
Extending Desbordante with Probabilistic
Functional Dependency Discovery Support

Ilia Barutkin, Maxim Fofanov, Sergey Belokonny, Vladislav Makeev, George Chernishev
Saint-Petersburg University

Saint-Petersburg, Russia

{ilia.d.barutkin, max.fofanov, belokoniy, makeev.vladislav.d, chernishev}@gmail.com

Abstract—Data profiling aims to extract complex patterns from
data for further analysis and use that data in domains such as
data cleaning, data deduplication, anomaly detection, and many
more.

Functional dependencies (FDs) are one of the most well-
known patterns. However, they are poorly suited for these tasks,
as real data is usually dirty, and the rigid definition of FDs
does not allow algorithms to locate them. For this reason,
there are several formulations aimed at relaxing FDs to support
dirty data, with approximate functional dependency (AFD) being
the most popular one. Another formulation is the Probabilistic
Functional Dependency (pFD), which we aim to support inside
Desbordante — a science-intensive, high-performance and open-
source data profiling tool implemented in C++. However, pFDs
are relatively poorly studied, compared to AFDs.

In this paper we study pFDs, both analytically and empirically.
We start by assessing how different pFDs and AFDs are by
studying cases in which pFDs have an edge over AFDs. Then,
we implement the algorithm for pFD discovery, as well as study
its run time and memory consumption. We also compare it with
an AFD discovery algorithm. Lastly, we study the output of both
algorithms to learn whether or not it is possible to use AFD
discovery algorithm to get pFDs and vice versa.

I. INTRODUCTION

Currently, growing volumes of data pose a serious challenge

to data analysts. Data, however, offers only a moderate value

in and of itself, and it is instead the facts contained within

that data that are of interest to analysts. The volumes of data

in question far exceed the size that could be grasped by the

human eye, so automatic approaches become more and more

in demand.
Data profiling [1] aims to extract facts from data. There

are two kinds of data profiling — naive and science-intensive.

Naive approach concerns itself with simple statistics, such as

the number of rows and columns, number of nulls in them,

their mean and variance, etc. There are dozens of tools for

this kind of profiling. On the other hand, science-intensive

profiling aims to extract complex patterns represented by

structures which we will refer to as primitives. Examples

of such patterns are database dependencies (functional [2],

inclusion [3]), association rules [4], algebraic constraints [5],

inferred semantic data types [6], and others. Such patterns have

many applications:

• for scientific data, they may indicate a presence of some

regularity [7], which may promote the formulation of

a hypothesis, which, in turn, may lead to a scientific

discovery;

• for business data, it is possible [8] to use the discovered

primitives for cleaning errors in data, finding inexact

duplicates, performing schema matching, finding outliers,

and solving many other problems;

• for machine learning, data primitives can help in feature

engineering and in choosing the direction for the ablation

study;

• for databases, they can help with validating and discov-

ering various advanced integrity constraints.

Extracting and validating primitives is computationally ex-

pensive, which becomes a serious issue with the scaling

of datasets. Therefore, it requires complex algorithms and

efficient implementations. These are some of the major con-

tributing factors as to why such kind of profiling is now a

developing area and why science-intensive profilers are rare.

Currently, there exist two science-intensive data profilers —

Metanome [9] and Desbordante.

Desbordante (Spanish for boundless) [10] is a science-
intensive, high-performance and open-source data profiling

tool implemented in C++. To the best of our knowledge,

Desbordante is currently the only profiler that possesses these

three qualities. It is capable of discovering and validating

many primitives, including functional dependencies (both ex-

act and approximate), conditional functional dependencies,

metric functional dependencies, and others. The full list can

be found on the web-site [11].

One of the well-known primitives is the functional depen-

dency, which states that if two records of the table are equal

in attribute X, then they should be equal in attribute Y. The

formal definition is given in Section II.

Primitives can be classified into three groups:

1) Exact by definition. These primitives define instances

which hold over the whole dataset. Classic functional

dependency is an example of the exact primitive.

