
A Multilayered Approach to Enhance Cloud
Security using Homomorphic, AES, and Hashgraph

Ayush Verma, Tanuj Chandela, Geetanjali Rathee
Netaji Subhash University of Technology, Dwarka

New Delhi-110078, India

{integralayush, tanujchandela, geetanjali.rathee123}@gmail.com

Abstract—The rise of cloud technology is a big deal for how
we share and access data together. It makes working together
easier and opens up a ton of new possibilities. But with all this
sharing, we need to make sure our information stays safe and that
everyone follows the rules we’ve agreed upon for how services
should work. Blockchain technology seems like a good way to
keep track of these rules by recording everything in a secure
and unchangeable way. However, the usual blockchain systems
have some weaknesses. They can still be attacked in ways that
could disrupt services, like with DDoS attacks. Plus, the way
blockchain reaches agreements can slow things down. However,
managing SLAs itself does not ensure the security of the data
and user’s privacy. Various solutions have been proposed, but
none comprehensively address all the issues associated cloud
environment. This paper introduces a framework constructed
using Hashgraph-based distributed ledger technology to enhance
scalability, security, and performance in the tamper-proof logging
of all events through smart contracts. This structure aids in
detecting points of failure and is applicable for automatic Service
Level Agreement (SLA) verification. To safeguard user privacy,
protect data from intruders, and ensure semantic security, we
have implemented double-layer encryption. A homomorphic
encryption technique is employed to preserve user privacy,
allowing computations to be performed on the encrypted data.
Additionally, AES (Advanced Encryption Standard) is used for
secure transportation over an open network to prevent potential
attacks such as known-plain-text attacks. The performance of
our framework was assessed in terms of latency, CPU usage,
and memory usage, while the security aspect was conventionally
analyzed.

I. INTRODUCTION

Cloud computing is essentially about renting resources,

hosting applications, and outsourcing services. The system

simplifies resource sharing and computation costs, which is a

significant improvement. The cloud computing model allows

users to access and use a variety of computing resources, such

as storage, processing power, and databases, via the internet.

This on-demand availability of resources provides scalability,

flexibility, and cost-efficiency, making it an appealing solution

for both individuals and businesses alike. [1] Cloud services

are typically divided into three categories: Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS), which give users varying levels of control and

management over their computing environments.The cloud

computing paradigm has transformed how technology is used,

enabling innovations in fields as diverse as data analytics,

artificial intelligence, and the Internet of Things (IoT).

In recent years, the widespread adoption of cloud services,

spearheaded by industry giants such as Google, Amazon, and

Microsoft, has encountered notable security challenges. This

surge in usage has inevitably resulted in security lapses, and

a key challenge revolves around establishing accountability in

the cloud. This predicament poses a dilemma for both users

and service providers. While the issue of accountability isn’t

unique to cloud services, it remains a pervasive challenge

across various service providers. Instances of data loss or

incorrect computation results raise critical questions about

responsibility. Notably, major companies like Microsoft and

Amazon have devised their policies to address these chal-

lenges. For example, [1] Microsoft’s Service Level Agree-

ments (SLAs) incorporate a provision designating the service

provider (Microsoft) as responsible for adjudicating disputes

initiated by clients. In contrast, Amazon Web Services adopts

a more detached stance. Their general customer agreement

explicitly disclaims any form of compensation for a broad

spectrum of failures, effectively sidestepping the need to

pinpoint responsibility.

A. Motivation

Cloud computing brings multiple issues, including worries

about data privacy and the occurrence of cyber threats such as

Distributed Denial of Service (DDoS), Sybil attacks, known

plaintext assaults, eavesdropping attacks, etc. These problems

underscore the complex terrain that both customers and service

providers must negotiate in the rapidly changing world of

cloud technology. Encryption methods and blockchain technol-

ogy have been introduced autonomously to enhance security

and trust, yet neither satisfies all requirements.

B. Contribution

In this paper, we aim to provide a framework that combines

Hedera Hashgraph with a double-layered encryption mecha-

nism to fortify our structure against various cloud computing

assaults. This strategic integration attempts to efficiently main-

tain confidence between users and service providers while also

improving security. The framework employs an Elliptic Curve

Diffie-Hellman key exchange method to generate a shared

AES key between a user and an associated company. By using

this shared AES key, the company can retrieve data from

the server and perform AES decryption, as well as perform

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 850 ----------------------------------------------------------------------------



computations on the homomorphically encrypted data of its

clients without violating their privacy.

The remaining structure of the paper is organized as follows.

Section two deliberates the literature survey while securely

transmitting the information. Further, section three elaborates

on the proposed methodology in detail. Furthermore, section

four analyses the overall performance of the framework over

average memory usage, average execution time, and CPU

consumption. Next, in section five we provide a conventional

security analysis of our framework against various threats.

Finally, section six concludes the paper.

C. Hashgraph

The Hashgraph protocol introduces a revolutionary ap-

proach to distributed consensus, offering a novel platform

for establishing trust among users within a decentralized net-

work. Unlike conventional blockchain structures that require

continual pruning of branches to maintain a single coherent

chain, Hashgraph seamlessly integrates new transaction data

into its ledger. In both blockchain and Hashgraph frameworks,

users have the autonomy to generate transactions, which are

subsequently organized into containers or blocks and dissem-

inated across the network. However, while blockchain aims

to construct a singular, linear chain of blocks, Hashgraph

diverges by incorporating every container of transactions into

the ledger, thus preventing the need for pruning and ensuring

efficiency. This design eliminates the risk of forks and allows

for the perpetual existence of all branches, woven together into

a cohesive whole. Fig. 1 shows Hashgraph Architecture.

