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Abstract—The quantification of Ki67 proliferation index con-
ducted through immunohistochemistry staining holds significant
importance in histopathology. However, this process has several
limitations, including variability and subjectivity in interpre-
tation, along with challenges in quantification, rendering the
process time-consuming and costly. Consequently, the utilization
of neural network models presents a promising avenue for
enhancing this domain. Yet, the creation of a sizable, high-quality
annotated dataset remains a laborious task for experts. In this
paper, we propose a validation and subsequent improvements
of previously suggested semi-automated approach for generating
Ki67 scores from pairs of hematoxylin and eosin (HE) and
immunohistochemical slides, aiming to reduce the reliance on
expert intervention. This approach integrates image analysis
techniques such as clustering and optimization for tissue reg-
istration. Through the proposed approach and modification of
worklfow, aiming to reduce the variability of the quantification
error on different whole slide images, we annotated HE patches
and conducted multiple experiments to fine-tune ResNet models
for predicting Ki67 scores from HE images.

I. INTRODUCTION

Digital pathology and image analysis are crucial in diag-

nosing various diseases including cancer. This field relies on

high-quality digital scans of tissue samples, typically obtained

as whole slide images (WSIs) using advanced digital scanners.

The evolution of these scanners has facilitated the generation

of vast amounts of histopathology data, which can be leveraged

by machine learning algorithms for numerous tasks, including

tissue specimen classification [1], [2].

Histopathological analysis, particularly of malignant tu-

mors, is typically conducted on thin sections (3-4μm) of

formalin-fixed paraffin-embedded tissues, initially stained with

hematoxylin and eosin (HE). This staining enables the basic

evaluation of tumor morphology, encompassing parameters

such as mitotic activity, invasion of adjacent structures, and

tumor grading.

Certain tumor categories, such as neuroendocrine neoplasias

of the gastroenteropancreatobiliary and respiratory tract, ne-

cessitate immunohistochemical (IHC) analysis of tumor prolif-

eration activity as part of their grading. This analysis involves

utilizing IHC antibodies against the proliferation factor Ki67,

a nuclear protein associated with ribosomal RNA transcription

expressed during the interphase of proliferating cells [3].

In clinical practice, consecutive tissue sections undergo both

IHC and HE staining. This enables pathologists to assess

various tissue characteristics within the same area across

adjacent slides. Acquiring IHC staining is a conventional prac-

tice in clinical settings to ascertain tissue molecular details,

yet it presents several drawbacks. IHC procedures are time-

consuming, costly, and reliant on tissue handling protocols, as

the outcomes are typically expressed through stain intensity,

presence or absence of stain, or the proportion of cells exhibit-

ing detectable stain intensity [4]. Numerous recent studies have

demonstrated a correlation between HE and IHC stained slides

of the same area [4]–[6]. Consequently, it should be feasible

to predict the expression of specific proteins directly from HE

slides.

Training a deep neural network requires an extensive collec-

tion of annotated images of high quality to serve as a training

dataset. WSIs are often too large to be processed fully by

neural networks, they must be segmented into smaller images,

referred to as patches. The complexity of evaluating patches

is significantly high both in terms of the effort required for

creation as well as the expertise of the evaluator.

A. Related works

The topic of automatic or semi-automatic quantification of

Ki67 proliferative expression has been addressed in several

studies. The task of predicting Ki67 cell positivity from HE

images was addressed in [7]. The authors utilized a fine-tuning

approach on ResNet18 using cell-level annotations from HE

images. They employed a point label approach to annotate

cell patches based on homogeneous regions of Ki67 positivity

or negativity. However, their method cannot be applied to

heterogeneous images with mixed positive and negative cells.

Several studies [8], [9] have attempted to train a model that

would automatically be able to detect and classify individual

cell nuclei and determine a Ki67 index based on these counts.

The drawback of this approach is the need for a well-annotated

dataset to train the models. Authors in [10], [11] have ad-

dressed the problem of counting Ki67 positive and negative

cells based on image analysis and unsupervised methods alone.