2) Approximate by definition. In this case, approximate

means that found instances hold over the whole dataset,

but with some degree of error predefined by user at the

start of the algorithm. Thus, there are records in the

dataset that may not conform to the exact definition.

3) Approximate by discovery procedure. In this case ap-

proximate means that discovery algorithm returns prim-

itive instances that may hold or may not hold. While

such instances require verification, such approach may

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 158 --

be of use as it allows the speed up of discovery by up

to an order of magnitude [12], [13].

In this paper, we will only consider dependencies that

are approximate by definition, also called relaxed dependen-

cies [14]. Such dependencies are of a particular interest for

the end-users of science-intensive profilers. There is a simple

reason for this: real-life data is always dirty — it contains

inconsistencies, missing values, and other artifacts. Therefore,

exact dependencies rarely hold on such data and discovery

algorithm will not locate them.

For functional dependencies, there are several approximate

variants that are built upon the family of g1, g2, g3 metrics,

proposed by J.Kivinen and H.Mannila in their seminal paper

“Approximate inference of functional dependencies from re-

lations” [15]. The most well-known variant is Approximate

Functional Dependency (AFD) [16], which is based on an

adaptation of the g1 metric for defining maximum permissible

error. One of the alternatives is the Probabilistic Functional

Dependency [17], [18], which uses g3.

We are considering the addition of pFD discovery function-

ality to Desbordante. Before this, it is necessary to evaluate

pFDs, since they are significantly less studied that AFDs. At

the same time, Desbordante supports discovery and validation

of FDs and AFDs, so it is natural to compare them with each

other. Our goal is twofold: firstly, it is essential to study how

expensive in terms of run time and memory consumption pFDs

are when compared to exact approaches. Secondly, it is also

necessary to understand if pFD support provides value to the

end-user. This includes answering questions “how different are

pFDs from AFDs”, and “how dependencies of both types that

are returned by discovery algorithm relate to each other”.

Overall, in our study we pose the following research ques-

tions (RQs):

RQ1 Are pFDs of interest to the end-user? How different are

they from AFDs, what kind of FD violations are they

more tolerant to? Does this definition allow for discovery

of dependencies that could not be discovered by the AFD

definition? And vice versa: how much AFDs are lost by

it?

RQ2 How computationally expensive is the candidate valida-

tion procedure of pFD discovery algorithm compared to

the AFD?

RQ3 How does maximum error threshold affect run time and

memory consumption of the pFD discovery algorithm?

RQ4 What is the run time and memory expenses of pFD

discovery, compared to AFD?

Overall, the contribution of the paper is the following:

• A discussion of pFDs, their comparison with AFDs.

• A survey of approximate primitives that are based on

g1, g2, g3 metrics, as it is the basis for the majority

of existing approximate primitives, including AFDs and

pFDs.

• An open-source C++ implementation of a pFD discovery

algorithm, which — to the best of our knowledge — is

the only one currently available.

• An empirical evaluation of the pFD discovery algorithm,

and its comparison with the AFD one.

This paper is organized as follows. In Section II we formally

present pFDs and AFDs. We compare them and discuss their

differences, while providing examples. Next, in Section III

we discuss related work concerning approximate dependencies

based on g1, g2, g3 metrics. In Section IV we describe the

algorithm and discuss our modifications. We evaluate our

implementation and compare pFD and AFD discovery in

Section V. We conclude this paper with Section VI.

II. BACKGROUND

Let us start with basic definitions imperative to understand-

ing the paper’s context.

A functional dependency [19] over a relation r with schema

R is an expression denoted as X → A, where X ⊆ R and

A ∈ R. We also denote set X as left-hand side (LHS), and

the attribute A as right-hand side (RHS). The dependency is

satisfied if, for all pairs of tuples t, u ∈ r, the following holds:

if ∀B ∈ X(t[B] = u[B]), then t[A] = u[A], or, equivalently,

t and u agree on X and A. In this case, we also say that the

functional dependency is correct or holds.

