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Abstract—Childhood cancer is the second most common cause 
of death in children under the age of fifteen, according to the 
American Cancer Society, and the incidence of diagnosis is rising. 
One common cancer is pleuropulmonary blastoma (PPB), which 
affects newborns to six-year-old children. Clinical diagnosis is 
through imaging, which is speedy and economical and does not 
require specialized equipment or laboratory tests. Still, it can be 
challenging to analyze PPB early using only imaging, and 
identifying clinical signs may also pose a challenge due to the 
numerous possible differential diagnoses. Clinical methods are 
unreliable for fast and accurate results, time-consuming, and 
prone to errors. Detecting PPB at an early stage is essential for its 
proper treatment, as it can be fatal if left untreated. In the last 
few years, convolutional neural networks (CNNs) have become 
the most prevalent technique for computer vision tasks. However, 
CNNs have a restricted local receptive field that may hinder their 
ability to learn about the global context. An alternative approach 
to CNNs that looks promising is the Vision Transformer (ViT). 
ViT utilizes self-attention between image patches to process visual 
information. This experiment uses the ViT base Model, an 
advanced deep-learning algorithm, to overcome these difficulties. 
ViT not only reduces the computation but also achieves better 
results than CNN. Our experiments with (LIDC-IDRI), include 
different models of medical imaging, such as CT, DX, and CR, 
and consist of 244,527 images. The proposed model evaluates the 
cancerous cells in the histopathological images to determine and 
detect PPB disease. From the result of the experiment, the 
efficiency of the proposed ViT model is verified and compared 
with other traditional clinical models and the DCNN model to 
evaluate the performance. The outcome shows that the accuracy 
and sensitivity of the method proposed in this research reach 
99.47% and 99.9% for the medical imaging dataset.  

I. INTRODUCTION 

Childhood cancer can be devastating and result in an 
overwhelming amount of concern and sadness for their 
families, friends, and even their communities. The American 
Cancer Society (ACS) reports that cancer is still the second 
most common cause of death in children aged fifteen and 
under [1]. In 2023, an estimated 9,910 children were 
diagnosed with cancer in the USA, and an estimated 1,040 
children died from this disease [1]. The number of patients 
continues to rise yearly, as we unfortunately continue to lose 
many of our lovely and valuable children. 

This ongoing issue underscores the need for faster and 
more accurate diagnostic equipment, as early detection 
significantly improves cancer treatment outcomes and survival 
rates [2]. Regrettably, almost 50% of cancer patients receive 
their diagnosis in advanced stages, when the cancer has 

already metastasized [3]. Early detection needs to be 
incorporated into health care systems to result in evidence-
based early treatments, either to help slow the disease spread, 
cure it, or significantly affect survival. Thanks to the ever-
deepening biological understanding and the rapid 
advancement of technology [2], researchers have reached a 
turning point in the study of early cancer diagnosis and its 
application to the goal of early curative therapies and 
improved cancer survival: computerized diagnosis. 

Computer-aided diagnosis (CAD) systems, also called 
computer-aided detection (CAD) systems, assist in clinical 
diagnosis by doctors who may sometimes fail to detect disease 
early using conventional methods. This new technology helps 
address a challenging problem in oncology: pediatric lung 
cancers. Pleuropulmonary blastoma (PPB) primarily affects 
newborns and young children and forms in the lung's tissue 
and covering. It is tough to identify early based solely on 
imaging investigations, and clinical signs might be previously 
challenging due to the extensive range of possible differential 
diagnoses [4]. Since their accuracy is relatively poor, we need 
to improve the diagnostic accuracy of various CAD models, 
such as radiotherapy, image processing, and monotherapy.  

In computer science, artificial intelligence (AI) and its 
branches, which are machine learning (ML) and deep learning 
(DL), have made a difference in the field of cancer diagnosis. 
AI is gaining popularity in enhancing patient outcomes and 
medical precision. It is currently being used to predict and 
automate the diagnosis of various types of cancer. Machine 
learning allows computers to learn from training data. ML has 
demonstrated significant predictive power for multiple 
cancers, including brain, liver, prostate, breast, and lung. ML 
techniques were integrated with medical imaging, and the 
result was a commonly used method for cancer diagnosis. 
With feature extraction as the initial stage, several strategies 
were researched and applied for various kinds of cancer [5]. 
Nevertheless, feature extraction methods have limitations that 
delay CAD system performance improvement. Recent 
emphasis has been on representation learning instead of 
feature extraction [6] [7]. 

Deep learning is a representation-learning technique that 
generates high-level feature representations from raw images 
[7]. It has achieved enormous success in many fields using 
Graphic Processing Units (GPUs) for massive parallel 
architecture. For example, convolutional neural networks 
(CNNs), one of the most common deep learning algorithms 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 782 ----------------------------------------------------------------------------



used in oncology, have shown promise in different types of 
pediatric cancer [8]. Hence, this research aims to provide an 
overview of popular new deep learning models that detect and 
diagnose PPB. 