Critically, Hashgraph’s resilience to rapid growth distin-

Fig. 1. Hashgraph Architecture Overview

guishes it from blockchain. While blockchain implementations

often struggle to cope with the influx of new containers, lead-

ing to potential forks and requiring mechanisms like proof-of-

work to artificially slow down growth, Hashgraph seamlessly

accommodates rapid expansion without compromising in-

tegrity or efficiency. Moreover, Hashgraph’s unique properties

enable it to provide robust mathematical guarantees, including

Byzantine fault tolerance and fairness in transaction ordering.

Unlike other distributed database systems like Paxos, which

may exhibit Byzantine behaviour without ensuring transaction

fairness, and blockchain, which lacks Byzantine tolerance and

fairness, Hashgraph offers a comprehensive set of features. By

being fair, fast, Byzantine-tolerant, ACID-compliant, efficient,

cost-effective, timestamped, and resistant to denial-of-service

attacks, the Hashgraph algorithm represents the pinnacle of

innovation in distributed consensus mechanisms.

D. Homomorphic Encryption

Homomorphic Encryption (HE) is a unique cryptographic

approach that allows a third party to perform computations

on encrypted data while maintaining data integrity and

meeting the third party’s needs without jeopardizing user

privacy. This method ensures the confidentiality of sensitive

information while allowing an external entity to perform

necessary computations. [2]The conventional public key

encryption method consists of three algorithms KeyGen (A

stochastic algorithm based on a designated security parameter

that generates a Private Key Kprivate and Public Key

Kpublic), Encryptor (takes plaintext P and Kpublic as input

and based on this it generates the ciphertext (CT)), and

Decryptor (CT and Kprivate is passed as an input and

returns the original plaintext). In addition to these algorithms

HE additionally have an Evaluator (It takes the function f,

CT, and Kpublic and performs the computation on the CT) [3].

Algorithm 1 Working of Homomorphic Algorithm

0: Step 1: (Kprivate, Kpublic) ← KeyGen(#), {where # is the

security parameter}
0: Step 2: Ciphertext(CT) ← Encryptor(Kpublic, P)

0: Step 3: M ← func(P), {normally executing the function on

the plaintext}
0: Step 4: CT* ← Evaluator(func, Kpublic, CT)

0: Step 5: R ← Decryptor(Kprivate, CT*), {As per HE, M =

R.}

E. Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) [4] is a widely

adopted algorithm globally to safeguard data from unautho-

rized access. It was originally proposed by Belgian cryptog-

raphers Joan Daemen and Vincent Rijmen and later adopted

as the Rijndael Algorithm. AES operates as a symmetric-key

block cipher, where both the sender and receiver use the same

key for encryption and decryption. This approach, approved

by the US National Institute of Standards and Technology

(NIST), replaced the Data Encryption Standard (DES). [5]

AES works with fixed-size data blocks and supports key

lengths of 128, 192, and 256 bits. The algorithm uses a

substitution-permutation network (SPN) structure, with en-

cryption taking place in multiple rounds depending on the

key length. A 128-bit key undergoes 10 rounds of encryption,

whereas 192 and 256-bit keys go through 12 and 14 rounds,

respectively. The data is subjected to a variety of encryption

functions during each round, including SubBytes, ShiftRows,

MixColumns, and Round Key Addition.AES provides strong

security by repeatedly applying cryptographic functions to

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 851 ----------------------------------------------------------------------------



input data, using the initial key and round-specific sub-keys

Fig. 2.

Fig. 2. AES Encryption process

SubBytes: During this phase, each byte in the state is

substituted using a predefined substituted box called the S-

box. The S-box introduces a nonlinear transformation, which

adds complexity to the encryption process.

ShiftRows: During this step, bytes in each row of the

state undergo a cyclic shift. This permutation ensures that

the resulting output is more random and resistant to pattern

analysis.

MixColumns: This operation uses matrix multiplication in

a finite field to process each state column independently. It

adds more diffusion, ensuring that each byte is influenced by

several input bytes.

Round Key Addition: The State performs a bitwise

Exclusive-OR operation with a round key. Each round key

consists of Nb words generated as part of the Key Expansion

process.

Key Expansion: The Key Expansion process generates a

sequence of words from the original encryption key. [6] The

total number of words produced is calculated as Nb(Nr + 1),
where Nb represents the number of columns in the state (block

size, the count of 32-bit words derived from the initial key),

and Nr is the determined number of rounds based on the

key size. A set of Nk words (corresponding to 4 bytes words

in the original key) is derived directly from the original key.

Following this, the remaining words are generated through an

iterative process. As a result of the Key Expansion process, an

array of four-byte words is produced, denoted as wi, where

the index i ranges from 0 to Nb(Nr + 1) − 1. Each round

key employed in the encryption process is constructed by

concatenating four words from the Key Expansion output.

Thus, for every round, the round key (i) is generated by

concatenating four sequential words wi, wi+1, wi+2, and wi+3.

