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Abstract—In heart-disease detection, we have several systems
utilizing Machine Learning models to assess the likelihood of a
person experiencing heart disease based on input data gathered
from health checkups. To deploy these in real-time, we need
to constantly update the model with validation data generated
from the feedback of doctors and users. One crucial component is
hyperparameter tuning, as hyperparameters define the working
conditions of a model. Current hyperparameter tuning methods
have more time-complexity, which might cause latency. Meta-
heuristic algorithms are known to achieve optimal solutions
in less time, leveraging accuracy. In this paper, we performed
time-complexity analysis for three bio-inspired meta-heuristic
algorithms viz. Genetic Algorithm, Ant-Colony Optimization
and Swarm-bee optimization for hyperparameter tuning in the
context of Artificial Neural Networks in heart disease prediction.
We achieved accuracy 93.17 on Cleveland dataset and 95.12 on
Cleveland, Hungary, Switzerland, and Long Beach V combined
dataset, which outperformed conventional algorithms in less time
complexity. We built a web-app and mobile-app based on best
models.

I. INTRODUCTION

Heart disease remains a notable global health issue, resulting

in a considerable number of fatalities and placing a signif-

icant burden on healthcare systems. Accurate heart disease

prediction is essential for early diagnosis and timely interven-

tions, enabling healthcare professionals to provide appropriate

treatments and preventive measures. However, developing pre-

cise prediction models for heart disease is challenging due

to the complex and nonlinear relationships among various

risk factors and disease outcomes. Numerous approaches are

available for heart disease prediction, ranging from traditional

statistical methods to machine learning algorithms. However,

these methods often exhibit limitations such as suboptimal

predictive accuracy, reliance on expert feature engineering and

lack of automation in hyperparameter tuning. Manual tuning

of hyperparameters for Artificial Neural Networks (ANNs),

one of the favoured machine learning approaches.

The core idea of this work is to compare meta-heuristic

algorithms to choose the best hyperparameters of ANNs for

heart disease prediction. By leveraging the power of meta-

heuristic algorithms, we aim to speed up and enhance the

hyperparameter tuning process, leading to reduced latency in

model updation. As far as our understanding goes, no works

have addressed the comparison of meta-heuristic algorithms

for optimising hyperparameters in the context of predicting

heart disease.

The major contributions of the presented work are summa-

rized as follows:

• Comparative Time complexity analysis of three meta-

heuristic algorithms - Genetic Algorithm, Min-Max Ant

Colony Optimisation Algorithm and Particle Swarm Op-

timisation Algorithm for hyperparameter tuning in heart

disease prediction.

• Development of the Heart Disease prediction model using

ANNs optimized by meta-heuristic algorithms.

• Creating web and android application for heart disease

Prediction.

The structure of the rest of this paper is arranged as

follows: In Section II, a concise review of existing works is

presented. Section III delves into the proposed methodology,

offering insights into the optimization algorithms employed

for hyperparameter tuning. The experimental setup and results

of the proposed research work are discussed in Section IV.

Finally, Section V concludes the paper and provides an incisive

insight into the potential future directions of the research.

II. LITERATURE SURVEY

Firdaus et al. [1] introduced a heart disease detection

method utilizing a deep neural network. The work incorpo-

rated tuning of hyperparameters through grid search, random

search, and Bayesian optimization. Notably, Bayesian opti-

mization demonstrated superior accuracy. The deep neural

network, optimized by Bayesian methods, achieved impressive

metrics with a 91.67% testing accuracy, 95.83% sensitivity,

88.89% specificity, 85.19% precision, 90.20% F1-score, and

an AUC value of 0.9514. This underscores the effectiveness

of Bayesian optimization for heart disease detection.

Yang et al. [2] developed a multi-objective Genetic Algo-

rithm for hyperparameter tuning and showed that their method

performed better than others on several datasets. The study

does not compare the proposed method to grid search or

other hyperparameter optimization methods. Ayan et al. [3]

used a Genetic Algorithm for tuning the hyperparameters of

convolutional neural networks and compared the results using

the CIFAR-10 dataset. The study considers only one dataset

and its performance on other types of problems is unclear.
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Lobvithee et al. [4] used the Ant Colony Optimisation algo-

rithm to optimise manually fine-tuning hyperparameters. They

showed that Ant Colony Optimization (ACO) offers a notable

advantage over cross-validation with reduced computational

time. The limitation of the work is the high complexity and

high computational time involved in the optimization process.

Vincent et al. [5] provided a framework hyperparameter opti-

mization using evolutionary algorithms for Auto-ML systems.