PPB is the leading cause of hereditary pediatric lung 
cancers arising from tissues lining the lungs and chest cavity 
(pleura) or pulmonary structures [9]. This is a highly 
aggressive and rare pulmonary malignancy that primarily 
occurs in children younger than six years old [10], and it is 
often incorrectly characterized as a respiratory tract infection 
until it progresses to the easily treatable stages. PPB can 
spread to adjacent organs through blood like other types of 
cancer [11].   

According to the World Health Organization research, the 
classification of lung tumors is based on the histologic types 
and their subtypes. Histologic types include epithelial tumors, 
lymph histiocytic tumors, mesenchymal tumors, tumors of 
ectopic origin, or metastatic tumors. There are three types of 
PPB, including type I, type II, and type III, representing the 
purely cystic, mixed cystic solid, and purely solid [12] [13]. 
The detection and diagnosis of PPB types vary because Type I 
appears as the cystic without a nodular, Type II as the tumor, 
and Type III as the solid with no cystic [14]. Owing to the 
diversified appearance of PPB in childhood, researchers and 
clinicians need to discriminate the disease among various solid 
and cystic lung masses. Type I tumors progress over time, 
resulting in mutating to type II and type III tumors. 

Identifying and diagnosing PPB poses challenges due to 
its similar patterns in related diseases. Children with PPB may 
exhibit atypical clinical symptoms such as shortness of breath, 
respiratory distress, flushing, and fever, often misdiagnosed as 
respiratory tract infections, pneumothorax, or pneumonia [15] 
[16]. In such cases, a chest radiograph is the standard imaging 
examination performed upon admission to diagnose this lung 
inflammation-like condition [15]. Chest radiographs often 
show reduced lung transparency, frequently misdiagnosed as 
pneumonia when combined with the children's symptoms [17]. 
Chest CT scans help diagnose PPB but provide limited 
diagnostic information [17]. Physicians [13] have examined 
the medical history, histopathology, and multimodal 
radiological features to identify PPB among various tumors. 
Observing the related malignancies in the same patient or their 
blood relatives, scientists have determined the association 
between the PPB and similar malignancies to help differentiate 
benign and malignant tumors. Early identification and precise 
differentiation of PPB are essential for accurate diagnosis and 
efficient treatment. 

Computer vision is a rapidly growing image processing 
field involving automatic object recognition. Deep CNN has 
been beneficial in various fields like video processing, object 
recognition, and many more. With large datasets and hardware 
availability, innovative concepts like activation functions, 
regularization, optimization, and architecture have improved 
CNN performance [18]. New architectures have significantly 
increased the capacity for deep CNNs, enhancing computer 
vision [18]. Many pre-trained DL models such as VGG16, 
ResNet, DenseNet, and EfficientNet were based on CNN 
architecture that was trained on large image datasets and has 

dominated the expansive field of image recognition and 
computer vision tasks. The learned features of pre-trained 
models are a good starting point for significantly accelerating 
many custom vision applications, including disease detection 
and prediction. It is necessary to improve their interpretability 
and explainability to achieve real-time diagnosis using deep 
neural network traditional lung cancer detection models. 

Despite the advantages, CNN models fail to capture the 
global or sequential correlation of objects in the images due to 
the inability to examine the long-term dependencies in the 
photos. To address these constraints, many DL applications 
extensively demonstrate a new type of deep learning system 
called vision transformer (ViT) architecture. It has been 
proven to work better than CNNs in tasks involving image 
classification, such as predicting non-small cell lung cancer 
(NSCLC) [19]. CNNs use a sequence of layers to extract 
features from images, whereas ViT uses a self-attention 
mechanism to look at the whole picture simultaneously. This 
helps ViT to understand big-picture connections in images and 
make more accurate predictions. Moreover, the Vision 
Transformer design can handle many parameters and be 
trained on extensive datasets, making the model more 
accurate. Using ViT allows for more than just looking at the 
position of the pixels; it also looks at how the pixels are 
related. 

Furthermore, a ViT [20] [21] has been formulated for 
sequential image classification to recognize long-term 
dependencies in the image and emerge as a potential 
alternative to CNN. ViT has demonstrated its capability to 
learn high-quality image features and encode long-range 
dependencies of images. After seeing significant improvement 
in transformer models in natural language processing (NLP), 
which use self-attention mechanisms to model dependencies 
between words in a text, transformer architectures have been 
increasingly applied to computer vision (CV) applications. 
During the analysis of medical images, transformers play a 
vital role in various tasks of clinical applications, such as 
image reconstruction, image segmentation, image captioning, 
disease detection, and disease diagnosis [22] [23]. 

The diagnosis of childhood lung cancer, or PPB, can be a 
difficult task as early and accurate detection is challenging. 
Symptoms of PPB can be like other lung conditions, 
complicating the diagnosis process. Manually interpreting 
medical images can be slow, error-prone, and vary between 
observers. 