F. Elliptic Curve Diffie Hellman (ECDH)

Elliptic Curve Diffie Hellman (ECDH) is a shared secret

agreement protocol designed to establish a shared secret key

between two parties over an insecure network. The security

of ECDH relies on the difficulty of solving the Elliptic

Curve Discrete Logarithm Problem (ECDLP), which forms

the foundation of elliptic curve cryptography. In the elliptic

curve cryptosystem, all parties involved must agree on a [7]

finite field Fq consisting of integers modulo p, where p is a

prime number and q is the order of the finite field. An elliptic

curve as shown in Fig. 3 is defined over Fq by the constants

a and b used in its defining equation

y2 = x3 + ax+ b

(Weierstrass Form). Consider a point P on the curve with order

n, which is the smallest positive integer such that nP results

in the point at infinity on the curve, serving as the identity

element. If Q is another point on the curve, there exists an

integer i in the range [0, n-1] such that Q = iP. The challenge

lies in computing this integer i.

Fig. 3. Example of an Elliptic Curve with a = -5 and b = 5

ECDH operates on a similar principle (Fig. 4). [8] [9]

Suppose two parties, A and B, each select a base point G

on the curve and randomly choose private keys PvtA = a
and PvtB = b respectively. Using their private keys and the

base point G, A and B generate their public keys PubA =
aG and PubB = bG, denoted as points A1 and B1 on

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 852 ----------------------------------------------------------------------------



Fig. 4. ECDH Key Agreement Protocol

the curve respectively. These public keys can be exchanged

over the insecure network. Upon receiving each other’s pub-

lic keys, A and B independently compute the secret key

SA = a(PubB) = a(bG) and SB = b(PubA) = b(aG)
respectively, resulting in SA = SB . ECDH ensures that even if

an eavesdropper intercepts the public keys exchanged between

A and B, computing the secret key without knowledge of

the private keys remains computationally infeasible due to the

ECDLP.

II. RELATED WORK

Cloud computing is known for its innovation, resource

flexibility, and economies of scale. It enables users to access

infrastructure and applications over the Internet, eliminating

the need for on-premises installation and maintenance. This

has allowed businesses to outsource their operations to the

cloud, leading to significant cost savings on storage and com-

putation units for processing extensive databases. However,

challenges persist, including issues related to data privacy,

efficient data management, interoperability, and accountability.

To tackle these challenges, various approaches have been

proposed, including:

Mirko Zichichi et al. [1] introduced a prototype demonstrating

the application of blockchain technology for dispute resolution

in cases of SLA violations through the secure logging of

untampered data on the blockchain. The authors implemented

their methodology across various blockchain platforms, in-

cluding GoQuorum, Hyperledger Besu, and Polygon, each

leveraging distinct consensus protocols. Their analysis indi-

cates that Polygon and GoQuorum Raft exhibit enhanced

performance with reduced response times and minimal error

rates. The study employs a standard cloud storage service

and outlines a protocol for smart contract logging for each

operation.

Akanksha Saini et al. [10] developed an IoT-enabled frame-

work using blockchain technology to address single points

of failure in the healthcare system, with a specific focus on

the security of Electronic Medical Records (EMRs) controlled

by centralized cloud providers. They introduced four smart

contracts: user verification, access authorization, misbehaviour

detection, and access revocation. Furthermore, the authors

described a method for encrypting sensitive EMRs before

storing them in the cloud, utilizing cryptographic functions

such as Elliptic Curve Cryptography (ECC) and the Edwards-

Curve Digital Signature Algorithm (EdDSA). The generated

hashes are then stored in the blockchain. The performance

evaluation and efficiency analysis of the proposed solution

demonstrated faster response times in access.

B. Sowmiya et al. [11] proposed a method to safeguard user

data through the use of cryptography and the establishment of

a private network using Hyperledger blockchain. The data is

divided into sensitive and non-sensitive categories with the

help of a linear regression model. The author employs the

LECC method and RSA to encrypt sensitive and non-sensitive

data, respectively. Furthermore, a modified Spider Optimiza-

tion Search Algorithm (MSOA) is utilized in conjunction

with Linear Elliptical Curve Digital Signature (LECDS) to

ensure integrity verification and prevent data loss during

communication with the cloud. The author conducted tests on

various performance metrics, including security, throughput,

classification accuracy, and error rate.

Hamza Javed et al. [12] introduced a model designed to log

all events associated with user data in the healthcare sector

through cloud services. These logs are securely stored in a

private blockchain. To prevent attacks on public healthcare

data, the author proposed the implementation of a Cloud

Access Security Broker (CASB). This system functions as an

additional layer of security by offering an immutable ledger to

track user data, effectively preventing unauthorized tampering

with sensitive information. The integration of this model aims

to mitigate the risk of data loss. The examination of auditing

logs using blockchain was conducted by varying the number

of patients and actions. Overall, this solution provides secure

auditing for health data, leveraging IoT-based monitoring.

Poonam Verma et al. [13] suggest a model based on hashgraph

to enhance the access control mechanism in the healthcare

system for patient data. By utilizing the gossip protocol in

hashgraph, the author aims to reduce energy consumption.

Additionally, the paper discusses the improvement in data se-

curity, as frameworks built with hashgraph prevent users from

Sybil and double spending attacks. The proposed framework

is evaluated in terms of time complexity.