Let a certain relation r with schema R and a functional

dependency X → Y over R be given. Then we assert that a

pair (u, v) of tuples from r violates the dependency, or equiv-

alently, is a violating pair, if u[X] = v[X], but u[Y] �= v[Y].
From this, it can be concluded that the dependency holds on

the relation if the relation contains no violating pairs. A tuple

u is termed violating if it is a part of a violating pair.

A relaxed functional dependency is a functional dependency

that is almost satisfied. An example of this could be the rela-

tionship between columns “phone number” and “department”,

as several departments within company may share the same

phone, albeit rarely. There are several ways to define the

relaxation of functional dependency. The first one is the notion

of Approximate Functional Dependency. In the original TANE

paper [19] authors proposed to use the g3 metric to define and

discover AFDs, which is as follows:

g3(X −→ Y, r) = 1− max{|s||s ⊆ r, s |= X −→ Y }
|r|

Almost two decades later S. Kruse and F. Naumann [16] de-

veloped PYRO — a novel AFD discovery algorithm. However,

they have used a modified g1 metric for their AFD definition,

which is as follows:

e(X −→Y, r) =

|{(t1, t2) ∈ r2 | t1[X] = t2[X] ∧ t1[Y] �= t2[Y]}|
|r|2 − |r|

Thus, currently there exist two algorithms for AFD discov-

ery and two AFD definitions. Metrics which are used in these

definitions can be put into both existing algorithms.

Desbordante has both TANE and PYRO implementa-

tions [20]. Having started our project, we have decided to

stick to the modern definition, and thus in this paper we

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 159 --

consider AFDs that are based on the modified g1 metric. It

is also worth mentioning that our implementation of TANE

is a modified one, similarly to TANE implementation in the

Metanome project [21].

The second relaxation approach is the Probabilistic Func-

tional Dependency, which is defined as follows. Let R — a

relation, X — a set of attributes, and A — an attribute in

R. A probabilistic functional dependency [17] is denoted as

pFD : X
p−→ A, where p is the likelihood of the X −→ A

being correct.

To define said probability, lets denote a set of unique not-

null values of attributes of X as DX = {t[X] | t ∈ R},

set of tuples with those values of X1 attributes of X as

VX1
= {t ∈ R | t[X] = X1}, and another set of tuples as

(VY , VX1
) = {t ∈ R | t[X] = X1 ∧ t[Y] = argmax

Yk∈r
{|VX1

∩
VYk

|}}. The probability of a dependency holding on a subset

of tuples with value of attribute X equal to X1 is therefore

defined as P (X −→ Y, VX1
) =

|VY ,VX1
|

|VX1
| .

Finally, the probability of a functional dependency between

attributes X and Y in R is defined via two formulas, namely

PerValue and PerTuple:

PPerV alue(X −→ Y,R) =

∑
VX∈DX

P (X −→ Y, VX)

|DX |

PPerTuple(X −→ Y,R) =
∑

VX∈DX

|VX |
|R| P (X −→ Y, VX)

It is evident PerValue is an average of the probabilities of a

dependency being correct for each distinct value of X, whereas

PerTuple metric accounts for the frequency of values of X

amongst all tuples in a relation.

We also say that a pFD X
p−→ Y is minimal if, for any

proper subset X ′ ⊂ X , X ′ p−→ Y does not hold. A pFD is

called trivial, if Y ∈ X .

Note that it is possible to add an attribute to LHS of a

pFD, and the resulting dependency will remain a pFD, if

PerTuple metric is used. The same holds true for AFDs and

their g1 metric. However, this is not always true in case of

pFD PerValue.

