
Enhanced Data Locking to Serve ACID Transaction
Properties in the Oracle Database

Michal Kvet
University of Žilina

Žilina, Slovakia
Michal.Kvet@fri.uniza.sk

Abstract—Relational databases are characterized by precise
data models, formed by the entities and relationships. Integrity
and consistency are maintained by the transactions, which ensure
transfer from one consistent state to another. Consistency is
ensured at the latest at the end of the transaction itself. SQL norm
specifies two lock types applied on the data row level to serve the
consistency in the parallel data access. However, Oracle Database
uses a different approach relying on the transaction logs to provide
historical consistent data images. In this paper, Reservable
attributes are discussed, introduced in Oracle 23c version by
focusing on the performance, limitations and general issues.

I. INTRODUCTION

Relational databases were introduced in 60ties of the 20th
century. Immediately after their introduction, several variants
and efforts for certification and codification were present. A
relational database is formed by the set of entities and
relationships between them, by focusing on the data value
precision and accuracy. This is done by the transactions, which
ensure the shift from one consistent state to another, by checking
the integrity rules. [11]

Even after decades, the relational paradigm is still
widespread, primarily operated by the SQL language, which is a
non-procedural type, so the user only specifies, what data,
shapes, and formats should be provided, but not, how to reach
them. Thus, the access to the data and result set composition is
left to the database systems and internal techniques, mostly
delimited by the optimization, indexing, and physical repository.
The relational paradigm is mostly related to storing current valid
states by replacing original states during the change (Update
operation), called the conventional system [11]. Currently, the
focus is done on the temporal databases, which can hold not only
current valid states, instead all the states associated with the
object are stored. Thus, there are historical states valid in the
past, but also states, that will become valid later as future plans.
The temporal sphere, mostly defined by the validity, can be
defined on various precisions and granularities, either for the
object, attribute, or synchronization group level [6] [8].

Temporal relational databases form the core part of the
information technology used for intelligent information systems,
analytics [3], teaching [14], machine learning techniques or
decision-making, and critical systems [10] [11]. The reliability
of the stored data is protected either by the data model itself, but
mostly by the integrity rules and transactions. Data transparency
is checked continuously during the transaction run, but before
reaching the transaction approval point, all the integrity rules
must be passed. Otherwise, the whole transaction is refused and
the original data remain.

The data access and change operations are protected by the
data locks applied for the table tuple. General SQL norm defined

Shared lock for the data retrieval and Exclusive lock for the
change operations. If the row is to be accessed, Shared lock must
be applied to ensure nobody can change the content of the row
during the Select operation. Vice versa, Exclusive lock is used to
ensure nobody changes the data in parallel, nor the tuple is
accessed and retrieved, generally [4], [5], [9].

For this paper, the Oracle Database environment will be
used, delimited by the release bundle Oracle 23c Free,
Developer Release Version 23.2.0.0.0, introduced in April 2023.
There are several reasons to select Oracle Database and not to
focus on other database system variants, generally. Firstly, it is
most powerful solution in relational databases. Besides, it is the
most robust and complex and is hugely used in commercial and
critical systems. Secondly, Oracle Database uses a different
approach for the locking, so the general comparison of the
locking is impossible and infeasible, while Oracle does not use
Shared locks, instead, transaction locks are used to serve the
historical consistent data image. Thirdly, it is now made
available through the Oracle Cloud Infrastructure [7] by
allowing to provision of autonomous databases [1] [2], which
are maintained, secured, and patched by the cloud vendor.
Fourthly, to make the decisions and information technology
correct and complex, proper data analysis must be done. Oracle
allows you to create an autonomous data warehouse operated in
the cloud environment, supervised by auto-indexing improving
performance [7]. Finally, this paper is supported by the
Erasmus+ project EverGreen [16], in which Oracle acts as a
consortium partner. Efficient data and lock management is
critical in application development. Rapid data-driven
applications can be easily done by the Oracle APEX technology.
Erasmus+ project BeeAPEX [15] emphasizes such a
development using low-code programming.

Spatio-temporal model holding airplane locations and Flight
Information Regions (FIR) in aviation assignment was used for
the computational study and performance evaluation. Each plane
was regularly periodically monitored by focusing on the flight
parameters. Temporal attributes refer to the entry and exit time
of the aircraft from the particular FIR area. The data set consisted
of 5 million records in the European region during 2017 – 2020.
The example of the data layer is shown in Fig. 1.