They utilized color separation and thresholding to detect and

classify nuclei. In addition, researchers in [12] have used hy-

brid cluttering based on segmentation. All of these approaches

use the number of nuclei detected for quantification, which can

be difficult to determine in cases where the tissue is very dense

or the section is thick and it is very difficult to distinguish

individual nuclei in clusters.
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B. Contents of this work

The goal of our research is to create a classification model

for the prediction of Ki67 index from an HE stained image

from semi-automated annotated data. In our research, we apply

image analysis methods to estimate Ki67 index for HE patches

from pairs of adjacent HE and Ki67-stained tissue sections

based on the area occupied by cells not cells count itself.

Our proposed approach offers a significant advantage in that it

necessitates minimal manual annotation by experts. The paper

demonstrates our preliminary results.

The objective of this study is to validate our proposed

semi-automated workflow for annotating HE patches by Ki67

expression and develop a neural network model capable of

classifying Ki67 protein expression from HE images. Initially,

we outline our proposed methodology for semi-automated

dataset creation, followed by a presentation of experiments

conducted in training multiple neural network models for

classification.

The paper is organised as follows. Section II introduces our

annotation process of dataset and model used for classification.

Section III reports applied validation of dataset creation work-

flow together with our preliminary results in classification, and

section IV concludes with future work.

II. METHODS

A. Dataset construction

The data comprised of a 84 pairs of HE and Ki67-stained

whole slide images of seminoma, a testicular tumor, sourced

from the Department of Pathology, Jessenius Medical Faculty

of Comenius University and University Hospital, Slovakia. To

ensure tissue similarity, HE and Ki67 staining were applied

to adjacent tissue sections. Despite slight disparities at the

cellular level, we proceeded under the assumption that tissues

from corresponding regions in both images shared similar

characteristics.

Given the absence of labels in the dataset, it was imperative

to annotate the data first. For this purpose, we adopted an en-

hanced semi-automated methodology inspired by in-press [13],

involving three primary steps: tissue registration, clustering

into primary colors, and quantification of the Ki67 index. Our

scans contain images in 8 resolution levels, marked from 0 to

7 starting with the highest resolution. Due to computational

constraints and the immense size of the scans, we processed

images from level 1, containing the second-highest resolution.

To align the images so that tissues from the same area are in

the same position, predefined pairs of HE and Ki67 keypoints

were used in conjuction with optimization method for finding

best transformation parameters between them. After tissue

registration, K-means clustering with respect to HSV (hue,

saturation, value) colors of the pixels is applied to Ki67 stained

image with resulting centroids representing ”typical colors in

the slide”. Resulting centroids are subsequently divided into

three categories: positive cells (brown colors), negative cells

(blue colors) and background (white colors). In addition to

clustering on HSV space, we applied K-means clustering to

another two color spaces: RGB (red, green, blue) and Lab.

However, according to elbow method, we obtain better results

with HSV color space.

Ki67 indexes for HE patches were derived from corre-

sponding Ki67 patches utilizing image analysis techniques.

Subsequently, each computed Ki67 index was assigned as

the label to the corresponding HE patch, taken from the

same location. An illustrative example depicting an HE patch

alongside its corresponding original Ki67 patch is presented

in Figure 1. The third clustered Ki67 patch was generated as

an outcome of the clustering. These clustered Ki67 patches

were instrumental in estimating the Ki67 indexes, calculated

as a ratio of brown to blue pixels.

B. ResNet18 model

Deep Learning has an important role in Machine Learning

research by incorporating very deep neural networks for solv-

ing many issues, namely in image recognition domain. The

basis of many deep learning architectures is the Convolutional

Neural Network (CNN) [14], a model inspired by biological

neural networks featuring localized connections and weight

sharing.

Architectures of CNNs can be derived from established

networks like VGG [15], Inception [16], or ResNet [17], or

custom-designed to suit specific requirements. Each approach

has its merits and drawbacks. Leveraging pre-trained networks

offers the advantage of utilizing weights acquired from training

on large-scale datasets like ImageNet [18], facilitating transfer

learning and expediting training. Conversely, custom-designed

networks offer flexibility, enabling tailored architectures suited

to dataset characteristics, albeit with potential lower accuracy

when training data are limited.

ResNet is a prominent deep learning architecture built of

residual blocks displayed in Fig. 2. In general, ResNet is

distinguished by its incorporation of ”shortcut connections”,

which streamline optimization and enhance accuracy by ac-

commodating increased network depth. Skip connections also

called identity shortcut connections solve the problem of

vanishing gradient and learning of identity function. In our

study, we adopted a modified ResNet18 architecture for our

CNN classifier. We replaced the classification segment of

the original architecture by incorporating two fully-connected

layers featuring 512 and 2 or 3 neurons (based on classification

task), respectively. Additionally, a dropout with a value of 0.2

was applied to the fully-connected layer with 512 neurons.