Finally, it is evident that PerTuple metric is the same as g3,

which is defined using notion of probability:

PPerTuple(X −→ Y,R) = 1− g3(X −→ Y,R)

III. RELATED WORK

In the world of relaxed dependencies, there are three major

metrics used for defining how well a given relaxed dependency

holds on a particular dataset. They are called g1, g2, g3 and

were proposed by J.Kivinen and H.Mannila in “Approximate

inference of functional dependencies from relations” [15].

Despite the fact that the original paper considers relaxed

functional dependencies, the concept is easily generalized

owing to the flexibility of the provided definitions. As the

result, these metrics gave rise to many other types of relaxed

dependencies which we are going to survey in this paper.

A. g1 and g2 metrics

Let G1 be defined as the number of violating pairs for the

dependency X → Y in the relation r:

G1(X → Y, r) = |{(u, v)|u, v ∈ r,

u[X] = v[X] ∧ u[Y] �= v[Y]}|.
Then, the metric g1 represents a normalized version of G1.

g1(X → Y, r) = G1(X → Y, r)/|r|2

G2 is the number of violating tuples for the dependency

X → Y in the relation r.

G2(X → Y, r) = |{u|u ∈ r,

∃v ∈ r :u[X] = v[X] ∧ u[Y] �= v[Y]}|
The metric g2, in turn, represents a normalized version of

G2.

g2(X → Y, r) = G2(X → Y, r)/|r|
The g1 and g2 metrics, as shown in the previously mentioned

paper [15], are applied for defining approximate functional

dependencies. However, due to their poorer generalizability

and greater computational complexity, they are not as widely

used as g3 [22].

TABLE I. EXAMPLE OF g1,
g2 AND g3

X Y

a 1
b 2
a 3
c 3
d 4

Consider an example presented in Table I. In case of g1
its value is calculated as follows. Since there is only a single

violating tuple — ((a, 1), (a, 3)), we get:

g1(X → Y, r) =
1

52
= 0.04.

For g2, there are two values with different right-hand sides:

(a, 1) and (a, 3), hence the value of the metric g2 being:

g2(X → Y, r) =
2

5
= 0.4.

Now, let us consider various relaxed dependencies that are

based on either g1 or g2.

1. Approximate functional dependencies. We have dis-

cussed the notion of AFDs in the Background section. An

AFD example is presented in Table II.

PYRO [16] is an algorithm for discovery of AFDs that

are based on the modern definition. In this algorithm, an

adaptation of the g1 metric, referred to by the authors of the

article as e defined in equation II is employed.

PYRO demonstrates excellent performance due to employ-

ing several interesting optimizations, one of them being the

error calculation approach.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 160 --

TABLE II. AFD EXAMPLE: POSITION → SALARY (g3
= 0.16).

ID Position Salary

1 Programmer 3000
2 Designer 2800
3 Programmer 3200
4 Manager 3000
5 Designer 2800
6 Programmer 3000

Let r be a relation with schema R and X ⊆ R be a set of

attributes. A cluster is defined as the set of all tuple indices

from r that have identical values for X , or c(t) = {i|ti[X] =
t[X]}. The PLI for X is all such sets, excluding singleton

clusters:

π̄(X) = {c(t)|t ∈ r ∧ |c(t)| > 1}

The size of the resultant index is denoted as ||π̄(X)|| =∑
c∈π̄(X) |c|.
Hence, the calculation of the error metric e is as follows:

tuple pairs that agree on X and disagree on A (for the candi-

date X → A) are considered violating pairs, which need to be

counted. However, instead of counting them directly, PYRO

employs a more efficient method. For each cluster π̄(X), the

number of tuple pairs that also agree on A is calculated, and

this result is then subtracted from the total number of tuple

pairs in the cluster. This is achieved through vA, a vector in

which information about the content of the cluster is recorded

in one-hot-encoding format. Summing up the errors for each

cluster yields the final error. The pseudocode for this algorithm

is presented in Listing 1.

