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Abstract—This article considers the problem of automating the
design of machine learning (ML) pipelines. Methods for automating
the design of ML pipelines were analyzed. Based on the analysis
performed an ontology would be promising for solving the above
problem. A method for automating the design of ML pipelines based
on ontological engineering was proposed. An ML ontology aimed at
constructing pipelines was created. An application for automated
construction of pipelines based on the created ontology was
developed. The effectiveness of the developed solution has been
assessed experimentally, as compared with TPOT, which is one of
the state-of-the-art automated pipeline construction tools. The
solution presented not only appears to be more efficient in terms of
the quality of the result obtained in the minimum required time, but is
also comparable to the above tool regardless of the time of running.

1. INTRODUCTION

Machine learning is often described as "a field of
study that gives computers the ability to learn without being
explicitly programmed" [1]. The demand for functionality
provided by the ML techniques is growing fast, and successful
solutions based on this approach can be found in an increasing
number of fields of science, technology and society in general.
Over the past years, automated machine learning (AutoML)
solutions have been developed in response to the challenges
faced by those who do not have the expertise in machine
learning, but who still have to use it occasionally to solve their
specific problems [2]. Also, this technology is aimed at
eliminating the need to search by brute force for algorithms,
their hyperparameters, to name a few.

This article considers the task of automating the
design of ML pipelines. In most of the existing approaches, it is
considered an optimization problem, which leads to a higher
design complexity. On the other hand, there is another
approach, called meta-learning, which refers to collecting
statistics of the effectiveness of certain algorithms in similar
problems [3]. This approach allows reduce overall the pipeline
search and optimization complexity, however, it has the
following limitation: meta-learning efficiency in ML pipeline
design automation depends on the amount of information about
similar tasks stored in a particular system. To meet this issue, it
seems promising to accumulate data on the effectiveness of
pipelines in specific cases extracted by individual systems into
a common knowledge base, with further using this base as a
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meta-learning model for predicting the best possible pipeline
for any new tasks.

The solution we present is based on the ontological
approach [4]. Ontology means formalization of a certain area of
knowledge as a conceptual scheme. It consists of objects -
instances of classes of the subject area, relations between them,
and other rules, also called axioms, accepted in the field.
Axioms are described as subject-object-predicate triplets, based
on the RDF (Resource Description Framework) data model.
The standard language for describing ontologies is OWL (Web
Ontology Language). The choice of the ontological approach
for solving the problem of ML pipeline design automation is
based on the following features:

1) The inference of a pipeline from an ontology
requires almost no computational costs, as each
request to the graph database, on average, is
executed in a linear time.

2) An ontology is a standardized format that allows
data from multiple sources to be integrated into it.
3) The ability to infer implicit information. Thus, it

becomes possible to automatically construct a
pipeline in specific cases.

Our main goal is reducing the complexity of automated ML
pipeline design using an ontology as a meta-learning model. To
achieve the above goal we have set the following tasks: (i) to
perform the analysis of methods for automation of the ML
pipeline design; (ii) to develop a solution for ML pipeline
design automation based on the ontological engineering; (iii) to
implement it; and finally, (iv) to perform implementation
testing and comparison of our results with TPOT (Tree-based
Pipeline Optimization Tool), one of the acknowledged
AutoML tools [5].

The article has the following structure: the section
following the introduction contains the analysis of methods for
automation of the ML pipeline design; the third section
describes the proposed solution for ML pipeline design
automation based on the ontological engineering; the fourth
section contains implementation details; and finally, the fifth
section deals with the experiments conducted, including app
testing and comparing our results with TPOT.
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II. ANALYSIS OF METHODS FOR AUTOMATION OF THE

PIPELINE DESIGN

The existing approaches have been classified as
two categories: those based on optimization and those
based on semantic technologies.

A. Tree-based Pipeline Optimization Tool

TPOT solution is essentially the optimization of
ML pipelines by using a version of genetic programming
(GP), an evolutionary computing technique for
automatically constructing computer programs. In terms of
implementation, TPOT is a wrapper over scikit-learn, a
python ML package [6]. In TPOT, each pipeline operator is
linked to the ML algorithm. In order to combine these
operators in the ML pipeline, we consider them to be GP
primitives, and build GP trees based on them. During the
exemplary workflow shown in Fig. 1, two copies of the
dataset are modified in a sequential manner by each
operator, then merged into one dataset, and finally used to
perform classification.

Recursive
Feature
Elimination

Combine
Features

Fig.1. Tree-based machine learning pipeline [1, Fig.2].