(a) Original HE (b) Original Ki67 (c) Recolored Ki67

Fig. 1. Example of patches from dataset used to create annotations
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Fig. 2. Residual block architecture [17]

III. RESULTS

Utilizing the methodology outlined in the Methods section,

we generated an extensive dataset comprising over 90,000

annotated patches, each sized 224x224, extracted from speci-

fied regions of interest (ROIs) across 75 whole slide images.

These ROIs were meticulously selected based on tissue quality,

ensuring the exclusion of patches with black artifacts or

blurriness from the dataset. To closely simulate real-world

model deployment scenarios, we partitioned the dataset into

a training set and two distinct validation sets (VSs). The first

validation set was formed by segregating WSIs themselves,

with seven WSIs earmarked for exclusive use in validation,

mirroring the practical scenario where the model must predict

values for new patients. Meanwhile, the second validation set

comprised 10% of the patches extracted from the training set,

facilitating ongoing training progress tracking and validation

on data unseen but originating from tissues familiar to the

model.

To facilitate machine learning-based analysis on HE and

Ki67-stained slides containing testicular seminoma samples, in

accordance with pathologist recommendations, we established

three distinct thresholds for Ki67 expression: below 20%,

between 20-50%, and above 50% Ki67 expression levels. A

breakdown of patch counts in each class reveals a notable class

imbalance: the below 20% class contained 90,000 patches, the

20-50% class comprised 8,500 patches, while the above 50%

class encompassed fewer than 800 patches.

Given this substantial class imbalance, our initial approach

involved binary classification with the first two classes, which

had sufficient patch counts. To address the imbalance, we

undertook dataset balancing through undersampling, randomly

selecting approximately 10,000 patches from the below 20%

and 20-50% categories for inclusion in the dataset.

Across all experiments, we employed the ResNet ar-

chitecture pre-trained on ImageNet, specifically leveraging

ResNet18. For model training, we utilized the SGD optimizer

(Stochastic Gradient Descent) with both momentum 0.9 and

weight decay 0.0001. All models underwent training for 100

epochs with a batch size of 64 and a learning rate set to 0.001,

unless stated otherwise.

In conjunction with addressing data imbalance, we incor-

porated horizontal and vertical flip data augmentation during

the training process. Several studies [19]–[22] have reported

that when classifying HE images, it is advisable to do stain

normalization of the data, as these can have a very heteroge-

neous range of colors, which makes it difficult for the models

to be able to classify them. This is particularly applicable to

cases where the data were collected from multiple laboratories

or were acquired using different staining protocols, which is

not our case. Despite this, when we look at our data, the

color is very heterogeneous. Therefore, we tried to add color

augmentation to the data with changing brightness, contrast,

saturation and hue values. In this case, we let the model train

longer and applied an early stopping method. We report the

results obtained in Table I, where we can see that on one

hand, any manipulation of the data improved significantly

the accuracy of the models on the second VS. On the other

hand, on the first VS color augmentation brought only small

improvement and classification performance is still poor on

new slides.

A. Quantification Validation

The estimation of quantification was validated on a small

sample of data for which we have empirically evaluated ratios

of positive cells directly from pathologists. This validation

is discussed in more detail in [23]. The weakness of this

validation is that the data to which we apply the semi-

automated approach are significantly different from the data on

which the procedure has been validated as can be seen in Fig.

3. This is due different tissue handling protocol used during

staining. For this reason, it was also necessary to perform the

validation directly on the data that we want to further use for

classification purpose.

The SlideViewer medical software, utilized by pathologists

in clinical practice, offers numerous additional functionalities

for tissue analysis including quantification of tissue IHC pos-

itivity displayed on the screen. Leveraging this, we acquired

a substantial amount of relatively well-annotated data suitable

for validating our proposed Ki67 quantification method. Fol-

lowing parameter fine-tuning by experts to ensure accurate

ratio quantification, this method can be applied to the actual

tissue displayed on the screen, with results exportable. In this

way, we obtained 16 annotated cutous from 6 scans.