Unfortunately, there is a lack of research on applying 
advanced sensing technologies to detect PPB early. Current 
models for diagnosing PPB suffer from lower detection 
accuracy, poor generalization, inadequate labeled data, data 
scarcity, high tumor variability, insufficient capturing of 
potential patterns, lack of attention mechanisms in CNN 
models, and difficulties in classifying benign and malignant 
patients at an early stage due to the complex patterns of inputs. 

Addressing these challenges is crucial to enhancing the 
analysis, performance, and reliability of PPB detection. More 
importantly, there is a significant research gap in directly 
addressing the early detection of PPB using advanced 
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technologies like DL models. Studies have shown that various 
sensors can detect different compounds with remarkable 
sensitivity. However, these technologies still need to be 
applied to improve the early diagnosis of PPB, presenting an 
opportunity for future research. 

Further investigation is necessary to identify and overcome 
these obstacles, which will pave the way for the future of PPB 
detection. This can lead to a more precise discrimination and 
evaluation of a significant portion of PPB analysis with 
improved sensitivity, specificity, and accuracy. 

The study uses medical image data to assess the potential 
of vision transformers (ViTs) in classifying pulmonary 
perivisceral nodules (PPB). The integration of ViTs in medical 
imaging presents an exciting opportunity for improved PBB 
detection. The research involves experiments with a pre-
trained ViT model from PyTorch to determine its effectiveness 
in feature extraction and fine-tuning on large datasets. 
Customizing deep learning models is a critical aspect of the 
study, which includes preprocessing patient scans by 
converting them to grayscale, resizing, and standardizing using 
familiar image transformations. The dataset is then divided 
into training and validation sets for input into the ViT 
architecture, which consists of convolutional, attention, 
feedforward, normalization, and classification layers arranged 
in an encoder-decoder structure. The study also focuses on 
critical hyperparameters such as the AdamW optimizer, cross-
entropy loss, and a batch size 32 for gradient updates. 

The main objective of this research is to apply a new 
advanced deep learning model called vision transformers 
(ViTs) to identify and overcome these obstacles, which will 
pave the way for the future of PPB detection. Deep learning 
can lead to more precise discrimination and evaluation of a 
significant portion of PPB analysis with improved sensitivity, 
specificity, and accuracy. Overall, we emphasize that our 
research objectives are improving the analysis and 
performance of detection PPB at an early stage and comparing 
our proposed model with existing models. 

II. LITERATURE REVIEW

Approximately half of the studied individuals used new 
teaching approaches, such as medical image analysis and VIT, 
to aid them. Accurately capturing global relations and context 
is paramount in medical image analysis. To achieve this, we 
need a tool that excels in this area. Therefore, this is where the 
ViT comes in - its unique capabilities make it the perfect 
solution for accurately capturing global relations and context 
in medical image analysis [24].  

PPB diagnosis and imaging techniques are a vital area of 
research. In this regard, we aimed to examine some of the 
diagnostic methods currently used for PPB and imaging 
techniques. Our analysis revealed the nature of PPB, and the 
need for more sophisticated diagnostic tools in the healthcare 
field was apparent [25]. We also looked at a study by Shao and 
colleagues [26], who used a SEER database to explore rare 
malignant pulmonary tumors in children and adolescents. The 
research highlighted the significant impact of histology, 
differentiation grade, surgery, TNM stage, and therapeutic 

modalities on survival rates. The authors recommended 
increasing treatment experience for each tumor type to 
improve evidence-based practices. [26]. 

In 2021, Kunisaki and colleagues [27] studied pediatric 
lung lesions and their potential risk factors, focusing on 
pleuropulmonary blastoma (PPB). They used data from 521 
databases across 11 pediatric hospitals in the US and 
employed a multivariable logistic regression algorithm to 
assess PPB's characteristics and risk factors. The algorithm 
was also applied to CT scans to enhance the detection of 
malignant PPB. The study showed that CT scans are 
ineffective in detecting malignant PPB, with a sensitivity rate 
of only 33.3%. However, the specificity rate is high at 98.8%, 
which is usually accurate when the scan indicates the absence 
of malignant PPB. The positive predictive value is 71.4%, 
meaning that when the scan shows the presence of malignant 
PPB, there is a moderate chance that it is accurate. The 
negative predictive value of 94.1% suggests that when the 
scan indicates the absence of malignant PPB, there is a high 
chance that it is correct. 

The research group focused on the early diagnosis of PPB 
through various diagnostic tests and imaging methods. These 
imaging techniques include MRI, CT, and other commonly 
used methods for diagnosing PPB [28]. Engwall-Gill et al. 
[29] meticulously analyzed 477 CT scans and identified 40 
cases that required extensive review. This research highlights 
the importance of thorough and accurate medical scan 
analysis, underscoring the need for continued research. The 
study found 9 cases (23%) had pathologically confirmed cystic 
PPB. The sensitivity of CT in detecting PPB was 58%, and the 
specificity was 83%. The overall accuracy rate for 
distinguishing benign and malignant lesions was 81%. 
Furthermore, these sources also introduced changes to allow 
for the appropriate diagnosis of PPB, the inconveniences of 
having to differentiate Pleuropulmonary Blastoma from other 
lung diseases, and the need to combine the image-based 
findings with the genetic information to have a complete 
diagnosis and appropriate treatment recommendations. 