The analysis has revealed the following limitations
of TPOT solution: (i) a sensible initialization process; (ii) a
need to optimize a large population of solutions, which can
be slow and costly for certain cases.

B. Tree-based Pipeline Optimization Tool

ML-Plan is a new approach to AutoML based on
Hierarchical Task Networks (HTN) [7]. HTN is a well-
established intelligent scheduling technique, usually
implemented as a heuristic best-first search on the graph,
induced by the scheduling technique. The optimization
potential of the earlier solutions to setting up HTN-based
data mining pipelines has proved to be limited. One of
these solutions ranked candidates based on the frequency of
RapidMiner usage, while another ran a bottom-up search
based on a database of known issues. On the other hand,
similarly to Auto-WEKA [8] and auto-sklearn [9], ML-Plan
searches for the optimal pipeline by randomly substituting
algorithms in each of its phases, down to their completion.
The key advantage of ML-Plan over the above-mentioned
approaches is that it has a special mechanism to prevent
overfitting. Fig. 2 shows an example of ordered hierarchical
task networks with 3 assessed pipelines.
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Fig.2 Ordered HTN [7, Fig.2]

The analysis has revealed the following limitations
of ML-plan solution: (i) implementation of a predefined
preference on learning algorithms, instead of adaptation to
the dataset; (ii) the worst case time complexity of a best-
first search algorithm is O(NlogN), which will be slow
enough when searching among many solutions.

C. AlphaD3M

The Data Driven Discovery of Models (D3M)
program was initiated to create an infrastructure for
automatic discovery of an ML pipeline [alphad3m)]. In the
AlphaD3M solution, the pipeline synthesis problem is
reduced to a simple single-player game in which the player
iteratively builds the pipeline, choosing from a set of
actions: insert, delete, or replace parts of the pipeline . The
advantage of this approach is that by the end of the process,
when the user receives the finished pipeline, the result is
fully explainable, including all the actions and decisions
that have produced it. Another advantage of this approach
is that it leverages recent advances in deep reinforcement
learning using self play, specifically the expert iteration
algorithm and AlphaZero, by applying a neural network for
predicting pipeline performance and action probabilities,
along with a Monte-Carlo Tree Search.

The analysis has revealed that AlphaD3M solution
has an advantage over previous approaches in terms of
running time, which is reduced from hours to minutes. On
the other hand, its disadvantages are (i) that it uses a lot of
memory while running, and (ii) that its average
performance (quality of results) is generally worse than
others.

Having analyzed all the methods above, we can
conclude that their common disadvantage is that they
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require significant computational costs of a certain type to
design an efficient pipeline.

D. SemFE

According to [10], development of ML pipelines is
a complex and costly process because of the following
three challenges since they consume more than 80% the
overall time of development. The first is transparency of
the results. It includes the fact that quality monitoring, task
negotiation and interpretation of results require
collaboration between experts from different areas. The
asymmetric knowledge backgrounds, including complexity
of engineering practices in manufacturing and
sophistication of ML algorithms that constrain the
transparency of ML results and models, make the
communication time consuming and error-prone. The
second challenge is data preparation. Data integration from
multiple sources is a labor-intensive process that requires
multifaceted domain knowledge and plentiful data
complications. The third and last challenge is the
generalisability of ML models. Each of the developed ML
models usually adapts to the dataset and, for this reason, its
reuse in a different context requires some effort.

Designed in Bosch, semantically enhanced ML
pipeline, SemFE, with feature engineering, addresses these
challenges, eliminating knowledge asymmetry, and making
data science accessible to non-ML-experts [10]. This
solution relies on ontologies for discrete manufacturing
monitoring that encapsulate domain and ML knowledge.
By processing ontologies through reasoning, SemFE
automates the process of creating ML models. In particular,
when welding specialists annotate raw welding data with
features from a subject ontology, the reasoner obtains
feature groups corresponding to them, and then, using the
ML ontology, it infers feature processing algorithms and
ML algorithms corresponding to the selected feature
groups. Fig. A.1 shows a structural scheme of the ML
pipeline in a general case.

To summarize, to the best of our knowledge, there
are no studies that would treat ontologies as an integrative
meta-learning model for constructing ML pipelines.

III. ONTOLOGY-BASED ML PIPELINE DESIGN
AUTOMATION METHOD

In this section we describe a proposed method for
automation of machine learning pipeline design by an
ontology as an accumulative meta-learning model.

A. Base Workflow

To begin with, we define the operating principle of
a system that automates the construction of pipelines based
on semantic technologies. A scheme of its workflow is
presented in Fig. A.2.

