ChatGPT, or any LLM based tool, can be used to automate
Data Vault database designing work. Examples of these
questions are:

 How can a model be trained to follow all the best
practices of Data Vault 2.0 methodology?

 Could using fine-tuning and/or Retrieval-Augmented
Generation (RAG) guarantee a correct, or at least
acceptable result?

 How to validate and measure the result of the process?
 Can LLMs solve the problem of existing data structures

and existing data when adding a new data source? For
example, would LLMs be able to split Satellites and
integrate new data sources to an existing model?

 Can data and process governance be added to the
process? For example, can business keys be generated
correctly without assuming the primary key is always
the business key, or could LLM also produce the
instructions on using technical columns? Or could LLM
automatically assure the same hash function is always
used for the hash attributes?

Finding answers to these questions would be potential
future work. Automating the database designing process
would be important to allow efficient database designing
processes and good quality data for decision making.

ACKNOWLEDGMENT

I would like to thank Cynthia Meyersohn from Data Vault
Alliance for her support on verifying the best practices on
Data Vault 2.0 in this paper.

I would also like to that professors Tomi Männistö and Laura
Ruotsalainen from University of Helsinki for their help and
guidance while writing this paper and in general.

REFERENCES
[1] E.F. Codd, “A Relational Model of Data for Large Shared Data

Banks”, Communications of the ACM, Volume 13, Number 6, June,
1970.

[2] C.J. Date, Introduction to Database Systems. 8th Edition, Pearson,
2003.

[3] T. Atwood, "An Object-Oriented DBMS for Design Support
Applications", Proceedings of the IEEE COMPINT 85, September
1985 pp. 299-307.

[4] C.J Date, H. Darwen, Databases, Types, and the Relational Model -
The Third Manifesto (Third Edition). Addison-Wesley, 2007

[5] M. Stonebraker, D. Moore, Object-Relational DBMSs: The Next
Great Wave. Morgan Kaufmann Publishers, 1996.

[6] Jagadish, H., Al-Khalifa, S., Chapman, A. et al. TIMBER: “A native
XML database”, VLDB 11, 2002, pp 274–291.

[7] A. Nayak, A. Poriya, D. Poojary, “Type of NOSQL Databases and its
Comparison with Relational Databases”, International Journal of
Applied Information Systems (IJAIS), Foundation of Computer
Science FCS, New York, USA, Volume 5– No.4, March 2013.

[8] Z.H. Liu, J. Lu, D. Gawlick, H. Helskyaho, G. Pogossiants, Z. Wu,
“Multi-model Database Management Systems - A Look Forward”
Heterogeneous Data Management, Polystores, and Analytics for
Healthcare, DMAH Poly 2018. Lecture Notes in Computer Science(),
vol 11470. Springer, Cham.

[9] K.L. Rouff, “CODES: A Database Design Expert System Prototype”,
Proceedings of the 1st International Conference on Artificial
Intelligence, pp. 439–445, 1984.

[10] A. Dogac, B. Yuruten, S. Spaccapietra, S., “A Generalized Expert
System for Database Design”, IEEE Transactions on Software
Engineering, 15: 479–491, 1989.

[11] M. Bouzeghoub, "Using Expert Systems in Schema Design",
Conceptual Modelling Databases and CASE, pp. 465-487, 1992.

[12] M. Lloyd-Williams, P. Beynon-Davis, "Expert Systems for Database
Design: A Comparative Review", Artificial Intelligence Rev., vol. 6,
no. 3, pp. 263-283, 1992.

[13] V.C. Storey R.C. Goldstein, "Knowledge-Based Approaches to
Database Design", Management Information Systems Quarterly, vol.
17, no. 1, pp. 25-46, March 1993.

[14] V.C. Storey, H. Ullrich, S. Sundaresan, "An Ontology to Support
Automated Database Design", Proc. 16th Int'l Conf. Conceptual
Modeling (ER '97), 1997.

[15] V.C. Storey, D. Dey, H. Ullrich, S. Sundaresan, "An Ontology-Based
Expert System for Database Design", Data and Knowledge Eng., vol.
28, no. 1, pp. 31-46, 1998.

[16] V. C. Storey, R. C. Goldstein, H. Ullrich, "Naive semantics to
support automated database design", IEEE Transactions on
Knowledge and Data Engineering, vol. 14, no. 1, pp. 1-12, Jan.-Feb.
2002.

[17] H. Helskyaho, Oracle SQL Developer Data Modeler for Database
Design Mastery. McGraw Hill, 2015.

[18] Data Vault Alliance official website, Data Vault 2.0 Data Modeling
Specification v2.0.4, Web: https://datavaultalliance.com/news/data-
vault-2-0-data-modeling-specification-v2-0-4/

[19] Z. Jiang, F. F. Xu, J. Araki, G. Neubig,” How Can We Know What
Language Models Know?”, Transactions of the Association for
Computational Linguistics 8, 2020, pp 423–438.

[20] S. Dhuliawala, M. Komeili, J. Xu, R. Raileanu, X. Li, A.
Celikyilmaz, J. Weston, “Chain-of-Verification Reduces
Hallucination in Large Language Models”, September 2023.

[21] Y. Weng, M. Zhu, F. Xia, B. Li, S. He, K. Liu, J. Zhao, “Large
Language Models are Better Reasoners with Self-Verification”, May
2023.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 48 --