Fig. 1. Data source structure

This paper aims to deal with the Reservable attribute
definition, navigating the system to use lock-free

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 73 --

Fig. 2. Transaction logs [7]

update operations for that. Besides, it evaluates a Reservation
journal [18] data structure by focusing on the performance,
compared to the existing data warehouse approaches to serve as
a workaround to limit contention.

For the purposes of the computational performance study of
the data locking enhancements referrable by the Oracle
Database, this paper is structured as follows. Section 2 deals with
the transactions and ACID properties. Section 3 emphasizes
integrity and deferrable constraints by shifting the consistency
check to the end of the transaction. Section 4 deals with the
locking. Reservable attributes are displayed and discussed in the
section 5. The performance evaluation is treated by section 6 by
referring to the data warehouse and function-based index.

II. TRANSACTIONS & ACID PROPERTIES

The main aspect of the relational paradigm, except for the
data structure itself, is the transaction support ensuring, that all
integrity constraints and rules are passed not later than at the end
of the transaction. Thus, the transaction shifts the database from
one consistent state to another, which is also consistent.
Therefore, it is impossible to load data, which do not cover the
rules of the data model, application domain, and user definitions
completely. There are four properties of the transactions with the
acronym ACID – atomicity, consistency, isolation, and
durability. Atomicity ensures that the transaction is done either
completely or it is completely refused. Thus, it is impossible to
accept only part of the transaction, like some operations would
be accepted, and the rest would be refused. Consistency ensures,
that all the constraints must be passed before approving the
transaction and making the changes durable. From the data locks
point of view, the next two properties are critical. Isolation
supplies the change operation spread after reaching commit.
Thus, during the transaction, individual operations and changes
are done only locally and other sessions or transactions do not
have access to the particular data. This property is related to the

building consistent data image throughout the run by using
transaction logs and change vectors. Finally, durability ensures,
that the approved transaction cannot be lost, even after the
instance collapses. It is supervised by the transaction log
journals, as well [5], [7], [10].

Fig. 2 shows the structure of the transaction log management
in Oracle Database. The main part is delimited by the online
logs, which store the change vectors and transaction reference
for the active transactions or data, which can be necessary to
obtain historical data consistent images for other active
transactions. There are multiple logs, which are formed in the
circular linked list. Thus, data about the transactions, that are
finished, can be consecutively removed. In general, logs are
defined by groups consisting of multiple mirrors to ensure
robustness and failure resistance. Among that, before the online
log rewrite operation, the particular block can be copied to the
archive repository. By using them, it is possible to reconstruct
the database to any state to limit the failure. Furthermore, by
applying online and archive logs, any data image valid in the past
can be built. Fig. 1 also shows the data flow and change
operations, preceded by the data block loading into the memory
(Database Buffer Cache). The writing operation from the
memory into the physical database is operated by the Database
Writer (DBWR) background process. The active online
transaction logs are managed and modified by the Log Writer
(LGWR) background process, while archiving is handled by the
Archiver (ARCH) process.

The next section deals with integrity as a critical part of the
consistency management rules.

III. INTEGRITY

Integrity is a set of rules applied on various levels, from the
data model up to user considerations and application domains.
There are five types of integrity rules. Column integrity deals
with the primary key candidates by focusing on the unique and

user process
Oracle process

reads and modifies
blocks

database
buffer
cache

Oracle process
writes incremental
redo; only how the

block changed
(change vectors)

log buffer

DBWR LGWR

writes
modified
blocks

ARCH

archive redo log

database
files

reads blocks

online redo logs

1 2

writes modified
blocks

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 74 --

duplicate values, as well as the possibility to hold undefined
values for the set that can be cored by the column integrity.
Domain integrity focuses on the data types and applicable
values for the individual attributes. Primary keys are covered by
the entity integrity, while foreign keys refer to the referential
integrity type. All other types are covered by the user integrity.
Most of these types are checked immediately during the
execution of the particular operation. However, referential
integrity can be postponed to the end of the transaction, mostly
due to the relationship cycles in the data model or NOT NULL
self-relationships. It is done by the deferrable constraints
navigating the transaction manager to check the referential
integrity not immediately, but at the end of the transaction [3],
[5].