Algorithm 1 Calculation of e for AFD using PYRO

Require: Set of tuples π̄(X), values of attribute A as vA
Ensure: Metric e for AFD

e ← 0
for each cluster c ∈ π̄(X) do
counter ← dictionary with default value 0

for each item i ∈ c do
for vA[i] �= 0 do
counter[vA[i]] ← counter[vA[i]] + 1

end for
end for
e ← e + |c|2 − |c| − ∑

A∈counter counter[A]2 −
counter[A]

end for
return e

2. Approximate unique column combinations. Approx-

imate Unique Column Combinations (AUCCs) represent an-

other type of relaxed dependency that can be discovered using

the PYRO algorithm.

Let r be a relation with schema R and attribute sets X,Y ⊆
R. According to [16], X is a Unique Column Combination

(UCC) if, for all tuple pairs t1, t2 ∈ r, from t1[X] �= t2[X] it

follows that t1[Y] = t2[Y].
The error metric for AUCC is defined as follows:

e(X →A, r) =

=
|{(t1, t2) ∈ r2|t1[X] �= t2[X] ∧ t1[A] = t2[A]}|

|r|2 − |r| .

For Approximate UCC, unlike AFD, the error calculation

for π̄(X) is trivial. This happens because all tuple pairs within

each cluster are the violating tuples themselves.

Algorithm 2 Calculation of e for AUCC using PYRO

Require: Set of tuples π̄(X), total number of tuples |r|
Ensure: Metric e for AUCC

e ← ∑
c∈π̄(X)

|c|2−|c|
|r|2−|r|

return e

Approximate Unique Column Combinations are utilized in

tasks such as data cleaning, database normalization, and query

optimization.

3. Denial Constraints. Denial constraint (DC) is a type

of an integrity constraint used in databases to ensure data

quality. DC describes conditions that must not occur within

the database. For example, it might state that two rows in a

table cannot have certain value combinations. If an insertion

or an update of a row violates a DC, the operation is generally

aborted.

Approximate denial constraints in databases are a form of

constraint that permits a degree of flexibility or exceptions.

Unlike exact denial constraints that rigorously prohibit certain

data value combinations, approximate denial constraints allow

for a limited number of violations.

In this case, the g1 metric is utilized for calculating the error

measure [23].

DCs and their approximate variants are essential for uphold-

ing data consistency and reliability within a database, as they

avert the introduction of invalid or conflicting information.

B. g3 metric

Let G3 represent the number of tuples for the dependency

X → Y within the relation r that must be removed to establish

an exact dependency. Formally:

G3(X → Y, r) = |r| −max{|s| : s ⊂ r, s |= X → Y }
g3(X → Y, r) = G3(X → Y, r)/|r|

The g3 metric is acknowledged as an industry standard and

is applied in the context of various approximate dependencies:

Approximate Functional Dependencies, Approximate Inclu-

sion Dependencies, Probabilistic Functional Dependencies.

Its calculation is as follows. For the example presented in

table I:

g3(X → Y, r) =
5− 4

5
,

this is because it is sufficient to remove one tuple for the

“exact” dependency to be satisfied. This example illustrates the

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 161 --

practical utility of the g3 in assessing the degree of violation

of a dependency within a dataset. Now, let us consider various

relaxed dependencies that are based on this metric.

1. Approximate functional dependencies. Despite the fact

that modern AFD discovery papers utilize the g1 metric,

the initial paper proposing the AFD concept employed g3.

This paper also proposed the TANE algorithm [19], designed

for mining exact functional dependencies which can also be

modified for mining approximate functional dependencies. The

metric was defined as follows:

e(X → A) = min{ |s||r| : s ⊂ r and X → A holds in r \ s}

Another algorithm [24] utilizing the g3 metric is called DiMε.

This highly-optimized algorithm employs a level-wise ap-

proach in candidate generation, starting with singleton sets at

level zero. Additionally, the authors claim that the algorithm

can be adapted for use with other metrics and even different

types of dependencies.

Functional and approximate functional dependencies are

instrumental in database normalization, data cleaning, and also

aid analysts in uncovering hidden trends within data. Their

implementation and optimization in algorithms like TANE and

DiMε highlight their significance in managing and analyzing

large data sets efficiently.