Junfeng Tian et al. [14] proposed a security audit scheme

to tackle potential security risks in cloud-based shared data

storage services used by groups and agents. They incorporated

hashgraph technology and devised a Third-Party Medium

(TPM) management strategy to ensure security management

and lightweight computation for group members. Addition-

ally, to enhance agent security, they set up a virtual TPM

pool using TCP sliding window technology, which operates

independently. The scheme achieves efficient calculation of

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 853 ----------------------------------------------------------------------------



TABLE I
LITERATURE SURVEY

Ref & Author Consensus Cryptography Performance Metrics Limitation
Mirko Zichichi et al. [1] IBFT,Clique,PoS,QBFT,Raft SHA256 Response Time, Throughput Lack of User’s Data privacy
Akanksha Saini et al. [10] PoS,PoW EdDSA,ECC Average Latency Inefficient Memory Consumption
B. Sowmiya et al. [11] PBFT,PoET LECC,RSA,LECDS Throughput & Error Rate DDoS and Sybil attacks are possible
Hamza Javed et al. [12] PoA CP-ABE Execution time Sybil attacks are possible
Poonam Verma et al. [13] DAG Hask key Generation Time Complexity Not Resistance to Replay Attack
Junfeng Tian et al. [14] DAG SHA-1,SHA-256 Time Overhead User Privacy issues
Hong et al. [15] × ECC,Homomorphic Cipher Text Size Lack of Accountability

TPM by reducing overhead in both the audit and data upload

phases.

Hong et al. [15] suggested a dependable homomorphic encryp-

tion scheme based on Elliptic Curve Cryptography (ECC) to

ensure the privacy of users. Homomorphic encryption is com-

monly employed to store and process encrypted outsourced

data in cloud computing environments, effectively protecting

user privacy. The proposed solution involves managing secure

multiparty computation using ECC, a departure from the

traditional reliance on a trusted third party. This shift is

motivated by the challenges posed by the unavailability and

computational complexity associated with the initial approach.

However, it’s worth noting that the author’s work falls short

in addressing the issue of accountability. A comparison of

Existing solutions and their limitations are shown in Table

I.

III. PROPOSED FRAMEWORK

In this section, we explore our proposed Cloud Service ar-

chitecture Fig. 5, built upon the Hashgraph distributed ledger,

incorporating user authentication protocol, intending to man-

age Service Level Agreement (SLA) violations. Additionally,

we leverage Homomorphic Encryption, AES, and the Elliptic

Curve Diffie-Hellman key exchange protocol to enhance the

security of user data and protect it from unauthorized access.

In our proposed framework, we introduce three smart con-

tracts: Subscription, User, and Chronicler, all deployed on the

Hedera Hashgraph. Additionally, our architecture incorporates

an Encryption Module and a Decryption Module. The detailed

operations of both the contracts and modules are elaborated

below:

A. Subscription Contract (SC)

This contract facilitates a subscription mechanism for the

User, granting access to the cloud service network. Initially,

the participant establishes the necessary credentials for service

access. This involves configuring a Secret Message, which

undergoes SHA256 hashing and the resulting hash is stored

globally, serving as a vital component in user authentication

for all actions. When a user subscribes to the service, the

sequential counters at the receiver and user side are set to

the current UNIX time. The user’s provided secret message

is subjected to a SHA256 hash, followed by XOR with

the user’s side counter current number. After this operation,

the number is incremented. At the receiver’s end, which

also uses the same current number, the received XORed

hash undergoes another XOR operation with the number to

retrieve the original hash, which is then verified. Following

this verification, the receiver’s number is also incremented.

Additionally, the participant is prompted to provide the MAC

addresses of up to five devices (adjustable as needed), thereby

restricting service access to these designated devices. After

configuring the credentials, the system deploys a user contract

that provides functionalities such as file upload, read, update,

and deletion, each tied to a specified duration. This enforces

a predefined time limit set by the service provider, requir-

ing contract renewal for continued service access. Finally,

a Chronicler contract is deployed to meticulously record all

events occurring within the service, as implied by its name.

B. User Contract (UC)

This agreement is formulated for interacting with the cloud

by invoking any of the four methods: uploading, deleting,

updating, and reading files. To trigger a method, users must

do so from any of their registered devices. Furthermore, they

must submit their secret message to authenticate their identity

and verify their user status, to ensure that only authorized users

can avail themselves of the service. All the events made by

this contract are managed by the following methods:

1) DataQuery() and fileReg(): The DataQuery function

accepts a fileID and the desired action to be executed

on the file as inputs. Using the UNIX timestamp,

it logs the initiation events of methods (Read, Up-

load, Delete, Update) with the assistance of the map

(map transactions) and the event (event transaction)

data structure. Similarly, in the fileReg function, logs

are associated with the completion of an action, and the

serverFileID (the file address generated by the cloud)

is concurrently mapped using the map (fileLedger) and

event (efileLedger) mechanisms. Both the fileReg() and

DataQuery() functions are invoked privately, with one at

initialization and the other upon successful completion

of an operation. Marking each event will assist in

pinpointing the point of failure in the event of any fault

occurrence, enabling us to make informed decisions for

subsequent actions. Events that trigger the DataQuery()

and fileReg() are as follows:

a) UploadInit: This method records the occurrence of

an upload action being initiated.

b) UploadComplete: This method documents the

completion of the upload action.

