
Design of Data Access Architecture Using ORM
Framework

Filip Majerik
University of Pardubice

Pardubice, Czech Republic
filip.majerik@student.upce.cz

Monika Borkovcova
University of Pardubice

Pardubice, Czech Republic
monika.borkovcova@upce.cz

Abstract—Nowadays, various Object–relational mapping
frameworks are becoming a key part of computer system
architecture. These frameworks provide developers with
relatively easy manipulation of data stored in various database
systems, even without knowledge of complex database systems. In
this article, we have focused on leveraging the benefits of
implementing an ORM framework while minimizing the impact
on software performance. The design of an intelligent data
intermediate layer is described within this paper. This provides
optimized communication between the application layer and
subsequently the ORM Framework. At the same time, attempts
have been made to extend the layer with an additional caching
layer, which however proved to be unhelpful for simple SQL
queries.

I. INTRODUCTION

Nowadays, software application developers are facing a lot
of challenges. Due to the ever-increasing demands on the
performance of the resulting application systems, the speed of
handling gradually increasing requests, the amount of requests
handled with the highest possible system response, combined
with rapid agile development, it is practically not in the power
of an individual to be able to know all optimization techniques
at such a good level to be able to build such a system at all. [3]
Of course, the development of production application systems
creates many developers that collaborate on the final product.
However, the benefit of working in a team is greatly influenced
by the practices and standards used in each organization. Our
investigation shows that many developers resort to using a
variety of off-the-shelf solutions, such as ready-made complex
frameworks. [1], [13], [6]

One group of these frameworks are, for example, Object-
Relational Mapping (ORM) Frameworks. [6] These are
focused on manipulating data that is stored in a database. The
simplicity of working with these frameworks is redeemed
(trade-off) very often by the performance of the application.
[18] Developers using these frameworks often have no idea
how to optimize the communication with the database and
work with it efficiently. Thus, on the one hand we are faced
with the ignorance of developers [15] and on the other hand we
are faced with the limitations of ORM frameworks as such. It is
necessary to realize that they are still only SQL code generators
based on the given annotations and end-user actions,
combining the object-oriented paradigm with the relational one
and allowing faster development of computer systems. [14],
[5], [17], [8], [11]

ORM frameworks have spread over time to all commonly
used programming languages and there are many of them. For

JAVA, Hibernate [12], the .NET Entity Framework, Python
Django, GoLang GORM, NodeJS TypeORM, and PHP
Doctrine. These frameworks offer basically the same thing,
namely ease of working with a database system
where the developer does not need to understand the internal
mechanisms of relational databases in any fundamental way.
[6], [5], [2]

Thus, in this paper, we focus on building an intermediate
layer that will take advantage of the benefits of ORM, while
trying to minimize the impact on software performance and
speed. Thus, the developer will not lose the benefit of being
able to continue working without the complexities of the
object-oriented paradigm. Thus, this includes a description of
the design of an intelligent data layer (IDL) that allows the
developer to predictably define user behavior and subsequently
reduce the need for database calls, thereby increasing the
responsiveness of the system. The proposed intermediate layer
has been tested in PHP 8.1, Symfony 6.3, Doctrine 2.6,
MySQL 8.0.26 environments and the standard PHP extension
Memcached has been used for caching, which works on the
key-value principle and allows storing entire objects. [10], [16]
The entire environment will be used in its default
configuration, with no additional caching or other settings to
improve performance. And it will be run using the Docker
container tool within Ubuntu 23.04 [7], [9].