2. Approximate inclusion dependencies. An Inclusion De-

pendency [16] (IND) over a schema R is a statement of the

form Ri[X] ⊆ Rj [Y], Ri, Rj ∈ R, X ⊆ Ri, Y ⊆ Rj . The

size (or arity) of such a dependency is denoted as i = R[X] ⊆
R[Y], where |i| = |X| = |Y |. Inclusion dependencies of size

one are commonly referred to as unary inclusion dependencies.

An inclusion dependency is satisfied if all values from the

left side are present in the right side. To assess the degree of

approximation, a variant of the g3 metric, denoted as g′3, is

used. This version is adapted for inclusion dependencies and

conveys essentially the same meaning.

Despite the lack of separate algorithms for detecting approx-

imate inclusion dependencies, several algorithms for finding

“exact” dependencies have been adapted for this task, such as

MIND [25], Spider [26], or S-indd [27].

MIND employs a level-wise approach, where candidates of

size i+1 are generated from already discovered dependencies

of size i. In the case of approximate dependencies, during

the candidate validation stage, approximate dependencies that

meet a user-defined threshold for g′3 are also considered.

The primary application area for both “exact” and approxi-

mate inclusion dependencies is in the identification of foreign

keys in databases [28]. This is crucial for database design,

integrity, and normalization processes, facilitating effective

data management and interrelation of different data sets within

a database system. An example of AIND is presented in

Table III.

3. Graph Entity Dependencies. A Graph Entity Depen-

dency (GED) is a constraint within a property graph G,

expressed as a pair φ = (Q[ū], X → Y). It states that for

any instance of the pattern in the graph Q[ū] within G, the

TABLE III. AIND EXAMPLE: USER EMAIL → REGISTERED EMAIL (ε
= 0.34)

TID User Email ID Registered Email

T001 example@email.com C123 example@email.com
T002 sample@email.com C124 sample@email.com
T003 missing@email.com C125 -

dependency X → Y must be upheld. This denotes that if

specific conditions defined by X are met within a pattern

instance, then other conditions outlined by Y must also be

satisfied. The metric g3 is employed in its original form as a

measure of approximation for GED [29].

Graph Entity Dependencies are employed for several key

objectives within the realm of graph databases and data

management. They ensure data integrity and consistency and

aid in the optimization of complex queries.

4. Approximate Interval-based Temporal Dependencies.
Approximate Interval-based Temporal Functional Depen-

dencies (AITFDs) [30], [31] are a type of constraint in

temporal databases. They extend the concept of functional

dependencies to consider the temporal aspect of data, specif-

ically focusing on time intervals. They use g3 as a metric of

approximation as follows.

Let X and Y be sets of atemporal attributes of a temporal

relation schema R = R(U,B,E), an Allen’s Interval relation

and ε a real number 0 ≤ ε ≤ 1. An instance r of R satisfies an

ITFD X → Y with approximation ε if there exists a subset

r′ ⊆ r for which r \ r′ |= X → Y and |r′| ≤ ε · |r|.
AITFDs are used for maintaining data integrity in temporal

databases by ensuring that relationships among data attributes

adhere to specified patterns over time. They are particularly

useful for analyzing historical data, identifying trends, and pre-

dicting future values by understanding the temporal dynamics

of data relationships.

Wrap-up. Concluding this section, we can state that, to

the best of our knowledge, there were no studies where

comparison between pFDs and AFDs was performed. The

reasons for this are the following:

1) Both notions were developed long before the era of data

profiling began.

2) Each notion was developed by a different research group

and for a particular task.

3) The notions were assessed by its applicability to this

particular task only, or no comparisons were performed

at all.

Currently, data profiling is gaining traction, and it is imper-

ative to catalogue all available tools. Thus, it is essential to

compare pFDs and AFDs with each other.