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 854 ----------------------------------------------------------------------------



Fig. 5. Proposed Architecture

c) UpdateInit: This method records the occurrence of

an update action being initiated.

d) UpdateComplete: This method documents the

completion of the update action.

e) ReadInit: This method records the occurrence of a

read action being initiated.

f) ReadComplete: This method documents the com-

pletion of the read action.

g) DeleteInit: This method records the occurrence of

a delete action being initiated.

h) DeleteComplete: This method documents the com-

pletion of the delete action.

2) Chronicler Contract: Analogous to the User Contract,

the Chronicler Contract stores all records of events

occurring outside the User Contract (UC). It incor-

porates a function called CloudQuery, which requires

parameters such as user address, fileID, action, and

serverFileID. Using this metadata, the method generates

a log associated with the UNIX timestamp, providing

detailed information about the event. Events that invoke

CloudQuery are as follows:

a) DecryptModuleInit(): This method is triggered si-

multaneously when the Decryption Module is in-

voked, marking the corresponding event.

b) DecryptModuleComplete(): This method is in-

voked upon the completion of the Decryption Mod-

ule to signify the conclusion of the event.

c) DecryptHomoFileInit(): This method is triggered

simultaneously when the Homomorphic decryption

of the ciphertext 1 to plain data is initiated, marking

the corresponding event.

d) DecryptHomoFileComplete(): This method is in-

voked upon the completion of the Homomorphic

decryption to signify the conclusion of the event.

e) AESDecryptInit(): This method is triggered simul-

taneously when the AES decryption of ciphertext

2 to ciphertext 1 is initiated, marking the corre-

sponding event.

f) AESDecryptComplete(): This method is invoked

upon the completion of the AES decryption to

signify the conclusion of the event.

g) EncryptModuleInit(): This method is triggered si-

multaneously when the Encryption Module is in-

voked, marking the corresponding event.

h) EncryptModuleComplete(): This method is in-

voked upon the completion of the Encryption Mod-

ule to signify the conclusion of the event.

i) EncryptHomoFileInit(): This method is triggered

simultaneously when the Homomorphic encryption

of the plain data to ciphertext 1 is initiated, marking

the corresponding event.

j) EncryptHomoFileComplete(): This method is in-

voked upon the completion of the Homomorphic

encryption to signify the conclusion of the event.

k) AESInit(): This method is triggered simultaneously

when the AES encryption of ciphertext 1 to cipher-

text 2 is initiated, marking the corresponding event.

l) AESComplete(): This method is invoked upon the

completion of the AES encryption to signify the

conclusion of the event.

m) CloudUploadInit(): The pre-upload method is in-

voked prior to transferring the file to the cloud stor-

age, signalling the initiation of the upload process.

n) CloudUploadComplete(): This method associates

the fileId provided by the user with the Server-

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 855 ----------------------------------------------------------------------------



FileId upon successful file upload to the cloud.

Additionally, it triggers the CloudQuery() function

to record the transaction log.

o) CloudUpdateInit(): This method invokes Cloud-

Query() and logs the initiation of this function

when an update on the file is performed.

p) CloudUpdateComplete(): This method logs the

event upon successful completion of a file update.

q) CloudReadInit(): This method invokes Cloud-

Query() and logs the initiation of this function

when a read operation is performed.

r) CloudReadComplete(): This method is invoked

when the file is fetched from the cloud server and

registers the corresponding event.

s) CloudDeleteInit(): This method invokes Data-

Query() to indicate that the delete operation is

encountered, and it logs the initialization of the

delete operation for cloud data.

t) CloudDeleteComplete(): This method removes the

serverFileId from the mapping and logs the suc-

cessful deletion from the cloud.

u) FileNotFound(): This method will be invoked when

a user attempts to retrieve a file from the cloud

server, but the file is not present. This logs the

event of the file not being found.

v) The function ‘checkFileOnCloud()‘ can be invoked

by the user to verify the presence of a file in

the cloud. In cases where a user has uploaded a

file but it is not found, the user can initiate SLA

verification to determine if the cloud acknowledges

the file upload. Penalties for violations will be

assessed accordingly. Events recorded during these

actions can be traced back to identify instances of

SLA violations.

3) Encryption Modules: This module is invoked whenever

the user triggers the upload or update method. Initially,

the user uploads the file to the module, and it under-

goes homomorphic encryption, producing ciphertext 1.

Subsequently, ciphertext 1 is processed through AES

encryption, resulting in ciphertext 2. The secret key used

for AES encryption is generated through the Elliptic

Curve Diffie-Hellman key exchange protocol between

the associated company and the client. This shared key

is then employed by AES to encrypt ciphertext 1 into

ciphertext 2. The ciphertext 2 file is then transmitted

to the cloud storage from the user’s side over an open

network. Now for implementation purposes, we have

used-

a) Paillier cryptosystem for implementing Homomor-

phic Encryption.

b) BrainpoolP512r1 curve is used for ECDH to gen-

erate the secret key.

c) CTR (Counter) mode is used for AES encryption.

4) Decryption Module: This module is activated whenever

the user initiates the read method. Initially, the module

Fig. 6. Encryptor/Decryptor Module

retrieves the ciphertext 2 file from the cloud server.

Subsequently, ciphertext 2 is decrypted to ciphertext 1

using the shared AES key. Following this, ciphertext 1

undergoes decryption to plain data through homomor-

phic decryption, thereby providing the user with the

original data.