A. Deferrable constraints

Constraints marked as deferred are not checked until the
transaction is to be committed. Deferrable constraints are listed
for each foreign key constraint separately and applied on the
constraint level. The keyword Immediate forces the system to
check the constraint immediately during the operation, while
Deferred allows to shift the check processing till the end of the
transaction. The syntax for the constraint definition is
following:

alter table <table_name>
 add [constraint <constraint_name>]
 foreign key <list_of_attributes>
 references <table_name>
 [(<list_of_attributes>)]
 [{initially immediate | deferrable}];

In addition to the foreign key, the deferrable constraint can
also be applied to the unique constraint, like:

alter table flight add flight_no integer
 primary key deferrable;

or

alter table flight add
 unique(airline, flight_reg_no) deferrable;

Immediate option is used by default.

To allow the shift of the checking, session settings must be
also set:

 alter session
 set constraints = [{immediate | deferred}];

In the huge parallel processing environment, proper integrity
checks, timing, and locking are critical from the performance
perspective. In the section section, transaction lock types are
defined.

IV. TRANSACTION LOCKS

SQL norm defines two lock types to be applied. Shared locks
are associated with the data access and reading operation.
Multiple Shared locks can be applied simultaneously, meaning,
that multiple transactions can access the same data portion in
parallel. Exclusive locks are defined for the data change

operation and are exclusive, meaning, that only one transaction
can modify the row [4], [5], [7], [12]. The rest ones are put to
the access change list and must wait. That is the definition of
the SQL norm. The lock map is shown in Table I.

TABLE I. LOCK MAP

Required →
Existing ↓

Exclusive Shared No lock

Exclusive   
Shared   
No lock   

However, Oracle Database uses another approach.

Transaction logs are hugely used to compose data image as it
existed at the beginning of the transaction or executed
operation. Therefore, it is a stronger pressure to make the logs
available as long as possible, naturally, based on the workload
and online log capacity. If it is impossible to get a consistent
data image for the processing and execution, Snapshot too old
exception (ORA-01555) is raised. Limiting Shared locks offers
a significantly wider spectrum of parallel data access and
processing. Moreover, even after the change operation of the
row, which is to be accessed by another transaction, no waiting
is necessary, original data values are obtained from the logs.
Consequently, Oracle Database uses only Exclusive locks for
the data load and change operations. The applied granularity is
the whole row, except for a structural change of the table, in
which the entire table is locked. This can happen naturally only
after releasing all Exclusive locks on records. Shared logs are
not used, at all.

However, what about the releasing of the locks? Well,
naturally, they must be released not later than the end of the
transaction. Simply, it is impossible to share locks across
multiple transactions.

There are several techniques for locking and unlocking to
serve the workload, spread the opportunity for parallel
processing, and limit negative aspects, like deadlocks, waiting,
etc.

It is, however, rather a logical concept of the lock release than
physical. Namely, the locks are part of the data block and
physical release would require to access the data blocks
multiple times. Furthermore, the block does not need to be in
the instance memory, so the additional I/O operations for the
loading would be necessary. To ensure correctness, when
accessing the data block, Oracle RDBMS automatically checks
the applied locks and release expired. The list of active
transactions, which can lock the data are still available for the
database manager and background processes of the instance.
Therefore, expired locks can be easily identified, while each
lock is associated with the base transaction.

It is evident, that the data locks applied in the transaction are
an inevitable part of ensuring data correctness and reliability in
case of attempting to change the data row by multiple
transactions in parallel. However, there are situations, when
data change operation can be placed, but no locks are applied.
In the next section, the Reservable keyword associated with the
attributes, is introduced.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 75 --

V. RESERVABLE ATTRIBUTES

A. Practical issue

The problem with the concurrency can be easily interpreted
by getting the current amount of products in-stock, number of
sold items or by getting the number of accidents in a region. To
point to the issue, we aim to get the number of airplanes in a
specified FIR. Naturally, it can be calculated from the data
source by taking into account the time of entry and exit from a
particular region. However, in critical systems, such information
should be obtained very fast to serve the security and monitoring
ability. Thus, instead of dynamic calculations on demand, each
region is characterized by an attribute holding the current value
of planes covered by it. Thus, it would be necessary to pick the
value and increment or decrement it, based on the current
situation. However, it should be done inside the transactions,
requiring the database manager to lock the row. Practically, it
would mean locking the whole FIR and release it after the
processing. Consequently, it would be impossible to enter or exit
the region at the same time. Moreover, one must strongly
understand the meaning of the word at the same time. It is not
just about the physical time but the reference to the transaction
itself during which the FIR is blocked. If we take into account
possible communication breakdowns, short-term loss of signal,
or air corridors with a large amount of traffic in them, the
problem takes on huge dimensions.