At the first stage of working with the software, the
user will be required to provide a dataset. The system then
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extracts the dataset feature names and their corresponding
data types. Further, the user is required to select the ML
problem to be solved, classification or regression, as well as
the target feature. Based on this data, a series of sequential
requests to the ontology is carried out to obtain the result --
the implementation of the pipeline. These requests are:

e  For pipeline inference;

e for inference of each pipeline step;

e for inference of the implementation of each

pipeline step and hyperparameters associated with
it.
Finally, the generated code is immediately provided
to the user.

B. ML Ontology

To implement the proposed solution, a machine
learning ontology based on expert estimation was
developed, aimed at constructing pipelines, with the class
hierarchy shown in Fig. 3.
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-
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> HyperParam

Pipeline

PipelineStep
Decomposition
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MachineLearningModelling

> Preprocessing

o Task
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v

Fig. 3 Ontology class hierarchy

The ontology created has a minimal set of entities
required to demonstrate how the solution works. Its
structure is scalable enough, so we can expand it.

The process of outputting a pipeline suitable for the
dataset is described using the following example.

:Classification :hasStoredData :Dataset2

Firstly, an instance of the classification task, that
has ObjectProperty hasStoredData, with the value of the
instance of similar dataset, is extracted. The dataset
instance is presented below.

:DataSet :hasSolution :Pipeline?2

As seen from the listing, the dataset instance has
ObjectProperty hasSolution, with the value of the pipeline
instance. Next, the structure of the pipeline instance is

presented below.

:Pipeline :hasStep :SelectKBest, :Linear

SVC

The pipeline instance has ObjectProperty hasStep,
linking it with the algorithm instance used at the current
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pipeline step. An annotation order is used here to persist the
order of steps. One of the algorithms, LinearSVC, is
considered as an example.

:LinearSVC :hasHyperParam :C 5 ,
alse;

:Dual F

thasImplementation "from

sklearn.svm import LinearSvVC"

It has ObjectProperty hasHyperParam that, as the
name suggests, is intended to specify its hyperparameters.
In this case they are C and dual. The algorithm is linked
through  DataProperty  haslmplementation with  the
corresponding implementation in the Python language.

In general, the process of pipeline inference
remains the same for any other ML task.

IV. IMPLEMENTATION

In this section we describe the implementation of
the proposed method for an application we developed.

The method is implemented as a client-server web-
application. SPARQL was used as the query language based
on the RDF model, as it is the W3C's (Word Wide Web
Consortium) recommendation for a query language for
Semantic Web data.

Back-end part is written on python framework
Django. The language choice is based on its high prevalence
in the ML field (so the solution can be more competitive)
and has the opportunity to execute the resulting pipeline.

Front-end part is written in the Angular framework.
The choice is based on its features, including but not limited
to component-based architecture, reactivity, typescript
usage, HTTP client.

A. Back-end

Firstly, there must be a request to infer data types
of features from a dataset. During the execution of the
corresponding method, the data set is extracted from the
request body, then it is converted to dataframe and the
feature data types are inferred based on comparison of the
values of its dtypes attribute fields with data types from the
ontology.

Further in the course of the workflow, a request
must occur to obtain the implementation of the pipeline.
Then a graph is created based on the ML ontology in
memory, using the rdflib library [rdflib]. Next, to generate a
pipeline, a series of requests for data retrieval is made to this
graph. Finally, pipeline implementation is passed to the
client in the form of json, as with inferred data types.

B. Front-end

The client part consists of one main and two nested
components and a single service. First, the SetUpComponent
is considered. onDataSetUpload method accepts a dataset
uploaded by the user via input/type=file’]. Next, the
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getFeatureTypes method of the backend service is called.
This method first places the data in the form data structure,
then makes a POST request via http-client to the API
endpoint /infer feature_dtypes/ to execute the server logic
described earlier. The component has methods that handle
selection events of the ML problem and the target feature,
and also an event of tab switching.

The component that should be presented on the
next tab is intended to display the pipeline implementation.
During its initialization, it calls getResults method of the
backend service, passing the task to be solved as a
parameter, from where a GET request is made to the
/get_pipeline_implementation/ endpoint. This component
also implements the following methods: checking for the
presence of results and loading a third-party script to
highlight the generated syntax.

V. EXPERIMENTS

This section presents the results of experimenting
with the implementation, which includes app testing and
estimation of the constructed pipelines.

A. Application testing

First, a manual functional testing of the application
is executed. We define the problem to solve and the dataset
to learn. On the selected dataset, the multiclass
classification problem is solved. After loading the dataset,
selecting the task and the target feature, and clicking on the
“Get Results” button, the user sees the generated pipeline.
Intermediary and final interface states are shown in Fig. 4
and Fig. 5.