5) Associated Company: This refers to the entity associated

with users, requiring access to analyze user data. The

company has direct access to the server’s data, as

file metadata is shared with them. Upon obtaining the

doubly encrypted data, referred to as ciphertext 2, the

company can utilize a shared key to decrypt it into

ciphertext 1, which is homomorphically encrypted data.

Subsequently, the company can conduct the necessary

computations on ciphertext 1, obtaining results without

compromising user privacy.

Fig. 7. Interactions of Multiple Users

The process is outlined in Fig. 8. When a user starts the

upload function, the first step is to submit initialization logs,

as explained in the smart contract. After that, the file undergoes

encryption using the encryption module. Once the encryption

is complete, the file is then uploaded to cloud storage. For

retrieving a file, when a user triggers the read operation, the

file is fetched from cloud storage and decrypted using the

decryption module. In the upload method, the new file replaces

the old file with the same serverFileId. In the case of the

Delete operation, the file is deleted from cloud storage. The

chronicler contract carefully monitors all the events related to

these operations, and logs are generated through the functions

detailed in the chronicler contract.

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 856 ----------------------------------------------------------------------------



Fig. 8. Sequence diagram depicting the interactions involved in our frame-
work.

IV. PERFORMANCE ANALYSIS

In this section, we analyze our proposed solution in terms

of latency, CPU usage, and memory used. We performed all

operations within a scenario where a user communicates with

cloud services to perform actions on a file. All communication

is facilitated through a smart contract deployed on the Hedera

network. We simulated our model on a laptop with the device

name HP Pavilion, featuring 16 GB DDR4 RAM 3200Mhz,

a 12th Gen Intel(R) Core(TM) i7-1260P 2.10 GHz Processor,

and running Windows 11 Home operating system. The perfor-

mance of our model relies on cryptographic schemes, smart

contracts, and the time taken to access cloud storage. For our

framework, to establish a cloud storage service environment,

we utilized the Google Drive API v3 through Google’s OAuth

2.0 Playground for developers. Our simulation is executed

against varying file sizes, capped at 1 MB for comprehensive

analysis. We’ve encompassed all scenarios where a user can

upload, update, read, and delete files from and to the cloud,

in addition to encryption and decryption of the files. For each

operation, we computed the average data by executing these

operations 100 times.

Latency measure of Smart Contract, Cloud Service, Encryp-

tor, and Decryptor: As depicted in Fig. 9 and Fig. 10, we

Fig. 9. Average Execution Time for Contract and Cloud Service

Fig. 10. Average Time for Encryption and Decryption

observed that as the file size increased, the latency also gradu-

ally increased, with uploads taking longer to execute compared

to other operations. The delete operation exhibited the short-

est execution time among all operations. The time taken to

encrypt and decrypt the file using homomorphic encryption

followed by an advanced encryption standard algorithm is

also computed by passing the file to the encryption/decryption

module. As shown in Fig. 10, the execution time for encryption

and decryption using the homomorphic algorithm is higher,

whereas the AES algorithm requires less time.

Average Memory Usage of Smart Contract, Cloud Service,

Encryption, and Decryption: As shown in Fig. 11 and Fig. 12,

We can analyze a direct relationship between memory con-

sumption and file size. Initially, the memory consumption of

both the cloud service and Contracts exhibited some random-

ness, but as the file size increased, the memory consumption

became steady and increased linearly. For both the encryption

and decryption processes, their memory usage demonstrated a

logarithmic increase with the file size. Additionally, the aver-

age memory consumption of AES encryption and decryption

is comparatively higher than that of Homomorphic encryption

and decryption.

Average CPU Usage of Smart Contract, Cloud Service,

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 857 ----------------------------------------------------------------------------



Fig. 11. Average Memory Usage of Contract and Cloud Service

Fig. 12. Average Memory Consumption of Encryption and Decryption

Encryption, and Decryption: As shown in Fig. 13 and Fig.

14, We can observe that there is no direct correlation between

CPU Usage and file size. Increased CPU usage is noted

during uploads, taking longer to execute compared to other

operations. Update and Upload exhibit higher usage compared

to Read and Delete, as the workload is more intensive for

the former due to file uploads on the cloud. In the case of

Homomorphic encryption and decryption, their CPU usage is

not fixed, indicating independence from the file size. For AES

encryption and decryption, the CPU usage of decryption is

significantly higher than that of encryption. The file size does

not have a significant impact on the CPU usage in this context.

V. SECURITY ANALYSIS

In this section, we traditionally outline our framework’s

security features, emphasizing its resistance to attacks, privacy

protection, and data security. The comparison of the proposed

mechanism is presented in Table II.

• Privacy and Data Protection: Addressing user concerns

about privacy in cloud services, we have implemented

a dual-layer encryption approach. Initially, user data

undergoes homomorphic encryption, followed by AES

encryption. The shared secret key for AES is established

through Elliptic Curve Diffie Hellman (ECDH) between

Fig. 13. Average CPU Usage of Contract and Cloud Service

Fig. 14. Average CPU Usage of Encryption and Decryption

the user and the associated company. Notably, all these

cryptographic processes take place at the user’s end, elim-

inating the involvement of intermediaries. Consequently,

the data sent to the server from the user side is already

doubly encrypted, providing robust protection against in-

truders. In scenarios where the company needs to perform

computations on user data, it can securely retrieve the

data from the server, employ the shared key to decrypt the

doubly encrypted data into the homomorphic form, and

subsequently perform the required computations. This

methodology ensures the preservation of user privacy.