After applying the clustering and quantification process to

each cutout separately (as before in dataset construction), we

obtained an average estimation error of 22% with minimum

error 1% and maximum error 50%. The high variance between

the errors on individual images confirmed our assumption that

the low accuracy of the models on the first VS is due to the

clustering and centroid extraction being performed on each

slide separately, so the error is slide-specific.

In order to reduce the dependence of the ratio approximation

error on a particular slide and lower slide-specific bias, we

decided to use the annotations obtained from the experts

to fine-tune clustering, by obtaining centroids from merged

images to be used to recolor and estimate all slides. We divided
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TABLE I. RESULTS OF RESNET18 MODEL WITH DIFFERENT COLOR AUGMENTATION APPLIED FOR BINARY CLASSIFICATION ON DATA WITH SLIDE-

SPECIFIC CLUSTERING

Category split
First validation set Second validation set

Accuracy Precision Recall Accuracy Precision Recall
Original 0.5497 0.5074 0.5097 0.7973 0.7973 0.7979

Brightness, saturation, hue, contrast 0.6180 0.5379 0.5454 0.8530 0.8547 0.8502
Brightness, saturation 0.6271 0.5325 0.5370 0.8348 0.8348 0.8348

Fig. 3. Comparison of Ki67 stained tissue image used for classification (left)
and Ki67 stained image used for validation (right)

the slides from which we had annotated cutouts into ”training”

and ”validation”, similar to training neural networks. From the

training annotated cutouts we selected 10, which we combined

into a single super image over which clustering with K-means

method was performed with K set to 12, 18, 24 and 30. We

then divided the obtained centroids into 3 categories, exper-

imenting with multiple combinations of assigning centroids,

which were difficult to assign into one category at first sight.

In this way, we were able to obtain a distribution of centroids

that produced the lowest error of 13% on both validation and

training cutouts when estimating the Ki67 positivity ratio. We

used these centroids to recolor the entire dataset and obtain

new annotations for the patches that were used to train the

new models described in the classification subsection.

B. Registration Validation

Our proposed data annotation method comprises two pri-

mary phases: registration and quantification. While we were

able to validate the quantification of the Ki67 ratio through

manual annotations and estimations using the medical soft-

ware described in previous section, assessing the accuracy

of registration remained challenging, with visual inspection

being the sole validation method available. Consequently, we

sought to reinforce the correctness of the registration process

by leveraging the accuracy of the classification model.

Given that each pair of patches corresponds to tissue with

similar properties, we expected the CNN to learn the rela-

tionship between them not only on the training set but also

on the validation set. To test this hypothesis, we compared

the accuracy of two models. The first model was trained on

an existing dataset by default, while the second model was

trained on a randomly generated dataset.

For the random dataset, we adopted the distribution of

Ki67 expression ratios from each scan and randomly assigned

annotations to the patches to match the existing distribution.

In essence, we randomly paired HE and IHC patches from

each scan. A model trained on such a dataset should exhibit

lower validation accuracy, as the annotations for the validation

data are randomly assigned, and the neural network cannot

effectively model this randomness.

It’s worth noting that our dataset is highly unbalanced,

with patches in the category below 20% outnumbering other

categories. The majority of patches fall within the category

below 5%. Therefore, we initially balanced the dataset before

performing random assignment. This approach ensured that

despite the random assignment, a substantial portion of the

data would still be correctly categorized, potentially allowing

the model to detect this partial information.

The outcomes of both models are outlined in Table II. It is

evident that the first model attained a notably higher accuracy,

whereas the second model’s accuracy is comparable to random

guessing. Consequently, the accuracy on both validation sets is

considerably lower compared to a model with annotations es-

timated from registration. This serves as compelling evidence

for us to affirm the accuracy of the procedure.