II. THE PROBLEM OF ORM FRAMEWORKS

The fundamental problem of ORM frameworks and their
subsequent implementation is that they cannot estimate in any
way what data will be needed when processing a user request.
Thus, the decision whether to use the so-called EAGER loading
or LAZY loading when defining sessions at the Entity level can
be particularly problematic. The main difference between these
definitions is when the required data is retrieved. If the session
is designated as LAZY, the data is loaded when it is needed. In
contrast, for a session marked as EAGER, they are retrieved
immediately at the moment the entity is retrieved from the
database. Thus, EAGER retrieval might seem more convenient
and efficient enough, but there is no way for a developer like
ORM Framework to "say" that he does not need this data for an
operation, until we are working with hundreds of records. To
developers who have no idea about the internal processes of the
ORM Framework, then, it might seem that the solution to this
problem is to label the constraints as LAZY. However, the
problem that arises here is that this data must be retrieved for
each entity separately. Of course, if the ORM Cache for entities

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 93 --

is enabled, there is at least a minimization of repeated
querying of the already loaded database entity.

III. EXPERIMENTS
A. Model for experiments

For the following sections, it is already necessary to have a
model application over which the individual functionalities
and principles of the intelligent data layer can be easily
explained and verified. As a model application, a section from
the administration system of the IPTV/OTT platform was

selected and the database for the experiments, then populated
with anonymized real data from this system.

The Fig. 1. shows the entity-relational diagram (ERD) of
the model database.

The ERD was then transformed into a corresponding
relational database model (Fig. 2) that corresponds to the
actual experimental database. Both models were created using
the code-first method, where the complete application code
was first created and then the data models were built. [4]

Fig. 1. ERD of the model database

Fig. 2. Relational model of the experimental database

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 94 --

The ERD thus expresses the structure of the experimental
database, where Operator has the id column as the primary
key, followed by the name and dataCreated columns.
Subscriber has id as primary key, email column works with
unique values and operator_id column is marked as foreign
key referring to the primary key (PK) in Operator table for PK
id. Subscriber also has non-key columns name, surname,
phone and email. The Brand table is joined to the Operator and
Device tables, with the Brand table having the id column as
the PK, the unique column being code, and the foreign key
(FK) in this table being operator_id referencing the PK in the
Operator table for the id column. The Device table has the id
column as the PK, and the brand_id, subscriber_id,
deviceProfile_id, and deviceType_id columns as the FK. The
DeviceType table has the id column as PK and the code
column as unique. The DeviceProfile table has the id column
selected as the PK and the code column as the unique one. All
relationships are of type 1:N i.e. Operator:Subscriber,
Operator:Brand, Brand:Device, Subscriber:Device,
DeviceType:Device, DeviceProfile:Device.

All the entities in the ERD and the subsequent tables in the
relational model have their corresponding image in the
application code. Due to the extensiveness of these models,
only an example (Fig. 3) of the most complex entity Device is
given here, trimmed down so that the annotations related to the
ORM in particular are clear. In the code of the Device class,
we can see the work with the Device table and its FKs in the
variables $brand, $subscriber, $deviceType, $deviceProfile, as
well as $id as PK and the non-key columns name ($name),
macAddress ($macAddress), lastStart ($lastStart), dateCreated
($dateCreated).

Fig. 3. Source code example of experimental database applicaton

B. Intelligent Data Layer (IDL)

Due to the described problems and the complexity of
working with the ORM Framework, a new intelligent data
layer was designed. This data layer is intended to solve several
problems:

 P1: Reduce the knowledge requirements for developers.
 P2: Simplify access to the data you need.
 P3: Build an interface for developers to build queries

predictively.
 P4: Maintain ORM annotations so that the developer

can use the standard approach.

The intelligent model layer is based on the basic knowledge
of ORM Frameworks and their performance problems. Due to
this knowledge, the focus of the design was to minimize the
performance-impact as much as possible when using this data
layer. Simply put, the working principle of this data layer is to
create a tool for combining LAZY Loading and early EAGER
Loading. This combination should allow the developer enough
space to implement his queries so that the required data is
loaded at the appropriate time, while only loading the amount
of data needed for the output.