• Accountability: Accountability pertains to the reliabil-

ity and detection of faults within a cloud service. Our

resilient hashgraph based contract framework ensures

meticulous logging of every event across each service,

rendering the proposed solution accountable for any im-

propriety.

• Resistance to Replay Attack: In a replay attack, the

adversary attempts to intercept and replay the access

request sent by the user to gain unauthorized access

to the data. Our framework addresses this threat by

implementing a sequential number generator at both ends.

The initial number is set to the UNIX time when the user

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 858 ----------------------------------------------------------------------------



TABLE II
COMPARISON OF THE PROPOSED SOLUTION WITH EXISTING ONES

Safety Feature [1] [10] [11] [12] [13] [14] [15] Our
Privacy and Data Protection Y Y Y Y Y Y Y Y
Accountability Y Y Y Y Y Y N Y
Resistance to Replay Attack N Y N N N N N Y
Resistance to Known-Plaintext Attack N Y Y N N N Y Y
Resistance to Eavesdropping Attack N Y Y N N N Y Y
Resistance to Password Cracking Attack N N N N N N N Y
Resistance to DDoS N N N Y Y Y N Y
Resistance to Sybil Attack N N N N Y Y N Y
Resistance to Masquerade Attack N N N N N N N Y

subscribes to the service. The secret message provided

by the user undergoes a SHA256 hash, followed by

XOR with the current number. After this operation, the

number is incremented. At the receiver’s end, which also

utilizes the same current number, the received XORed

hash undergoes XOR again with the number to obtain

the original hash, which is then verified. Following this,

the receiver’s number is also incremented. This multi-

step process ensures that it remains inconsequential even

if an attacker gains access to information after a single

use. Let’s denote:

– m as the secret message provided by the user,

– H(m) as the SHA256 hash of the message m,

– ni as the sequential number at the sender’s end at

time i,
– nj as the sequential number at the receiver’s end at

time j.

At the sender’s end:

1) Calculate the XORed hash:

XORs = H(m)⊕ ni

2) Increment the sender’s number:

ni+1 = ni + 1

At the receiver’s end:

1) Obtain the original hash:

H ′(m) = XORs ⊕ nj

2) Verify the hash:

H(m) = H ′(m)

3) Increment the receiver’s number:

nj+1 = nj + 1

This process ensures that even if an attacker intercepts

the XORed hash (XORs), they cannot obtain the original

hash without knowing the current sequential number (ni).

Additionally, each time the sender sends a message, the

number is incremented, making it inconsequential for an

attacker even if they gain access to information after a

single use.

• Resistance to Known-Plaintext Attack: Known-Plaintext

Attack is a cryptographic weakness in which the attacker

has access to both the encrypted ciphertext and the

original plaintext. In our suggested system, we protect

against this type of attack by using a multi-layer en-

cryption technique. Specifically, the attacker may access

ciphertext 2, which is the result of AES encryption of

ciphertext 1. However, the encryption procedure used to

obtain ciphertext 1 is hidden from the attacker, making it

impossible for them to use this knowledge to compromise

the encryption keys.

• Resistance to Eavesdropping Attack: This cybersecurity

threat involves an unauthorised third party covertly in-

tercepting communication channels between two parties,

and gaining access to the transmitted data. To counter

this, we’ve implemented double encryption on data, uti-

lizing the ECDH method for generating shared AES

keys. Even if an attacker intercepts the data over the

network, it remains useless as we apply AES encryption

with a robust 256-bit key. In the unlikely event that an

attacker intercepts the connection between the user and

the company, obtaining the shared key involves solving

the Elliptic Curve Discrete Logarithm Problem. After

this, the attacker would still be left with homomorphically

encrypted data for which they lack the necessary keys. In

essence, the eavesdropping attack would have a negligible

impact

• Resistance to Password Cracking Attack: In the event

of an attacker attempting to crack the password through

various techniques, our security measures render such

efforts futile. Even if the attacker discovers the secret

message set by the user, it holds no significance. Access

to the service is stringent, requiring authentication from

registered devices with specific MAC addresses.

• Resistance to DDoS and Sybil Attack: A Sybil attack is

a security threat in which a single adversary has control

over numerous nodes or entities on the network. while

A Distributed Denial of Service (DDoS) attack is a mali-

cious attempt to disrupt a network, service, or website by

flooding it with internet traffic. It uses multiple sources to

generate a massive amount of traffic, making mitigation

more challenging. The objective is to overwhelm the

target’s resources such as bandwidth, server capacity, or

network components rendering it inaccessible to users.

Attackers often deploy botnets (networks of compromised

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 859 ----------------------------------------------------------------------------



computers) for coordinated DDoS attacks.