The groundbreaking discovery by Vu et al. [30] regarding 
the first-ever known case of type III late-stage PPB in a 
developing fetus has significantly contributed to the field of 
prenatal diagnosis. While deep learning models have been 
extensively studied, there is also a growing body of research 
on using VITs for diagnosing PPB. However, the literature 
still needs more exploration on how VITs can improve early 
detection rates and accurately diagnose more individuals with 
PPB. This study aims to bridge this gap by evaluating the 
potential of VITs to aid in developing more effective PPB 
detection techniques with utmost confidence. 

To distinguish PPB from other medical conditions, 
doctors usually tend to apply advanced neural networks, 
specifically CNNs, containing state-of-the-art artificial 
intelligence capabilities that have accurately been proven to 
identify visual data patterns such as image classification and 
segmentation [31]. Different stages are involved in detecting 
PPBs; the first step would be gathering medical images 
marked with labels specifically related to PPBs [32]. These 
images can be found on websites like CT scans or 
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Histopathology. Bandi and Santhisri [33] used deep CNN with 
CT images and the DICER1 gene to classify PPB with 98.67% 
accuracy in CT image classification and 96% in DICER1 
DNA analysis. Moreover, Helm et al. [34] employed CAD to 
discern pulmonary nodules on chest CT scans in the pediatric 
population. The study aimed to identify the efficacy of CAD in 
detecting pulmonary nodules in children and its feasibility as a 
tool for pediatric radiologists. Also, Tu et al. [35] and Chen et 
al. [36] applied machine learning algorithms to distinguish 
between harmless and malignant lung nodules on chest CT 
scans [35] and PET/CT scans [36].  

For ViTs to be effective, they require large datasets. Amin 
et al. used the ISBI 2019 dataset containing thousands of 
images. Still, we need to refine it further. Research has shown 
that ViTs can be used to diagnose acute lymphoblastic 
leukemia (ALL) by sharing code and achieving an accuracy of 
83.5% [37]. Priscilla and colleagues [38] reached 88.4% and 
86.2% classification accuracies on an acute lymphoblastic 
leukemia dataset of 12,528 samples using the Vision 
Transformer and convolutional neural network models, 
respectively. Also, Tummala et al. successfully showed that 
The ViTs ensemble model has established an impressive 
performance in classifying brain tumors from MRI scans at a 
resolution of 384 × 384 [39]. It has achieved an overall test 
accuracy of 98.7% and a specificity of 99.4%, which is either 
at par or better than the previous CNN models [39]. Hence, 
using an ensemble of finetuned ViT models, computer-aided 
diagnosis of brain tumors from MRI can reduce the burden on 
clinical radiologists. Moreover, Liang and Zheng [40] utilized 
a transfer learning model to diagnose childhood pneumonia by 
using the ChestX-ray14 dataset. As a result, the experiment 
results show that the recall rate is 96% and the f1-score is 
92.7%. 

Research on diagnosing the rare pediatric lung 
complication PPB collectively highlights the challenge of 
obtaining an accurate and timely diagnosis. This study 
addresses the inherent difficulties of PPB diagnosis, especially 
its diverse and complex underlying images. The study's 
primary aim is to tackle the research difficulties related to PPB 
that have been thoroughly discussed, including enhancing 
imaging methods and developing new diagnostic procedures to 
ensure precise patient diagnosis [41]. The primary objective is 
to improve early detection methods and refine strategies for 
managing this rare malignancy. In screening trials, the primary 
aim is to determine whether different imaging techniques, such 
as CT scans, can differentiate PPB from other pulmonary 
complications [42]. Moreover, this study attempts to define 
radiologic and histopathologic subtypes based on three 
different classification methods expressing this highly 
complex disease. 

III. DATASET

The LIDC-IDRI [43], [44] is a collection of different 
image modalities, such as thoracic CT (computed 
tomography), CR (computed radiography), and DX (digital 
radiography) images, that have been annotated to detect 
lesions, providing a valuable resource for the development, 
training, and evaluation of computer-assisted diagnostic 

methods for lung cancer detection and diagnosis. This dataset 
includes 244,527 images with a total image size of 125GB.  

In total, it contains 1,018 cases with scans. Each case 
typically has images from a clinical thoracic scan of a single 
patient. Multiple radiologists annotate the scans to mark any 
observable lung nodules and rate their characteristics. This 
provides "ground truth" labels and diagnosis data for machine 
learning algorithms. Both malignant and benign lung nodules 
are included, along with non-nodule abnormalities. Approx 
60% of cases have ≥ one nodule ≥ 3 mm. The dataset is one of 
the largest publicly available collections of lung scans with 
annotations. This makes it very valuable for research into 
computer-aided diagnosis of lung cancer. 