The authors, however, did not offer any implementation results

for the classification problem.

Jianjun et al. introduced the Improved Particle Swarm

Optimization (IPSO) algorithm, demonstrating its efficiency

in selecting hyperparameter combinations for improved results

using a single dataset [6]. Yaru and Yulai Zhang developed

a hyperparameter optimization algorithm based on Particle

Swarm Optimization (PSO), highlighting its effectiveness but

noting slower operation in high-dimensional spaces [7]. B.H

Shekar and Guesh Dagnew presented the Grid-Search based

hyperparameter tuning algorithm (GSHPT) for classification

[8]. Christopher I et al. employed Random-Search with genetic

algorithms and clustering analysis for hyperparameter tuning

[9]. Vu Nguyen utilized Bayesian optimization for acceler-

ated hyperparameter tuning in automated design [10]. Kashif

Ahmad introduced a Particle Swarm Optimization-based tech-

nique for hyperparameter optimization within a Federated

Learning framework, specifically focusing on applications in

smart city services and industrial Internet of Things (IIoT)

services [11]. Yuhua Qi proposed a method based on the

Ant Colony Optimization algorithm for test case prioritization,

offering two methods: distance-based and index-based [12].

III. METHODOLOGY

An arbitrary artificial neural network (ANN) model is used

for the purpose of prediction. The model is trained using

hyperparameters provided by the different optimization algo-

rithms. The metrics of the model for different hyperparameters

are compared. Finally, the optimization algorithm that provides

the best hyperparameters (for better prediction accuracy) is

chosen and used for training the ANN model. The detailed

description of the methodology as in Fig.1 is given in the

following sections.

A. Datasets

This research utilizes two datasets. The first dataset is the

Cleveland Heart Disease dataset from the UCI Machine Learn-

ing Repository [13], encompassing 303 instances. The dataset

comprises 303 data instances with 14 attributes, encompassing

13 input features such as age, resting blood pressure, sex,

serum cholesterol in mg/dl, chest pain type (4 values), fasting

blood sugar if more than 120 mg/dl, exercise induced angina,

resting electro-cardiographic results containing values(0,1,2),

maximum heart beat rate, old peak (ST depression induced by

exercise relative to rest), the slope of the peak exercise ST seg-

ment, number of major vessels (0-3) coloured by fluoroscopy,

that (0 = normal; 1 = fixed defect; 2 = reversible) defect and

one predicted attribute, all expressed in numeric data. The

second dataset (Dataset-2) combines four datasets namely:

Cleveland, Hungary, Switzerland, and Long Beach V heart

disease data. The dataset comprises 1025 data instances and

76 attributes, of which a subset of 14 features are considered.

Input features were similar to features in [13]. 80% of the

available data is used for training the models, and 20% is

used for validation & testing in both datasets.

B. Hyperparameter Tuning Using Conventional Methods

There are many conventional methods for hyperparameter

optimization. Of these, we considered Grid-search, Random-

ized search, and Bayesian optimization. The respective hyper-

parameter search space is given in Table I.

TABLE I. HYPERPARAMETER 
SEARCH SPACE

Hyperparameter Value
Epoch [10, 100]
Batch Size [32, 256]
Hidden Neurons [8, 64]
Activation Function [’relu’, ’sigmoid’]
Learning Rate [0.0001, 0.1]

C. Hyperparameter Tuning using Meta-Heuristic Algorithms

1) Genetic Algorithm: The genetic algorithm evolves a

population over several generations, evaluating the fitness of

each set of hyperparameters using the neural network model

that has been created. The fitness function uses the accuracy

of the model as its basis and Algorithm 1 shows the details.

Algorithm 1 initializes a random population of hyperparam-

eters and iteratively evolves it. Parents in each generation are

taken from the individuals with higher fitness scores, and new

offspring are generated by combining their hyperparameters.

Some randomness is introduced through mutation, where

hyperparameters may be randomly changed. This process

continues for a given number of generations.

Finally, the best set of hyperparameters is determined based

on the highest fitness score in the last generation. The neural

network is trained and evaluated using these hyperparameters.

The genetic algorithm aims to discover optimal hyperparam-

eter configurations for improving the model’s performance.

We experimented with an inbuilt genetic algorithm using

DEAP and TPOT libraries to optimise hyperparameters. DEAP

is utilized to define a genetic algorithm, incorporating hyper-

parameters and employing crossover and mutation operations.

The neural network is trained and evaluated based on these

hyperparameters, utilizing accuracy as the fitness metric.