C. Classification on shared centroids annotated patches

After applying common centroids to recolor and anno-

tate the entire dataset, both the number and distribution of

patches in each category changed. From the original values,

the numbers of patches changed to the following: in below

20% class there remained 33 500 patches, between 20%-

50% was 17 700, and in the last category above 50%, was

4 200 patches. Since patches count in the last category has

increased, we used combination of undersampling and over-

sampling method for dataset balancing, with undersampling

two largest classes and oversampling the minority class. With

the increased numbers in the class above 50%, we were able

to test multiclass classification over the full range of the ratio,

not only binary classification. Results of both classification:

binary (below 20% and between 20-50%) and multiclass are

shown in Table III and Table IV respectively. On the binary

classification results, we can observe a decrease on the second

VS and, conversely, an increase on the first VS, which is

the phenomenon we predicted. Again, higher accuracy was

achieved by the models where color data augmentation was

used, but the increase in accuracy on the second VS is not high

enough for the model to be used in practice. Moreover, on the

multiclass classification we can observe comparable accuracy

to the binary classification on the second VS, however the

accuracy on the first VS is significantly lower indicating the

higher complexity of such a task on new data.

Since the estimation error of the accuracy 13% is quite high

despite efforts to reduce it, this may confound the model for

data that are at the edges of the category intervals. Therefore,
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TABLE II. ACCURACY OF RESNET18 MODEL TRAINED ON DATASET WITH CORRECTLY AND RANDOMLY 
ASSIGNED LABELS

Dataset
First validation set Second validation set

Accuracy Precision Recall Accuracy Precision Recall
correct 0,6122 0,5149 0,5169 0,8864 0,8864 0,8864
random 0,4929 0,3184 0,3117 0,5205 0,5196 0,5196

TABLE III. RESULTS OF RESNET18 MODEL WITH DIFFERENT COLOR AUGMENTATION APPLIED FOR BINARY CLASSIFICATION ON DATA WITH 
SHARED CLUSTERING

Category split
First validation set Second validation set

Accuracy Precision Recall Accuracy Precision Recall
Original 0.5606 0.5688 0.5699 0.7745 0.7749 0.7731

Brightness, saturation, hue, contrast 0.5949 0.5912 0.5933 0.7702 0.7707 0.7704
Brightness, saturation 0.5731 0.5885 0.5883 0.7863 0.7883 0.7852

TABLE IV. RESULTS OF RESNET18 MODEL WITH DIFFERENT COLOR AUGMENTATION APPLIED FOR MULTICLASS CLASSIFICATION ON 
DATA WITH SHARED CLUSTERING

Category split
First validation set Second validation set

Accuracy Precision Recall Accuracy Precision Recall
Original 0.4628 0.3989 0.3965 0.7756 0.7700 0.7747

Brightness, saturation, hue, contrast 0.4218 0.3611 0.3860 0.7869 0.7830 0.7859
Brightness, saturation 0.4280 0.3748 0.3692 0.7891 0.7847 0.7885

in the next experiment, we adjusted the data and omitted

20% between each interval. Hence, the classification classes

changed to below 10% between 30-50% and above 70%. Our

assumption is that this should increase the accuracy of the

models, as it should eliminate situations where patches with

similar ratios will be assigned in two different categories due

to estimation error.

However, this assumption as we can see in the Table V and

the Table VI proved to be true only on the second VS, where

the accuracy increased significantly from 0.77 to about 0.9. On

the other hand, the performance of the models on the first VS

did not change, which suggests that the error of the annotation

method still has a high variance and in the case of slides where

the error is larger than half of the omitted interval, it can still

confuse the model. Therefore, these preliminary results proves

that this problem needs to be addressed more deeply in the

future.

IV. CONCLUSION

In this study, we validated our semi-automated workflow

for Ki67 quantification consisting of two main steps: tissue

registration and quantification. We utilized ResNet18 model

to classify HE patches into Ki67 index categories thus ob-

tained resulting in model with good performance on validation

patches, extracted from training slides not present in training

set. However, due to low accuracy on new slides, we pro-

posed an enhancement to the previous annotation extraction

technique, diverging from ”in press” [13] by extracting shared

centroids used for all slides in order to reduce per slide esti-

mation error variability. Although this has slightly increased

the classification accuracy of the binary model in particular,

the performance is still not sufficient and annotation error

is still high. Despite efforts to increase model accuracy by

omitting boundary intervals between categories, this was only

successful on one validation dataset. Therefore, the annotation

workflow quality still needs to be enhanced.

In our future research, we will improve the quality of the

Ki67 index estimation by closer examinating color properties

of the IHC images taking into account the positivity intensity

of the cell. Thus try to reduce the variability of the estimation

error, which should yield an increase in classification ability on

the new data. In addition to modifying the dataset creation, we

will employ neural network explainability methods to further

investigate which parts the model gives more importance to.
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