IV. PROPSED MODEL ARCHITECTURE

Fig. 1 depicts the architecture of the proposed model. 
Before applying our proposed model, we must prepare our 
medical dataset. This system's proposed structure comprises an 
initial section that applies patches to the input images, a 
middle section that employs a multilayer Transformer encoder, 
and a concluding section that converts the resulting global 
representation into the output label. In our approach, each trial 

Fig. 1. Proposed model architecture 

will run using the Vision transformers ViT, a base model with 
16 × 16 image patch size (ViTb_16) architecture and will be 
provided in the torchvision package in PyTorch. However, we 
do some modifications on the original base ViT, such as 
replacing the multilayer perceptron (MLP) head with a linear 
layer for binary classification.  Also, utilizing a pre-trained 
network, we will then analyze the effectiveness of the network 
when using it just as a feature extractor. This research employs 
a highly effective transfer learning method that fine-tunes pre-
trained models on the model architecture to increase accuracy. 
Our approach yields superior results by leveraging the pre-
trained ViT model from torchvision and refining it on the 
LIDC-IDRI dataset while freezing the base layers and 
modifying the new classifier layer. The pre-trained ViT Base-
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16 model is optimized to provide the mean for the unique 
representation, making it an exceptional choice for this work. 

A. Patch embedding 

The initial step in executing a ViTb-16 model entails 
dividing every image in the input dataset into a constant 
number of patches. These patches are subsequently projected 
linearly with the aid of learnable positional embeddings that 
facilitate the identification of the patch sequence. Following 
this, we utilize a transformer encoder and a novel 
classification linear layer for conclusive classification, as 
depicted in Fig. 2. 

In the first step, the input image is divided into 
nonoverlapping patches because a transformer takes a 1D 
sequence of the token as input. Since images are usually in 2D 
format, to handle them, if we consider an input image X of 
size (H, W, C), Where H = image height, W = image width, C 
= number of channels (e.g., 3 channels for RGB), is embedded 
into a feature vector of shape (n+1, d), following a sequence of 
transformations. This corresponds to equation (1). 

Where: 

To calculate N, specifying height (H) and width (W) both as P, 
distinct image patches of size P x P as in (2). 

B. Transformer encoder 

Sequence Z0 passes through a transformer encoder 
architecture consisting of multiple blocks. Each block contains 
three major processing elements: layer norm, multi-head self-
attention (MSA), two layers of multi-layer perceptron (MLP), 
and residual connections in between, as shown in Fig. 1. 

Layer normalization is essential for stabilizing the 
dynamics of hidden states and reducing training time. It 
utilizes the scaling process's mean and standard deviation for 
each training example. The resulting features undergo 
multiplication by a scaling factor and addition to a shifting 
factor, both of which are trainable during the training process. 
This feature enables the independent normalization of input 
data within a given batch. It is not reliant on batch size, 
making it suitable for various batch sizes. 

Residual connections provide alternative paths for 
gradients, effectively resolving the problem of vanishing 
gradients in very deep architectures. 

The transformer model's multi-head self-attention (MSA) 
mechanism is highly effective for identifying significant image 
multiple regions, mainly for detecting lesions. It utilizes 
multiple attention mechanisms in parallel, each with its 
parameters. The MSA layer is based on the self-attention 
mechanism, enabling the model to assess the importance of 
different image regions when making predictions. 

By generating attention maps from embedded visual tokens, 
MSA can calculate the most relevant patches and discard the 
irrelevant ones. MSA consists of four layers: linear, self-
attention, concatenation, and multiple heads that combine the 
output. Attention weights represent the attention mechanism 
calculated from a weighted sum of the sequence's values. The 
input sequence generates Q (query vector), K (key vector is 
number of heads), and V (value vector) three values by 
multiplying the elements (Q, K) with three learning matrices 
UQKV, making MSA an exceptional tool for identifying key 
features in data. To calculate the importance of one element 
concerning others in each input sequence, the value of the Q 
vector is multiplied by the dot product with the K vectors. The 
result is then scaled and passed to the SoftMax activation 
function to determine the high attention score patch's 
importance, as given mathematically in equation (3). 

The Multi-Head Self-Attention (MSA) mechanism 
utilizes a collection of attention heads h instead of relying 
solely on individual values of Q, K, and V. By concatenating 
the outputs of each SA and projecting them through a feed-
forward layer with learnable weights W, the MSA achieves 
robust and optimal feature selection.  

Multi-layer perceptron (MLP) is an artificial neural 
network with multiple layers of artificial perceptron or 
neurons. It operates as a feedforward network, with 
information flowing linearly from the input to the output layer. 
The activation function for neurons in neural networks is the 
Gaussian Error Linear Unit (GELU), which is an activation 
function defined as f(x) = x * Φ(x), where Φ is the cumulative 
density function of a standard normal distribution. GELU is 
used to weigh the input layer. 

MLP is a two-layer classification network with GELU at 
the end. The final MLP block, the MLP head, is the 
transformer's output. Applying SoftMax to this output can 
provide classification labels. After the patch embedding, the 
location and class embeddings are merged and fed into the 
transformer encoder. The resulting output of the transformer 
encoder is then processed by a structural system that includes 
an MLP unit. This unit incorporates an activation function and 
a fully connected layer, with the GELU (Gaussian Error 
Linear Unit) being the chosen activation function, as shown 
in (4). 