The Intelligent Model Layer contains a superstructure for
the classic language used by ORM, in this case, DQL. DQL -
Doctrine Query Language is the language used internally by
the Doctrine ORM Framework to build queries into the
database. This superstructure consists in allowing the user,
thanks to a simple QueryBuilder, to define exactly which sub-
entities he wants to retrieve to the main entity and which not.
Alternatively, define a complete entity tree to be loaded once.
This is where the combination of LAZY and EAGER loading
occurs. Lazy from the point of view that the data is loaded at
the moment of need and Eager from the point of view that all
the data that is needed to complete the operation is loaded at
once.

IDL then uses a combination of additional query language,
DQL and knowledge of ORMs and their QueryBuilders to
build the final queries. Each entity must then have a
corresponding entity created that can work with all of its
properties. Further work to improve IDL could be to automate
some features - such as defining an additional language based
on existing ORM annotations. At the moment, however, this
knowledge needs to be manually inserted into the IDL.

The user can think of this knowledge as "switches" that can
be turned on or off when needed. It is then easy to define
which sub-entities are to be loaded to the main entity and
which are not. A suitable modification can then be, for
example, to extend such a system to the whole entity tree,
where e.g. for the main entity we define a rule that we want to
load this entity, with this sub-entity and these entities to it. In
an ORM framework, we would achieve this using LAZY
loading, but with a significant performance impact.

C. Architectural inclusion of the intelligent data layer in the
application

The intelligent data layer is generally designed as a service
layer that knows the individual entities it is working with and

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 95 --

then allows the developer to define specific operations. These
operations are then used to load specific entities without
having to load all unnecessary ones. And consequently also to
minimize the number of database calls that would otherwise be
made.

The following figure (Fig. 4.) shows an example of the
integration of the Intelligent Data Layer into an application
architecture that uses ORM.

Fig. 4. Application architecture with IDL

IV. EXPERIMENTAL VERIFICATION

In order to verify the implementation of IDLs and their
parameters, two specific tasks were selected from the reporting
of the company that provided input to the experimental
database. The following approaches will be compared in the
experiment:

 native query
 DoctrineORM - Lazy loading
 DoctrineORM - Eager loading
 DoctrineORM + IDL
 DoctrineORM + IDL + Cache
 DoctrineORM + IDL + Full change Cache

Briefly described specific reporting tasks:

 Q1 - Get a JSON list of all devices with their name,
mac, device profile name, device type name, last device
start, brand name, full subscriber name, and the
operator name of that subscriber.

 Q2 - Get a JSON list of all operators, their brands and
all corresponding devices and their basic information.

At the time of the experiment, the database contained the
following numbers of records, for each table:

TABLE I. CONTENTS OF THE EXPERIMENTAL DATABASE

Database table Number of lines

brand 36

device 31623

device_profile 4

device_type 3

operator 10

subscriber 12694

The following brief description of each experiment is the
same for the two specific reporting tasks.

A. Native query

Q1 - Question:

SELECT
 d.id AS device_id,

 d.name AS device_name,
 d.mac_address,
 dp.name AS device_profile_name,
 dt.name AS device_type_name,
 d.last_start,
 br.name AS brand_name,
 CONCAT_WS(' ', s.name, s.surname) AS subscriber_name,
 o.name AS operator_name
FROM
 device d
LEFT JOIN
 device_profile dp ON d.device_profile_id = dp.id
LEFT JOIN
 device_type dt ON d.device_type_id = dt.id
LEFT JOIN
 brand br ON br.id = d.brand_id
LEFT JOIN
 subscriber s ON d.subscriber_id = s.id
LEFT JOIN
 operator o ON s.operator_id = o.id;

Q2 - Question:

SELECT
 o.name AS operator_name,
 b.name AS brand_name,
 b.code AS brand_code,
 CONCAT_WS(' ', s.name, s.surname) AS subscriber_name,
 d.name AS device_name,
 d.mac_address AS device_mac,
 last_start device_last_start,
 dp.name AS device_profile_name,
 dt.name AS device_type_name
FROM
 brand b
LEFT JOIN
 operator o ON b.operator_id = o.id
LEFT JOIN
 subscriber s ON o.id = s.operator_id
LEFT JOIN
 device d ON d.subscriber_id = s.id
LEFT JOIN
 device_type dt ON dt.id = d.device_type_id
LEFT JOIN
 device_profile dp ON dp.id = d.device_profile_id
WHERE
 d.brand_id = b.id;

B. DoctrineORM - Lazy loading

For this experiment, all sessions defined at the ORM level
were set as LAZY. This includes sessions that do not directly
correspond to the queries from the previous section. This is to
ensure that no extra data is loaded that could affect the
experiment.

C. DoctrineORM - Eager loading

For this experiment, all corresponding sessions were set to
EAGER. Sessions that are unnecessary for obtaining matching
data were left set to LAZY.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 96 --

D. DoctrineORM + IDL

For this experiment, all ORM sessions were set to
EXTRA_LAZY. The reason is to avoid unintentional retrieval,
for example, if the appropriate getter is called in each entity to
retrieve a mere ID. Furthermore, a call with the corresponding
IDL setting was made.

E. DoctrineORM + IDL + Cache

This experiment uses the same setup as the previous one.
As an extension for this experiment, a cache (Memcached)
was enabled that contains all normally unmodified entities. For
the purpose of the experiment, the following entities were
marked for caching: Brand, Operator, DeviceProfile,
DeviceType. Entities are cached with an expiration of 1200
minutes.

F. DoctrineORM + IDL + Full change Cache

The last experiment contains the same settings as the
previous one with IDL, but in addition all information is
cached. This information is duplicated and stored persistently
in the database and in the cache at the same time. Thus, the
moment any entity is changed, it is stored both in the Cache
and in the database. This approach replaces more modern
languages in PHP that are not just "request-base" and keep the
information retrieved until the information expires. In the
experiment, the cache contains complete datasets from all
database tables.

V. RESULTS OF EXPERIMENTS

The following data were obtained from the above
experiments.

TABLE II. TABLE OF EXPERIMENTAL RESULTS FOR Q1 – PART 1

Experiment
Execution
time [ms]

Symfony
initialization

[ms]

Memory
peak
[MB]

Doctrine
Memory

[MB]

Native query 170 30 54 54

Lazy Loading 2999 31 181,5 181,5

Eager Loading 1348 33 125,5 125,5

IDL 1057 31 123,5 123,5

IDL + Cache 1049 29 105 105

IDL + Full
change cache

555
31 0 0

TABLE III. TABLE OF EXPERIMENTAL RESULTS FOR Q1 – PART 2

Experiment
DB

queries

Different
queries

Query
time
[ms]

DB
QT/EXT

[%]

Native query 1 1 69,77 41,04

Lazy Loading 12748 6 1208,46 40,29

Eager Loading 2 2 169,02 12,54

IDL 6 6 52,37 4,95

IDL + Cache 2 2 41,37 3,94

IDL + Full
change cache

0
0 0 0

TABLE IV. TABLE OF EXPERIMENTAL RESULTS FOR Q2 – PART 1

Experiment
Execution
time [ms]

Symfony
initialization

[ms]

Memory
peak
[MB]

Doctrine
Memory

[MB]

Native query 195 30 64 44
Lazy Loading 2819 31 213,08 183,5
Eager Loading 1620 36 163,08 125,5

IDL 1037 33 161,08 129

IDL + Cache 795 31 182,58 86
IDL + Full

change cache
545 30 269,58 0

TABLE V. TABLE OF EXPERIMENTAL RESULTS FOR Q2 – PART 2

Experiment
DB

queries

Different
queries

Query
time
[ms]

DB
QT/EXT

[%]

Native query 1 1 83,51 42,83

Lazy Loading
12748 6 1106,2

6

39,24

Eager Loading 4 4 89,28 5,51
IDL 6 6 49,6 4,78

IDL + Cache 1 1 20,25 2,55
IDL + Full

change cache
0 0 0 0

For Lazy Loading, Eager Loading, and IDL, the best values
for each of the monitored parameters, outside of Symfony
initialization, were marked in the results tables. This
information is included in the table to give a better idea of
what the execution time contains.