To counter these attacks, we used Hedera Hashgraph,

which uses an asynchronous Byzantine Fault Tolerant

(aBFT) consensus algorithm to provide an unprecedented

level of security against a variety of attacks. In the face of

DDoS threats, Hedera employs a fair access mechanism

in which users must acquire or stake tokens, reducing

the risk of overwhelming the network with malicious

transactions. Furthermore, the unique Hashgraph con-

sensus algorithm ensures that transactions are finalized

quickly and efficiently, making it resistant to DDoS

attacks. To counter Sybil’s attacks, Hedera’s permissioned

network requires nodes to verify their identities, pre-

venting malicious actors from creating a large number

of pseudonymous nodes. The economic model, which

includes native cryptocurrency (HBAR) staking, further

discourages the creation of Sybil nodes by making it

economically unfeasible. The governance model, with a

council of reputable organizations, adds an extra layer of

protection.

• Resistance to Masquerade Attack: A masquerade attack

occurs when an attacker pretends to be someone else

to gain unauthorized access to systems or data. In our

approach, during the subscription process, we request the

MAC address of the device that will access the service. A

secret message is also set, known only to the user. These

credentials are verified at every action, such as upload or

reading. For an attacker to cause harm, they would need

access to one of the registered devices, knowledge of the

secret message, and access to the account linked to the

contracts. The convergence of these requirements makes

any malicious activity highly improbable.

VI. CONCLUSION

In our paper, we introduce a comprehensive framework

designed to safeguard user data during interactions with cloud

services and address SLA violations. Our solution relies on

Hashgraph for creating immutable logs and incorporates AES

and Homomorphic Encryption to ensure the security of user

data. By combining AES with the homomorphic algorithm,

we enhance the system’s security significantly. Additionally,

Hashgraph utilizes a gossip protocol, which reduces compu-

tational overhead. An advantage of this approach is that the

company associated with the system can perform computations

[2] M. Ogburn, C. Turner, and P. Dahal, “Homomorphic encryption,”
Procedia Computer Science, vol. 20, pp. 502–509, 2013.

providing a high level of security and efficiency. Furthermore, 
we assess our framework’s performance in terms of latency, 
CPU usage, and memory consumption.

REFERENCES

[1] M. Zichichi, G. D’angelo, S. Ferretti, and M. Marzolla, “Accountable

clouds through blockchain,” IEEE Access, 2023.
[3] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic

encryption scheme,” in Annual international conference on the theory
and applications of cryptographic techniques. Springer, 2011, pp. 129–
148.

[4] A. M. Abdullah et al., “Advanced encryption standard (aes) algorithm to
encrypt and decrypt data,” Cryptography and Network Security, vol. 16,
no. 1, p. 11, 2017.

[5] N. Su, Y. Zhang, and M. Li, “Research on data encryption standard based
on aes algorithm in internet of things environment,” in 2019 IEEE 3rd
Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC). IEEE, 2019, pp. 2071–2075.

[6] X. Zhang and K. K. Parhi, “Implementation approaches for the advanced
encryption standard algorithm,” IEEE Circuits and systems Magazine,
vol. 2, no. 4, pp. 24–46, 2002.

[7] D. Brown, “Standards for efficient cryptography, sec 1: elliptic curve
cryptography,” Released Standard Version, vol. 1, 2009.

[8] R. Haakegaard and J. Lang, “The elliptic curve diffie-
hellman (ecdh),” Online at https://koclab. cs. ucsb.
edu/teaching/ecc/project/2015Projects/Haakegaard+ Lang. pdf, 2015.

[9] S. Aikins-Bekoe and J. B. Hayfron-Acquah, “Elliptic curve diffie-
hellman (ecdh) analogy for secured wireless sensor networks,” Inter-
national Journal of Computer Applications, vol. 176, no. 10, pp. 1–8,
2020.

[10] A. Saini, Q. Zhu, N. Singh, Y. Xiang, L. Gao, and Y. Zhang, “A smart-
contract-based access control framework for cloud smart healthcare
system,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5914–5925,
2020.

[11] B. Sowmiya, E. Poovammal, K. Ramana, S. Singh, and B. Yoon, “Linear
elliptical curve digital signature (lecds) with blockchain approach for
enhanced security on cloud server,” IEEE Access, vol. 9, pp. 138 245–
138 253, 2021.

[12] H. Javed, Z. Abaid, S. Akbar, K. Ullah, A. Ahmad, A. Saeed, H. Ali,
Y. Y. Ghadi, T. J. Alahmadi, H. K. Alkahtani et al., “Blockchain-
based logging to defeat malicious insiders: The case of remote health
monitoring systems,” IEEE Access, 2023.

[13] P. Verma, V. Tripathi, and B. Pant, “Secure hashgraph for healthcare:
Strengthening privacy and data security in patient records,” IEEE Trans-
actions on Consumer Electronics, 2024.

[14] J. Tian and X. Jing, “A lightweight secure auditing scheme for shared
data in cloud storage,” IEEE Access, vol. 7, pp. 68 071–68 082, 2019.

[15] M.-q. Hong, P.-Y. Wang, and W.-B. Zhao, “Homomorphic encryption
scheme based on elliptic curve cryptography for privacy protection
of cloud computing,” in 2016 IEEE 2nd International Conference on
Big Data Security on Cloud (BigDataSecurity), IEEE International
Conference on High Performance and Smart Computing (HPSC), and
IEEE International Conference on Intelligent Data and Security (IDS).
IEEE, 2016, pp. 152–157.

clouds through blockchain,” IEEE Access, 2023.

on data post-AES decryption without requiring the user’s 
private key. Our proposed solution is robust against threats, 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 860 ----------------------------------------------------------------------------