C. Linear classifier layer 

The base ViT architecture ends with an essential MLP 
head as a classification head.  However, our proposed model 
replaces the MLP head classifier with a linear layer for binary 
classification.  It consists of one hidden layer during pre-
training and a single linear layer in the fine-tuning stage.  We 
derive the model's input from the state of the classification 
token, located at the output of the Transformer encoder. The 
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resulting output of the model comprises a sequence of logits, 
which confidently correspond to two different classes (class 0 
and class 1). It has an out_features dimension equal to the 
number of classes in the small dataset. 

The initial element ZL
0 in the sequence is confidently 

directed to an external head classifier in the final layer of the 
encoder to predict the class label accurately. The output 
feature map ZL from the top transformer encoder layers LX is 
projected into a class probability distribution using a SoftMax 
over learnable linear classifier weights, as in (5).  

D. Pretrain proposed model 

Our model is explicitly trained for object detection and 
classification, enabling it to learn the features of objects in its 
training dataset successfully. Pre-training makes it highly 
adaptable to related tasks. As a result, our model trained to 
identify the presence of a mass or tumor in an image can be 
easily fine-tuned to identify infected or uninfected samples. 
Our model is pre-trained with image labels, a supervised 
model on a vast collection of 1.2 million images and 1k 
classes called ImageNet-1k, using the torchvision model. We 
use transfer learning, in which the pre-trained encoder layers 
remain fixed. As shown in Figure 4, we unfreeze (train) all the 
encoder model and classification layers (For pre-training, a 2-
layer MLP is used). These layers learn robust and general 
features from a large dataset such as ImageNet. To prepare the 
images for the ViT models, we create a data pipeline that 
performs various transformations, including resizing them to 
256 x 256 using interpolation=InterpolationMode.BILINEAR 
and apply a central crop of 224. We then convert them to 
tensors, rescale them to a range of [0, 1], and normalize them 
with a mean of [0.485, 0.456, 0.406] and a standard deviation 
of [0.229, 0.224, 0.225]. 

E. Fine-tuning proposed model 

Fine-tuning a vision transformer model is a crucial step 
that involves adapting a pre-trained model to a large-scale 
dataset and refining it for smaller downstream tasks. This 
process effectively utilizes the knowledge and representations 
learned by the pre-trained model, resulting in significant 
savings in both time and computational resources. During this 
step, the pre-trained step allows the model to utilize the 
knowledge learned during pre-training while allowing the new 
task-specific linear layer to be trained from scratch or fine-
tuned on the target dataset, the LIDC-IDRI dataset by freezing 
the base layers and modifying the classifier layer. During fine-
tuning, it is generally advisable to use a higher resolution than 
the one used for pre-training. This approach is unique in 
transfer learning, which leads to much more significant 
performance metrics and analysis of classification PPB. 

V. EXPERIEMENTS AND DISCUSSION 

A. Implementation details 

All experiments in this paper were conducted on an Intel 
Core i9 24-Core, 13th generation processor with 2.2 GHz 
speed, 32 GB RAM, and an NVIDIA GeForce RTX 4080 

GPU with 12 GB Graphics Double Data Rate 6. We used 
PyTorch, the most popular framework for implementing ViT, 
as the framework in this study. 

B. Preprocessing medical images(data setup) 

The first step in the data preparation process is to combine 
the file paths pointing to the lung scan images with unique 
subject identifiers for each scan. This metadata is compiled 
into a CSV file called metadata.csv. Next, the actual DICOM 
medical image files are loaded. These DICOM images contain 
the raw pixel data from the scans. This data then goes through 
a conversion and preprocessing step - the pixel values are 
transformed into a grayscale 8-bit image compatible with 
machine learning algorithms. Data augmentation techniques 
from the torchvision library are also applied to expand the 
diversity of the training data. Finally, the preprocessed scan 
images are saved as JPG files. The output is another CSV file 
called image_data, which contains the file paths linked to each 
preprocessed scan image, ready for input into the vision 
transformer model. Some of the image examples from the 
output image_data are shown below in Fig. 2. In summary, the 
data preparation converts the raw medical images into a 
standardized, augmented format that facilitates training. 

C. Splitting dataset 

We confidently load the original input images into 
training and validation Torch data loaders with an 80/20 split, 
80% for the training data loader and 20% for the Test data 
loader, as in Fig. 2. The input image goes through the data 
loaders, which apply the necessary transformations of resizing 
and normalization specified by the auto transforms obtained 
from the pre-trained ViT model's weights. 