The value of the database operation duration ratio (DB
QT/EXT) is expressed from the ratio of Query time (QT) to
total execution time (EXT) and then converted to a percentage
value.

Fig. 5. Q1 - Graph of execution time, query time and number of queries

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 97 --

Fig. 6. Q2 - Graph of execution time, query time and number of queries

VII. CONCLUSION

From the above results, it can be seen that in both
experimental treatments, some of the observed parameters
were reduced. To give an example, the execution time was
reduced in both cases. Furthermore, a significant reduction in
query time, which was even reduced to below the duration of
the native query in both cases. And it is certainly worth
pointing out the DB QT/EXT parameter, which shows that a
large part of the performance impact has been moved from the
ORM, directly to the application layers, including the IDL.

In terms of the defined criteria and the problems to be
solved by the IDL, the IDL design was successful. The IDL
introduced an interface for intelligent loading of entities and
their sub-entities, which still causes problems for conventional
ORM frameworks. By minimizing query time even against
native SQL queries, the IDL design can be considered a very
successful form of data access optimization using an ORM
framework.

In the process of working on the experiments and
evaluating them, several other suggestions for further work
emerged, e.g., automated creation of factual information about
entities, extensions by projection, paging of entities or
subentities and their sequential loading. Another possible
direction of exploration could be the data structures

ACKNOWLEDGMENT

It was supported by the Erasmus+ project: Project number:
2022-1-SK01-KA220-HED-000089149, Project title:
Including EVERyone in GREEN Data Analysis
(EVERGREEN) funded by the European Union. Views and
opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or
the Slovak Academic Association for International
Cooperation (SAAIC). Neither the European Union nor
SAAIC can be held responsible for them.

REFERENCES
[1] Arzamasova, Natalia, Martin Schäler, a Klemens Böhm. 2017.

„Cleaning Antipatterns in an SQL Query Log.“ IEEE Transactions
on Knowledge and Data Engineering. IEEE. 421-434.
doi:10.1109/TKDE.2017.2772252.

[2] Boniewicz, Aleksandra, Piotr Wiśniewski, a Krzysztof Stencel. 2013.
„On redundant data for faster recursive querying via ORM systems.“
2013 Federated Conference on Computer Science and Information
Systems. Krakow. 1451-1458.

[3] Čerešňák, Roman, a Michal Kvet. 2019. „Comparison of query
performance in relational a non-relation databases.“ Transportation
Research Procedia. Padova. 170-177.
doi:10.1016/j.trpro.2019.07.027.

[4] Fertalj, Kresimir, Nikica Hlupic, a Lidia Rovan. 2006. „Why (not)
ORM?“ 28th International Conference on Information Technology
Interfaces, 2006. Cavtat: IEEE. 683-688.
doi:10.1109/ITI.2006.1708563.

[5] Chen, Te-Hsun, Shang Weiyi, Zhen Ming Jiang, Ahmed E. Hassan,
Mohamed Nasser, a Flora Parminder. 2014. „Detecting performance
anti-patterns for applications developed using object-relational
mapping.“ Proceedings of the 36th International Conference on
Software Engineering. Hyderabad: Association for Computing
Machinery. 1001-1012. doi:10.1145/2568225.2568259.

[6] Chen, Tse-Hsun, Weiyi Shang, Zhen Ming Jiang, Hassan E. Ahmed,
Mohamed Nasser, a Flora Parmider. 2016. „Finding and Evaluating
the Performance Impact of Redundant Data Access for Applications
that are Developed Using Object-Relational Mapping Frameworks.“
IEEE Transactions on Software Engineering. IEEE. 1148-1161.
doi:10.1109/TSE.2016.2553039.