Practically, it was impossible to be solved in an efficient
manner. Namely, there were several solutions to be used. In the
first solution, the current value (number of airplanes in a region)
was not stored. Instead, the value was calculated dynamically,
which required a large amount of data to process and delays. The
second approach used a materialized view, which was, however,
refreshed only periodically by the defined frequency, so the
provided value was not warranted. The third solution was
commonly based on the NoSQL solutions limiting the
transactions, so the locking was not used. This approach,
however, led to many inconsistencies, because the value had to
be loaded first and then incremented, or decremented. In
principle, however, several transactions could load the value,
and as long as they changed it, it could already be processed by
another transaction. As a result, an aircraft entering the region
was not recorded, or conversely, if it had already left the
territory, it was still considered to be present in the area. The
problem is shown in Fig. 3.

Fig. 3. Lost update

Locking of the FIR does not make sense, as it generates many
waiting periods losing precision and accuracy (Fig. 4).

Fig. 4. FIR locking

Autonomous transactions partially solved the problem by
excluding the number of associated airplane management into a
separate transaction, which was significantly shorter, so the
locking was minimized. One way or another, it would be still
necessary to synchronize outer and inner transactions, while the
outer transaction (monitoring the whole flight) must always end
in the same manner as the region monitoring (inner transaction).

Reservable attributes bring a simplified solution by
providing inner transaction management automatically.

B. Solution using Reservable attributes

Oracle Database 23c introduces lock-free attribute change
aiming to reduce contention of multiple transactions [17] [18].
In real systems, in which the huge parallelism is used, it would
be so critical. Lock-free attributes can be specified for
frequently updated attributes, defined by the numerical domain.
It does not allow data corruption, because the value
management is still covered by the transaction, however, the
real data value change is done at the end of the transaction,
immediately before performing transaction approval.
Physically, it takes the current value, makes a change operation
and immediately ends the transaction by releasing the locks
completely. Thus, the high parallelism aspect is ensured. The
data flow and lock management are shown in Fig. 5.

Fig. 5. Reservable attribute management

The definition of the Reservable attribute is following:

create table fir_tab
 (fir_id integer primary key,
 cur_state integer reservable,
 inbound integer reservable,
 outbound integer reservable);

For each Reservable attribute, a specific table holding the

attempts for the update is created – Reservation table. It can be
referenced by the data dictionary view referring to the
{USER|ALL|DBA}_OBJECTS structure.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 76 --

select object_name
 from user_objects
 where object_type= 'TABLE'
 and object_name like 'SYS_RESERV%'
 escape '\';

The name of the table is system generated, prefixed by the

'SYS_RESERV'. It is associated with the user-owned table, so it
is visible through the USER data dictionary view category. It is
owned by the same user as the owner of the table:

The Reservation table consists of multiple attributes by
referring to the source table, source attribute, executed
operation and value to be processed. The names for the
attributes are partially inherited from the source table:

desc SYS_RESERVJRNL_83339
Name Null? Type
‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐
ORA_SAGA_ID$ RAW(16)
ORA_TXN_ID$ RAW(8)
ORA_STATUS$ CHAR(12)
ORA_STMT_TYPE$ CHAR(16)
FIR_ID NOT NULL NUMBER(38)
CUR_STATE_OP CHAR(7)
CUR_STATE_RESERVED NUMBER(38)
INBOUND_OP CHAR(7)
INBOUND_RESERVED NUMBER(38)
OUTBOUND_OP CHAR(7)
OUTBOUND_RESERVED NUMBER(38)

The Reservable attribute is set using the defined trigger,

based on a particular FIR identifier and the exit_time from the
region:

create or replace trigger trig_cur_state
 before insert on flight_positions
 for each row

declare val integer;
 begin
 case when :new.exit_time is not null
 then val:=‐1;
 else val:=1;
 end case;
 update fir_tab
 set cur_state=cur_state + val
 where fir_id=:new.fir_id;
 end;
 /

If any airplane entrances the FIR, the current number of
assigned (CUR_STATE) airplanes to the particular FIR is
incremented using the trigger. Vice versa, if the EXIT_TIME
from the FIR holds the real defined value, the particular
CUR_STATE value is decremented by one.