Fig. 2. Data preprocessing output images 

D. Training process 

The training process is initiated using the engine. Train 
function. It initially trains the model for a single epoch, which 
means it processes the entire training dataset simultaneously. 
During training, the model learns from the data and updates its 
parameters to minimize the loss. The cross-entropy loss 
function is used during the training process, with the 
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initial learning rate set to 0.00001, and the AdamW optimizer 
is utilized. We set the batch size of the model to 32.  The 
training time complexity is very high, so we have set the 
epochs to 50 to train the model as shown in Fig. 3. Also, 
during training, the model learns from the data and updates its 
parameters to minimize the loss. The training process updates 
the weights of the classifier layer we added to the pre-trained 
ViT model so it can accurately predict the target classes. We 
first define the loss function and optimizer. Cross-entropy loss 
is used as a standard for classification tasks. It measures the 
divergence between predicted class probabilities and proper 
labels. The AdamW optimizer adjusts the learning rate of each 
weight based on the gradient magnitude. Regularization is 
used to prevent overfitting. We set manual seeds to ensure 
reproducible results across runs. Then, we start a timer to track 
the total training time—the engine. The train function handles 
the training loop. On each epoch, it iterates through the entire 
training set in batches. For every batch, predictions are made 
and compared to the actual labels to compute the loss with 
cross-entropy. Gradients are calculated by backpropagation to 
determine which weights contributed most to the loss. Using 
these gradients, the AdamW optimizer adjusts the classifier 
weights slightly to reduce the loss. After every epoch, it 
calculates training, validation, loss, and accuracy statistics to 
monitor progress. During training for one epoch, we use early 
stopping if overfitting occurs. 

The training process uses the loss as a feedback signal to 
tune the classifier weights for optimal performance on the 
validation data. This continued adjustment slowly builds a 
specialized mapping from images to predicted classes. 

E. Model evaluation 

After training the vision transformer model for PBB 
detection, as in Fig. 3, systematic quantitative analysis was 
done to validate real-world effectiveness. The proposed 
research work evaluates performance across several key 
metrics. First, a confusion matrix categorizes predictions as 
true/false positives/negatives. This underpins accuracy, i.e., 
the percentage of total correct predictions. While valuable, 
accuracy alone can be misleading if positive/negative classes 
are imbalanced. Additional class-specific metrics are 
calculated.  

Precision reveals the percentage of correct PBB 
detections. High precision signifies that most identified 
regions represent actual PBB cases, not false alarms. 
Maximizing precision minimizes the time doctors waste 
investigating incorrect malignant warnings. However, high 
precision could come at the cost of missing PBB cases. 

Therefore, recall, or sensitivity, is assessed - the 
proportion of total PBB cases correctly detected. Higher recall 
means fewer missed PBB cases, critical for lifesaving early 
diagnosis. However, maximizing recall risks overdiagnosis 
and overtreatment if some detections are wrong. 

The F1 Score balances precision and recall into a singular 
metric critical for imbalanced classes. In the results, the F1 
Score is 0.9967, indicating high precision without much PBB 

case detection miss rate, achieving a superior outcome. Since 
incorrectly flagged healthy patients as having cancer causes 
psychic trauma, specificity evaluation is prudent. Specificity 
measures the proportion of correctly cleared negative cases. 
Specificity causes false alarms, whereas high specificity 
assures truly healthy patients. Here, specificity is lower at 
0.730, suggesting room for improvement in reducing false 
positives. 

Finally, the ROC curve evaluates discrimination ability 
across all sensitivity/specificity levels attainable by adjusting 
the decision threshold. The area under this curve (AUC) 
provides an aggregate measure of model viability. An AUC of 
1 represents perfect classification. The curve and AUC 
supplement the other metrics to deliver a comprehensive big-
picture analysis.  

In totality, multi-angle evaluation assesses real-world 
utilization accuracy, reliability in precisely detecting tumors, 
avoiding false alarms, and robustness against variability. 
Thorough vetting on varied factors inspires confidence in 
applying the model clinically to aid doctors in efficient and 
accurate PBB screening to save lives. 

Our proposed model's effectiveness was evaluated using 
recall, F1 score, precision, and accuracy metrics. True positive 
(TP), false positive (FP), true negative (TN), and false 
negative (FN) examples are used to calculate the metrics: 

 True Positive (TP): when both the actual and
anticipated labels are positive.

 False Positive (FP): When the expected label is
positive, but the actual label is negative.

 True Negative (TN): When the projected and correct
labels are negative.

 False Negatives (FN): They are labels projected to be
pessimistic but optimistic.

 Accuracy: This evaluation statistic identifies the
model's overall performance. It is the ratio of the total
number of predictions to the total number of correct
predictions, as in (6).

 Precision: This evaluation metric computes the
proportion of all positive samples over the total of
positive samples that were correctly or incorrectly
categorized, as in (7).

 Recall: This assessment metric determines the
proportion of all positive samples over the number

of correctly identified positive input samples, as in (8). 
Recall, also known as Sensitivity, is the valid positive 
rate. 
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 Specificity: This is another critical metric for
evaluating classification models, particularly binary
classification. It measures a model's ability to correctly
identify negative instances, as in (9). Specificity is also
known as the True Negative Rate.

 F1-score: This evaluation metric combines precision
and recall while giving false positives and negatives
more weight to determine the model's accuracy,
as in (10).