[7] Choina, Marcin, a Maria Skublewska-Paszowska. 2022.
„Performance analysis of relational databases MySQL, PostgreSQL
and Oracle using Doctrine libraries.“ Journal of Computer Sciences
Institute. Wydawnictwo Politechniki Lubelskiej. 250-257.
doi:10.35784/jcsi.3000.

[8] Ireland, Christopher, David Bowers, Michael Newton, a Kevin
Waugh. 2009. „A Classification of Object-Relational Impedance
Mismatch.“ 2009 First International Confernce on Advances in
Databases, Knowledge, and Data Applications. Gosier: IEEE. 36-43.
doi:10.1109/DBKDA.2009.11.

[9] Khelifi, Nassima Yamouni, Michał Śmiałek, a Rachida Mekki. 2015.
„Generating Database Access Code From Domain Models.“ 2015
Federated Conference on Computer Science and Information
Systems. Lodz: IEEE. 991-996. doi:10.13140/RG.2.1.1476.4564.

[10] Ma, Kun, a Yang Bo. 2015. „Access-Aware In-memory Data Cache
Middleware for Relational Databases.“ 2015 IEEE 17th
International Conference on High Performance Computing and
Communications, 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems. New York: IEEE.
1506-1511. doi:10.1109/HPCC-CSS-ICESS.2015.186.

[11] Martin, Lorenz, Hesse Guenter, a Rudolph Jan-Peer. 2016. „Object-
relational Mapping Revised - A Guideline Review and
Consolidation.“ 11th International Conference on Software
Engineering and Applications. Lisabon: SciTePress. 157-168.
doi:10.5220/0005974201570168.

[12] Nazário, Marcos Felipe Carvalho, Eduardo Guerra, Rodrigo
Bonifácio, a Gustavo Pinto. 2019. „Detecting and Reporting Object-
Relational Mapping Problems: An Industrial Report.“ 2019
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). Proto de Galinhas: IEEE. 1-
6. doi:10.1109/ESEM.2019.8870163.

[13] Scully, Ziv, a Adam Chlipala. 2017. „A program optimization for
automatic database result caching.“ ACM SIGPLAN Notices.
Association for Computing Machinery: New York. 271-284.
doi:10.1145/3093333.3009891.

[14] Shao, Shudi, Qui Zhengyi, Yu Xiao, a Yang Wei. 2020. „Database-
Access Performance Antipatterns in Database-Backed Web
Applications.“ 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). Adelaide: IEEE. 58-69.

[15] Sharma, Tushar, Marios Fragkoulis, Stamatia Rizou, Magiel
Bruntink, a Diomidis Spinellis. 2018. „Smelly Relations: Measuring
and Understanding Database Schema Quality.“ 2018 IEEE/ACM 40th
International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP). Gothenburg: IEEE. 55-
64.

[16] Vaja, Dhaval Dhirajlal, a Rahevar Mrugendrasinh. 2016. „Improve
performance of ORM caching using In-Memory caching.“ 2016
International Conference on Computing, Analytics and Security

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 98 --

Trends (CAST). Pune: IEEE. 112-115.
doi:10.1109/CAST.2016.7914950.

[17] Węgrzynowicz, Patrycja. 2013. „Performance antipatterns of one to
many association in hibernate.“ 2013 Federated Conference on
Computer Science and Information Systems. Krakow: IEEE. 1475-
1481.

[18] Yan, Cong, Alvin Cheung, Junwen Yang, a Shan Lu. 2017.
„Understanding Database Performance Inefficiencies in Real-world
Web Applications.“ ACM Conference on Information and Knowledge
Management. New York: Association for Computing Machinery.
1299-1308. doi:10.1145/3132847.3132954.

ISSN 2305-7254__PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

-- 99 --