So, let´s check the solution practically. If the new airplane is

to be assigned to the FIR, a trigger is fired and the update
request is recorded in the reservable table list, not the attribute
value itself. Therefore, by requesting the value of the
CUR_STATE attribute, the original value is obtained!
select * from fir_tab;

FIR_ID CUR_STATE INBOUND OUTBOUND
‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐
2 5 8 3

At this moment, the Reservation table content looks like

following:

select ORA_STMT_TYPE$, FIR_ID,
 CUR_STATE_OP, CUR_STATE_RESERVED
 from SYS_RESERVJRNL_83339;

ORA_STMT_TYPE$ FIR_ID

CUR_STA CUR_STATE_RESERVED
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐
UPDATE 2

+ 1
UPDATE 2

+ 1
UPDATE 2

+ ‐1

By reaching the transaction end (Commit), the Reservation

table for the referenced transaction is freed by applying the
changes physically for the attribute:

commit;

select * from fir_tab;

FIR_ID CUR_STATE INBOUND OUTBOUND
‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐
2 6 9 3

select * from SYS_RESERVJRNL_83339;

‐‐ no rows selected

C. Properties of the Reservable attributes

Reservable attributes require additional data storage
capacity and reference in the system tables. The internal
management is automated, so no specific user intervention is
necessary. The only thing is to mark the attribute to be
Reservable. The keyword Reservable can be applied to multiple
attributes at once.

alter table products

modify(in_stock, sold_number reservable);

For one table, irrespective of the number of Reservable

attributes, one table is created, which can form the limitation

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 77 --

because it is not always necessary to change all Reservable
columns at the same time. A suitable alternative could be
partitioning of the Reservable table based on the marked
columns, which, however, cannot be done.

Besides the definition of the Reservable attribute, it is
automatically enhanced by the column integrity constraint –
NOT NULL, while undefined values cannot be mathematically
processed and operated. Thus, it is always necessary to hold
there a real value, to which increment or decrement based on
the specified value can be done.

D. Reservable attributes remarks

Concluding the Reservable attribute definition, there are
some rules, which must be used to ensure proper management
and functionality [17] [18]:

 Table, which holds a Reservable attribute must have
a primary key to be able to reference the row in the
Reservation table:

ORA-55728: Reservable column property can only be
specified for a column on a table that has a primary
key.

 Table, which holds a Reservable attribute must have
a primary key to be able to reference the row in the
Reservation table:

ORA-55764: Cannot DROP or MOVE tables with
reservable columns. First run "ALTER TABLE
<table_name> MODIFY
(<reservable_column_name> NOT RESERVABLE)"
and then DROP or MOVE the table.

 The only available operations for the Reservable
attribute are (+) and (-):

ORA-55746: Reservable column update statement
only supports + or – operations on a reservable
column.

 The row, which is currently enhanced by the active
records in the Reservation table cannot be removed
before ending the blocking transaction:

ORA-55754: Resource busy error is detected for the
reservable column update statement. A delete or a
DDL operation is conflicting with this update
statement.

VI. PERFORMANCE STUDY

For the performance evaluation and data management study,
a flight monitoring data set was used, consisting of 5 million of
records defined by the airplane positions, flight parameters and
FIR references. For each FIR region, the current number of
assigned airplanes was stored. To sharpen the solution, there was
also evidence of the total number of inbound and outbound
flights. Please note, that the FIR definition can evolve over time
and is not static. In general, it does not reflect the borders of the
countries. FIR in Europe is supervised by the Eurocontrol. Fig.
6 shows the FIR assignment segment in Europe.