2) Min-Max Ant-Colony Optimization: There are several

ant-colony optimization variants, of which the Min-Max Ant

System (MMAS) is the most prevalent one for hyperparameter

tuning.

The key component driving the search process is the

pheromone information denoted as τ(i, j), where i and j
represent specific hyperparameter values within predefined
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Fig. 1. Proposed Methodology

Algorithm 1 Genetic Algorithm

INPUT
• Population Size, n

• NUM OF GENERATIONS, G

OUTPUT
• Best Hyperparameters, , Ybt

1: Initialize population of size n Yi (1,2,...n)

2: Define the fitness function

3: for each i from 1 to G do
4: Select two individuals based on fitness.

5: Perform ”crossover” and insert them.

6: Perform ”mutation” on the offspring and insert.

7: Replace the old with the newly generated.

8: end forreturn best hyperparameters, Ybt

bounds. This pheromone information is similar to the chemo-

tactic cues in ant colonies, guiding the ants (representing

hyperparameter combinations) towards promising regions in

the search space. Additionally, the heuristic information η(i, j)
contributes to the attractiveness of a hyperparameter com-

bination, providing a complementary influence on the ant’s

decision-making process.

The MMAS algorithm (Algorithm 2) occurs over a pre-

defined number of iterations, each consisting of two main

steps: pheromone update and ant behaviour. In the pheromone

update phase, the algorithm applies evaporation by reducing

the pheromone values by (1−ρ), ensuring a gradual decay of

previously laid pheromones. The ant behaviour phase involves

each ant’s probabilistic selection of hyperparameter combina-

tions. The probability of selecting a particular combination

(i, j) is determined by the ratio of the pheromone product

and heuristic information for that combination to the sum of

such products for all combinations. Subsequently, the selected

hyperparameter combinations are used to train and evaluate an

Algorithm 2 MMAS Algorithm

INPUT (num ants), (max iterations), (pheromone rho),

(pheromone min), (pheromone max)

OUTPUT (best accuracy), (best hyperparameters)

Initialisation
• best pheromone train as an array of ones same di-

mension as pheromone matrix.

• best accuracy = 0

• best hyperparameters as empty dictionary.

best accuracy = 0

LOOP Process
for i = 1 to max iterations do

ant accuracies = [] ; ant hyperparameters = []

for each ant from 1 to num ants do
Select hyperparameters probabilistically

end for
Update pheromone matrix

Evaporate pheromone values )

for each ant from 1 to num ants do
Calculate pheromone deposit change in τ(i, j)
Update pheromone in pheromone matrix.

end for
if new best accuracy is found then

Update best accuracy
Update best hyperparameters

end if
Update best pheromone trail & Clip

pheromone matrix values

end for
Set best accuracy as the highest accuracy obtained dur-

ing the iterations

Set best hyperparameters as the hyperparameters cor-

responding to the best accuracy
return best accuracy and best hyperparameters
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ANN model, and the resulting accuracy influences the update

of pheromone values. The algorithm continues iteratively until

a termination criterion, such as reaching a maximum number

of iterations, is met.

To ensure feasibility and stability of the search process, the

algorithm incorporates bounds on pheromone values, prevent-

ing them from exceeding specified limits. Moreover, using an

ant colony-based approach enables the MMAS algorithm to

explore the hyperparameter search space adaptively, providing

a mechanism for fine-tuning ANNs for optimal performance.

3) Particle Swarm Optimization Algorithm: Particle Swarm

Optimization (PSO), introduced by Kennedy and Eberhart

[16], is a nature-inspired meta-heuristic widely applied to

hyperparameter tuning in machine learning. Utilizing particles

as potential hyperparameter sets, the algorithm explores the

hyperparameter space by navigating through a combination of

personal and global best positions.

The components of the PSO algorithm (Algorithm 3) in-

clude particles, positions, velocities, fitness functions, and

tracking mechanisms for standard best positions in parameter

space. The primary objective in hyperparameter tuning is to

maintain balance between exploration and exploitation for

gaining optimal performance. This algorithm addresses chal-

lenges such as premature convergence or divergence during

optimasation.

Algorithm 3 Particle Swarm Optimization

1: Initialize Xi, Vi, iter, part best and glob best
2: Generate a set of diverse random particles (P)

3: for each Particle i do
4: Compute the fitness function fi
5: Update the selected part best, glob best values

6: end for
7: while iter do
8: for each particle in the swarm do
9: Update Xi, Vi

10: if Xi exceeds a threshold limit then
11: Set Xi to the limit

12: end if
13: Calculate the fitness function fi
14: Update part best, glob best
15: end for
16: end while

The iterative process of PSO for hyperparameter tuning

involves initializing particles with hyperparameter sets, eval-

uating the fitness of each set based on the model’s perfor-

mance, and iteratively updating the positions and velocities

to converge towards optimal hyperparameter configurations.