We also tested out our app on another data set, this
time solving a regression task. The result is shown in Fig.6.

B. Evaluation of results and comparison

We run the pipeline obtained for the classification
problem and estimate its quality by cross-validation with the
default scoring and cv parameters, taking mean value from
the results given. Next, we calculate the total server
response time in the search and pipeline generation
workflow. And finally, we run the TPOTClassifier
algorithm from the #pot package with the following
parameters: number of generations = 15, size of population
per generation = 100, early stop if there is no progress in
search = 3. The results of comparison are presented in Fig.7.

Further, by analogy, we run the pipeline obtained for the
regression problem, evaluate its quality according to the
performance metric we have chosen, and calculate the time
spent on its synthesis. Subsequently, we run the
TPOTRegressor algorithm from the tpot package with all
the same parameters as during classification. The results of
comparison are presented in Fig. 8.

In both plots, TPOT results are presented as a
function, while our results as a dot. The reason is that our
solution finds a single pipeline, while TPOT tries to
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iteratively optimize solutions given at each next generation
until the stop.

Semantically enhanced AutoML

Set up stage
Choose dataset (format: csv):

BuiBepute daiin | Fish.csv

Select ML task to solve:

[ Classification

~]

Select target feature:

Species

]

Get results

Fig.4 Intermediary interface state (classification task)

Results

from sklearn feature_selection import SelectKBest

from sklearn.svm import LinearSVC

from sklearn.compose import make_column_transfoermer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline

import pandas as pd

df = pd.read_csv( PATHTO/DATA’)

target_feature = dff'Species’]

in_features = df loc[:, df.columns I="Species’]

X_train, X_test, y_train, y_test = train_test_split(in_features, target_feature
random_state=42)

pipeline = make_pipeline( SelectKBest( k=3, ), LinearSVC( C=5, dual=False, ),

pipeline fit(X_train, y_train)

Fig.5 Final interface state (classification task)

Results

from sklearn preprocessing import OneHotEncoder

from sklearn.preprocessing import StandardScaler

from sklearn linear_model import TweedieRegressor
from sklearn compose import make_column_transformer
from sklearn.model_selection import train_test_split
from sklearn pipeline import make_pipeline

import pandas as pd

df = pd.read_csv(PATH/TO/DATA')

target_feature = dff'Selling_Price']

in_features = df loc[:, df columns I="Selling_Price']

X_train, X_test, y_train, y_test = train_test_split(in_features, target_feature
random_state=42)

pipeline = make_pipeline( make_column_transformer( { OneHotEncoder(
handle_unknown='ignore', sparse=False, ), [ 'Car_Name', 'Fuel_Type',
'Seller_Type', "Transmission’, ] ), remainder="passthrough’, ), StandardScaler(
), TweedieRegressor( alpha=0, max_iter=1000, power=1, ), )

pipeling fit(X_train, y_train)

Fig.6 Final interface state (regression task)

Analyzing the results obtained, our solution not
only appears to be more effective in terms of the quality of
the result given in the minimum time required to obtain it,
but is also comparable regardless of the running time. It is
also important that the minimum time in our case is a few
seconds, while for TPOT it takes about 4 minutes.

VI. CONCLUSION

The following results were achieved:
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1) Methods for automation of ML pipeline design
were analyzed. They were classified into two
categories: those based on optimization and
those based on semantic technologies.

2) A method for automation of the pipeline
design based on ontological engineering has
been developed.

3) An ML ontology was created, aimed at
constructing pipelines.

4) An application has been developed for the
automated construction of pipelines based on
the created ontology.

5) An experimental evaluation of the efficiency of
the developed solution in comparison with
TPOT was performed.
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Fig.7 Performance and accuracy comparison: classification task
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Fig.8 Performance and accuracy comparison: regression task

As a result, our solution appears to be more
efficient in terms of operating time and the amount of
memory occupied, and also comparable in the quality of the
result given. However, our solution can not be competitive
with the TPOT at this stage for searching for a pipeline for
any possible dataset. On the other hand, from the
estimations performed we can conclude that our approach
is very prospective for a high-quality solution to the task of
ML pipeline design automation, and it will be our next
objective to make it as competitive as possible.
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In the future we plan to meet the following tasks:

(3]

o

3) Expand ontology

1) Develop persistent graph database for storing
metadata about pipelines.

2) Complement the system with the ability of

assigning pipelines to data sets via meta-
learning.

structure and perform
experiments on the OpenML-100 data sets.

4) Deploy the project as a publicly available

service for automated ML pipeline design.
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