Fig. 6. European FIRs [13]

The first part of the study deals with the impact of Reservable
attributes management. The defined fir_table (50 rows) contains
3 Reservable attributes – cur_state, inbound and outbound. The
value is set by the trigger, based on the flight_positions table
(loading 5 million rows). For the purposes of the evaluation, only
FIR entrance and exit points are taken, positions inside the FIR,
which do not reflect Reservable column values, are not taken
into consideration. All the data are processed in one active
transaction and overall processing time is evaluated. The results
are shown in Table II Ordinary columns do not consider
Reservable columns, however, in a practical environment, it
would generate multiple waiting operations caused by the
locking. The second solution emphasizes Reservable columns
by using lock-free solution by placing the change requests in the
Reservable table.

TABLE II. RESULTS – TRANSACTION WORKING PHASE

 Ordinary
columns

Reservable
columns

Real
environment

 3 monitored attributes
Data loading
[INTERVAL
DAY(9) TO
SECOND(3)]

79:42.195 608:25.648 1247:70.403

While the first experiment focuses on the working phase of
the transaction, the second evaluation experiment deals with the
certification phase by monitoring the process of applying
changes temporarily stored in the Reservation table, followed by
freeing it. If the ordinary columns are used, only active online
locks are copied into the database and transactions can be
flagged as successfully ended. However, if the Reservation table
is used, the whole process contains an additional step – applying
changes to the data, which must precede the transaction
approval. In this part, therefore, additional processing time
demands are taken into consideration. The reached results are
shown in Table III. Each evaluation run was performed 100

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 78 --

times, the results express the average value to limit any side
server impacts.

TABLE III. RESULTS – TRANSACTION CERTIFICATION PHASE

 Ordinary
columns

Reservable
columns

Real
environment

 3 monitored attributes
Data
aproaving
[INTERVAL
DAY(9) TO
SECOND(3)]

2:46.381 13:26.735 2:46.381

Reservable attribute management requires significant
additional resources in terms of processing time, as well as the
storage capacity. When dealing with the transactions by splitting
them into working and certification phases, performance impacts
can be complexly evaluated. To load 5 million rows consisting
of the flight positions and parameters, total demands are 79.42
seconds, which expresses only 13.06%, compared to the
Reservable columns. In other words, Reservable column
management required additional 528.83 seconds, which
represents an increase of more than 655.9%. Similarly, the
certification phase of the Reservable column management
requires update statements execution. Additional processing
time demands of this phase are 10.8 seconds (439.02%). At first
sight, it can be considered as a huge increase and the solution
should be refused. However, this reflects only an ideal solution
with no parallelism and waiting times. Thus, by using a practical
real environment, the total demands of the transaction working
phase are 1247.70 seconds. By applying Reservable columns,
processing time demands are lowered to 608.25 seconds, which
reflects the drop using 51.25%. Even the certification phase is
more demanding, overall, the total processing time cost drop
reflects 50.29%. The reached results in a graphical chart form
are in Fig. 7.

Fig. 7. Transaction management processing time results

Finally, the Reservation table size is considered, which
required 2 GB for 5 million changed rows with 3 Reservable
columns. The limitation of the approach is related to the
vacuuming and freeding of the table. Whereas the Reservation
table is treated as a standard table with the segment and extents,
the already allocated storage is released by the transaction end.
Although the blocks can be later used, the required storage does

not reflect the current usage, but the highest historical peak. In
the environment of the parallelism and flight monitoring, it
practically reflects the most significant extraordinary events,
mostly represented by the request to free the airspace and
airspace closure.

VII. CONCLUSIONS

Reservable column management provides a powerful
solution in the massive parallelism, which requires increment or
decrement of the particular attribute set, based on the
conditions. To serve the workload and minimize waiting time,
lock-free solution was proposed in the Oracle Database 23c
release. Instead of the direct update operation by applying
Exclusive transaction locks limiting any other parallel access,
the request is recorded in the system-managed Reservation
table, by referring to the attribute, value to be added or removed.
The merge operation and applying the change for the
Reservable columns physically is shifted to the end of the
transaction – at the beginning of the certification phase of the
transaction. Thus, the locks are applied for only time intervals,
just to ensure the loading and changing value in a single unit by
applying the atomicity property of the transaction.

As stated, it does not make sense to specify Reservable
column for non-parallel processing or for the systems, where
the waiting for the lock release is not critical. However, for the
analytical processing, and system monitoring (medical
treatment, transport systems or e-shop), accessing proper values
immediately is required.