We experimented using Optunity Module for optimisation

purposes.

D. Mobile Application

For predicting whether a person is prone to heart disease;

we have generated a predictive model (classification) using

which we developed a user-friendly Android application is

shown in Fig.2. Exported the model with the best cross-

validation accuracy as a PICKLE file and its feature names

to the environment where we create the app.

Fig. 2. Mobile-app interface1

E. Web Application

The web application design involves converting the model

with the best hyperparameters to API by using Pickle. Pickle

converts the model to a .sav or a .h5 file, then uses stream-

lit, third-party software to deploy the heart disease prediction.

Fig.3 shows the web application page predicting heart disease.

Fig. 3. Web-app Interface2

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup (ANN)

1) Building the ANN Model: The ANN(Artificial Neural

Network) Model contains three different layers. The First layer

in the network the Input layer that contains the no.of neurons,

is equal to the number of features in our dataset. The second

layer is the hidden layer, which contains 8 neurons (prefer
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TABLE II. COMPARITIVE ANALYSIS OF DIFFERENT HYPER PARAMETER TUNING METHODS FOR 
DATASET-1

Tuning Algorithm Epoch Batch size Neurons Activation Learning Rate Accuracy Precision Recall Time(in s)
Without Tuning 55 32 16 sigmoid 0.01 77.63 0.59 0.57 20
Grid Search 100 32 64 relu 0.01 83.33 0.62 0.64 402
Randomised Search 75 32 60 relu 0.01 81.48 0.60 0.53 276
Bayesian Optimisation 56 59 59 relu 0.02325 83.33 0.70 0.62 120
Genetic Algorithm 24 65 16 sigmoid 0.0519 93.17 0.91 0.94 395
Ant Colony Optimisation 20 32 16 sigmoid 0.0112 90.73 0.90 0.87 354
Particle Swarm Optimisation 25 22 45 relu 0.01 83.12 0.76 0.80 528

TABLE III. COMPARITIVE ANALYSIS OF DIFFERENT HYPER PARAMETERS TUNING METHODS FOR 
DATASET-2

Tuning Algorithm Epoch Batch size Neurons Activation Learning Rate Accuracy Precision Recall Time(in s)
Without Tuning 55 32 16 sigmoid 0.01 88.79 0.87 0.86 22
Grid Search 100 32 64 relu 0.01 89.67 0.83 0.84 442
Randomised Search 75 32 53 relu 0.01 90.73 0.89 0.87 324
Bayesian Optimisation 57 43 35 relu 0.036 92.57 0.92 0.93 168
Genetic Algorithm 64 189 16 sigmoid 0.0636 95.08 0.97 0.96 426
Ant Colony Optimisation 20 32 16 sigmoid 0.0245 95.12 0.93 0.90 418
Particle Swarm Optimisation 36 28 62 relu 0.01 90.42 0.91 0.92 587

the power of 2) and the activation function is ”ReLU”. The

third layer is the output layer, which contains only one neuron

as it predicts whether the person has heart disease or not by

using the same activation function, ”ReLU”.We trained it for

75 epochs and batch size of 32. We utilize metrics such as

accuracy, precision, and recall to assess the model’s perfor-

mance for various hyperparameters. A comparative analysis

of all experimented hyperparameter tuning methods and their

corresponding evaluation metrics is presented in Table II and

Table III.

B. Results and Complexity Analysis

1) Complexity Analysis of Genetic Algorithm: The ini-

tialization step of a genetic algorithm involves creating a

population of size ”n” with random hyperparameters, resulting

in O(n) time complexity. Fitness evaluation, conducted by

iterating over the population, adds another O(n) to the overall

complexity.

The selection of fittest individuals introduces O(n * log(n))

complexity, encompassing sorting and selecting the top in-

dividuals. Generating offspring, achieved through combining

parental hyperparameters, contributes O(n) to the time com-

plexity.

Mutation, population replacement, and identifying the best

set each have O(n) components. These operations collectively

emphasize a linear relationship with the population size (n) in

the overall time complexity of the genetic algorithm..

Considering these individual complexities, the overall time

complexity of evolving the population over ”G” generations

is denoted as O(G * n * log(n)).