F. Results 

As in Fig. 4, we are pleased to present the results of our 
proposed model's performance evaluation, which 
demonstrated that our model is a reliable and accurate tool for 
identifying positive and negative instances. Our results 
indicate that our model correctly identified 43,116 cases of 
PPB, as in Figure 5, with a high precision rate of 99.78%. In 
addition, our model successfully identified almost all (99.89%) 
of the actual PPB cases, with an overall accuracy of 
approximately 99.37%. The F1 Score, the harmonic mean of 
precision and recall, indicated a good balance between the two 
metrics, providing additional confidence in the model's 
performance. Furthermore, the area under the curve (AUC) 
value of 0.99, as in Figure 6, representing the model's 
discrimination ability across all sensitivity/specificity levels, 
provides an aggregate measure of the model's viability. This 
value indicates that our model is reliable for accurately 
identifying positive and negative instances. We are confident 
that our proposed model's performance evaluation provides a 
comprehensive big-picture analysis of its reliability, accuracy, 
and viability and will help identify positive and negative 
instances in the future. 

G. Comparison of the proposed model with state arts 

Though the DCNN [33] model shows promise for 
improving PPB diagnosis, potentially leading to earlier 
detection and better outcomes for children, it fails to deliver 
with larger and unbalanced datasets. The ViT model has 
several advantages over it. Here is a comparison of some of 
the critical benefits of using a ViT over a CNN model for PBB 
detection: 

1) Better modeling of global context: The self-attention
mechanism in ViT models enables modeling longer-range 
dependencies in images. This allows for better incorporation 
of global context, which is crucial for medical image analysis. 
CNNs have a more localized receptive field. 

2) Reduced need for data augmentation: ViT models
are more robust to variations in input data, so they require 
fewer intensive data augmentation. The tokenization 
process also makes them invariant to low-level input 
transformations. 

3) Enhanced transfer learning: Pre-trained ViT models
can be fine-tuned with much less medical data and provide 
better feature representations. They offer more flexible 
generalizations compared to CNNs. 

4) Reduced overfitting: The attention layers have fewer
parameters, reducing the chance of overfitting, especially with 
smaller medical imaging datasets. ViTs generalize better with 
less tuning. 

5) Interpretability: The attention weights provide some
level of interpretability, allowing visualization of imaged 
regions that contribute most to predictions. This supports 
model transparency for medical use. 

ViTs capture more meaningful global context, are more 
robust to image variations, provide effective transfer learning, 
avoid overfitting, and offer model transparency—all valuable 
attributes for analyzing complex medical scans like PBB 
detection. With the appropriate fine-tuning, ViTs can 
outperform conventional CNN models. 

Table I compares proposed and existing DCNN models 
for detecting PPB using medical imaging. The vision 
transformer model achieved a precision of over 99.47% and a 
recall of 99.9% in identifying actual positive cases of PPB 
from the scans. The high F1 score of 0.99 further highlights 
the balance between precision and sensitivity achieved by the 
model, even for an imbalanced dataset. 

TABLE I. PERFORMANCE COMPARISON OF CURRENT AND EXISTING  
MODELS 

Models Total 
Images 

Recall, 
Sensitivity 

Accuracy 

DCNN 500 98.34 98.67 
Proposed Model 
(ViT) 

2,45,000 99.89 99.37 

Fig. 3. Training and testing loss and training and testing accuracy over 50 
epochs 
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Fig. 4. Performance summary of Vit model 

Fig. 5. Confusion matrix of evaluation model 

Fig. 6. ROC curve of the proposed model’s performance evaluation 

VI. CONCLUSION

The research focuses on applying the Vision Transformer 
(ViT) architecture for medical image classification, 
specifically for detecting PPB detection. The process involved 
several vital steps that demonstrated both the versatility of ViT 
models and their ability to achieve high performance on 
specialized tasks. The result was achieved with intelligent data 
preprocessing, which prepared the raw DICOM medical 
images for the model by converting them to standardized JPG 
files. This enabled the ViT model to ingest and interpret the 

data. Additional data splitting created dedicated training and 
test sets to evaluate model performance properly. The model 
implementation leveraged a pre-trained ViT network, 
demonstrating the power of transfer learning for medical 
applications where training data may be limited. By utilizing 
strong baseline feature representations known on natural 
images, the model could generalize effectively to PBB 
detection. The high-test accuracy increased above 99% after 
50 epochs. The F1 score of 0.9939 demonstrates the excellent 
balance between precision and recall. The model excels at the 
most crucial task of identifying positive PPB diagnoses. As a 
specialized diagnostic tool, this ability to reliably flag potential 
cases can provide immense value. The proposed work displays 
how modern deep learning approaches like ViT can unlock 
strong performance on niche medical challenges, given careful 
implementation. The model shows immense promise as the 
foundation of a decision support system to aid clinicians in 
PPB detection. The ViT architecture could produce clinical 
impact and improve patient outcomes with further refinement 
of additional data. Further research into model optimization 
and combining radiomic/genomic modalities via neural 
architecture search could improve sensitivity, specificity, and 
efficiency for practical clinical decision support systems. 
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