This paper aims to provide a performance study of the
Reservable column management introduced in the Oracle
Database 23c release. In future research, we will focus on
creating our own solution for the lock-free Reservable column
management, enhanced by the triggers and autonomous
transactions managing data in the Reservation table. However,
the assumed structure is not a flat table, but it will be
automatically partitioned based on the transaction reference. It
would allow to purge (truncate) the partition dynamically if the
transaction is ended. Thanks to that, associated blocks could be
deallocated, mostly in case of a huge transaction. Moreover,
there would be an option to specify priorities across multiple
Reservable columns to optimize the performance.

Another aspect of the future research relates to the data
distribution, synchronization across the nodes, and efficiency of
the energy consumption and management to sharpen the Green
computing paradigm.

ACKNOWLEDGMENT

This paper study was supported by the Erasmus+ projects:

 Project number: 2022-1-SK01-KA220-HED-
000089149, Project title: Including EVERyone in
GREEN Data Analysis (EVERGREEN) funded by the
European Union. Views and opinions expressed are
however those of the author(s) only and do not
necessarily reflect those of the European Union or the
Slovak Academic Association for International
Cooperation (SAAIC). Neither the European Union nor
SAAIC can be held responsible for them.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 79 --

 Project number: 2021-1-SI01-KA220-HED-000032218,
Project title: Better Employability for Everyone with
APEX.

REFERENCES
[1] Abhinivesh, A., Mahajan, N.: The Cloud DBA-Oracle, Apress, 2017

[2] Anders, L.: Cloud computing basics, Apress, 2021

[3] Cunningham, T.: Sharing and Generating Privacy-Preserving Spatio-
Temporal Data Using Real-World Knowledge, 23rd IEEE International
Conference on Mobile Data Management, Cyprus, 2022.

[4] Greenwald, R., Stackowiak R., and Stern, J.: Oracle Essentials: Oracle
Database 12c, O'Reilly Media, 2013.

[5] Kuhn, D. and Kyte, T.: Oracle Database Transactions and Locking
Revealed: Building High Performance Through Concurrency, Apress,
2020.

[6] Kvet, M.: Developing Robust Date and Time Oriented Applications in
Oracle Cloud: A comprehensive guide to efficient Date and time
management in Oracle Cloud, Packt Publishing, 2023, ISBN: 978-
1804611869

[7] Kuhn, D. and Kyte, T.: Expert Oracle Database Architecture: Techniques
and Solutions for High Performance and Productivity. Apress, 2021.

[8] Kvet, M., Papán, J.: The Complexity of the Data Retrieval Process Using
the Proposed Index Extension, IEEE Access, vol. 10, 2022.

[9] Limaye, N. et all.: Thwarting All Logic Locking Attacks: Dishonest
Oracle With Truly Random Logic Locking, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (Volume: 40,
Issue: 9, September 2021

[10] Morris, S.: Resilient Oracle PL/SQL, O´Reolly, 2023.

[11] Nuijten, A. and Barel A.: Modern Oracle Database Programming: Level
Up Your Skill Set to Oracle's Latest and Most Powerful Features in SQL,
PL/SQL, and JSON, Apress, 2023

[12] Rosenzweig, B. and Rakhimov, E.: Oracle PL/SQL by Example, Oracle
Press, 2023.

[13] Standfuss, T. and Schultz, M.: Performance Assessment of European Air
Navigation Service Providers, DASC conference 2018

[14] Steingartner W., Eged, J., Radakovic, D., Novitzka V.: Some innovations
of teaching the course on Data structures and algorithms, In 15th
International Scientific Conference on Informatics, 2019.

[15] Erasmus+ project BeeAPEX - Better Employability for everyone with
APEX : https://beeapex.eu/

[16] Erasmus+ project EverGreen dealing with the complex data analytics:
https://evergreen.uniza.sk/

[17] Lock-Free Reservations to Prevent Blocking Sessions in Oracle Database
23c: https://oracle-base.com/articles/23c/lock-free-reservations-23c

[18] Using Lock-Free Reservation:
https://docs.oracle.com/en/database/oracle/oracle-
database/23/adfns/using-lock-free-reservation.html#GUID-60D87F8F-
AD9B-40A6-BB3C-193FFF0E60BB

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 80 --