Overall Time Complexity: O(n + G * n * log(n))

• G: Number of Generations

• n: population size

2) Complexity Analysis of MMAS algorithm: Min-Max Ant

colony optimisation algorithm has an O(1) time complexity

for the initialization phase, involving the creation of fixed-

dimension pheromone matrices. During the Ant Behavior

phase, where ants iterate over operations, the probabilistic

selection of hyperparameters remains constant for each ant.

The evaluation function’s time complexity is O(e * b * t),

where e is the number of epochs, b is the batch size, and t is

the training dataset size.

Other Ant Behavior phase operations, such as updating best

accuracy (O(1)), updating the best pheromone trail (O(m)),

and pheromone matrix clipping (O(m)), have constant or m-

proportional time complexities, where m is the number of

elements in the pheromone matrix. These factors contribute

to the algorithm’s efficiency and scalability in hyperparameter

optimization.

Overall Time Complexity: O(iterations*n*(e * b * t)+m)

• iterations: Number of iterations in the MMAS algorithm

• n: Number of ants

• e: Number of epochs

• b: Batch size

• t: Size of the training dataset

• m: Size of the pheromone matrix (number of elements)

3) Complexity Analysis of Particle Swarm Optimization:
In the PSO algorithm, initialization involves randomly setting

positions and velocities, with a time complexity of O(ND),

where N is the number of particles and D is the dimensionality.

The evaluation step, dependent on the specific fitness function,

has a time complexity of O(num hyperparameters) in a heart

disease prediction context. The update step, utilizing the best

positions found, incurs a time complexity of O(ND), capturing

the computational workload of updating particle velocities and

positions. Together, these steps contribute to the overall time

complexity of the PSO algorithm.

Overall Time Complexity: O(T*(N*D+fitness))

• Number of Particles(N): The Time Complexity of PSO

algorithm directly depends on the number of particles in
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the swarm.

• Dimensionality of the problem(D): The Time Complexity

of PSO algorithm directly depends on the dimensionality

of the problem as PSO works on different dimensions

and the search space accordingly increases.

• Number of Iterations(T): Time Complexity also depends

on number of iterations required to terminate the al-

gorithm by meeting the required conditions. Algorithm

converges to optimal or near optimal solution finally.

In comparison to the study referenced as [1], which uses

the same our Dataset-1 in [13] and reported grid search

tuning taking 635.78 seconds, random search tuning requiring

159.32 seconds, and Bayesian optimization lasting 189.48

seconds, our approach achieved more efficient tuning times.

Specifically, our built genetic algorithm outperformed [1] by

significantly reducing tuning time to 243 seconds, while the

ant colony algorithm took 354 seconds, and the particle swarm

algorithm took 503 seconds while maintaining similar accu-

racy. Notably, our enhanced genetic algorithm yielded superior

evaluation scores(93% accuracy, 0.92 precision, 0.94 recall)

compared to the methodology presented in [1] that provides us

a faster and better hyperparameter tuning method. Compared

to the investigation cited as [15], which utilizes our Dataset-2,

as described in [13], and demonstrates notable achievements

with high accuracy, precision, and recall (approximately 93%,

0.87, and 0.84, respectively), our tuned models exhibit superior

performance in these metrics.

V. CONCLUSION AND FUTURE WORK

In regular approaches, best hyperparameters identified by

Grid search, Randomized search, Bayesian Optimization gave

an accuracy of 83.33% , 81.48% and 83.3%, respectively. Then

we worked on Evolutionary algorithms such as Genetic , which

gave an accuracy of 93.17%,and was computationally efficient

as mentioned in the time complexity analysis section. In Ant

Colony Optimization , we got an accuracy of 85.15%. Particle

Swarm Optimization gave an accuracy of 83.12% and the

respective time complexity is mentioned in time complexity

analysis section.

For the deployment we used streamlit ,a third party software

for deploying the machine learning models.Genetic Algo-

rithms (GA’s) are commonly preferred for tasks involving

extensive search spaces, intricate hyperparameter interactions,

and global exploration requirements. They excel at handling

computationally demanding models and can be parallelized

efficiently. Conversely, Ant Colony Optimization (ACO) can

be advantageous in leveraging local information and adapting

to dynamic scenarios, potentially resulting in quicker con-

vergence.So we used Genetic algorithm for the deployment.

We outperformed [1] and [15] with respect to time taken for

hyperparameter tuning with almost same accuracy. As a future

work, we would like to explore bio-inspired and metahueristic

algorithms for hyperparameter tuning and generalize better

hyperparameter tuning algorithms for specific tasks. Explain-

ability and Interpretability can be added for making it more

accessible and adding multi-model data.
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