IV. ALGORITHMS AND IMPLEMENTATION

This paper considers an implementation of pFDTane algo-

rithm designed to discover minimal non-trivial probabilistic

functional dependencies.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 162 --

The new algorithm is based on TANE [19], which is a

graph-traversing algorithm in which a graph — called lat-

tice — is comprised of vertices representing all possible sets

of attributes and edges connecting nodes of a form X and

XA, where X — set of vertices, and A — another attribute.

This way every edge represents a functional dependency

X −→ A. The algorithm consecutively checks for the existence

of functional dependencies between neighboring levels of

lattice, excluding vertices whenever possible.

Integration. In Desbordante, FDs discovery algorithms are
implemented by inheriting FDAlgorithm or its subclasses
and overriding ExecuteInternal method. Tane and PFDTane
shown on the diagram in Figure 1 inherit PliBasedAlgorithm,
in which relation loading method is additionally overridden.
PositionListIndex (PLI) is a useful data structure comprised of
stripped partitions [19]. This means that the structure contains
a set of equivalence classes, built with respect to the equality
of attribute values. Stripped means that classes containing a
single attribute are dropped to reduce memory consumption.
In Desbordante, this set is represented by a double-ended
queue — namely, std::deque. More specifically, inheritance and
related classes are shown on Fig. 1.

Algorithm 3 Calculation of PerValue [17] metric

Require: Relation R, attributes X and A

Ensure: Metric PerValue for X −→ A
c ← t1(X); |π(X)| ← 1; count(c) ← 0
c′ ← t1(X,A); count(c′) ← 0;maxCount(c) ← 0
sum ← 0
for each t ∈ R do

if t(X) == c then
count(c) ← count(c) + 1
if t(X,A) == c′ then
count(c′) ← count(c′) + 1

else
if maxCount(c) < count(c′) then

maxCount(c) ← count(c′)
end if
c′ ← t(X,A); count(c′) ← 0

end if
else
sum ← sum+maxCount(c)/count(c)
c ← t(X); |π(X)| ← |π(X)|+ 1
count(c) ← 0;maxCount(c) ← 0

end if
end for
return sum/|π(X)|

The class PFDTane uses LatticeLevel and LatticeVertex data

structures, which contain the level and vertex information re-

spectively. PFDTane generates lattice levels and handle its life

time, so there an aggregation dependency with LatticeLevel is

shown. Meanwhile ExecuteInternal method uses LatticeVertex

and PLI, LatticeLevel consists of instances of LatticeVertex

and each PLI instance corresponds to LatticeVertex, which is

shown as composition on the diagram.

Algorithm 4 Calculation of PerTuple metric

Require: Relation R, attributes X and A

Ensure: Metric PerTuple for X −→ A
c ← t1(X); count(c) ← 0
c′ ← t1(X,A); count(c′) ← 0;maxCount(c) ← 0
sum ← 0
for each t ∈ R do

if t(X) == c then
count(c) ← count(c) + 1
if t(X,A) == c′ then
count(c′) ← count(c′) + 1

else
if maxCount(c) < count(c′) then

maxCount(c) ← count(c′)
end if
c′ ← t(X,A); count(c′) ← 0

end if
else
sum ← sum+maxCount(c)
c ← t(X); |π(X)| ← |π(X)|+ 1
count(c) ← 0;maxCount(c) ← 0

end if
end for
return sum/|R|

Candidate Validation. Error measurement functions used

for candidate validation is the essentially only part which

had to be changed in order to adapt the existing TANE

implementation for pFD discovery. The functions implements

the algorithms presented in listings 3 and 4. Implemented

functions for non-zero FDs take PLI of LHS attributes of

dependency and PLI of a union of LHS attributes and RHS

attribute as arguments. Sorting performed in the first lines

of code in Listings 3 and 4 is done on the latter argument,

i.e. union of PLIs. Thus, it is then possible to iterate over

PLI clusters, calculating probability in linear time. Because

of using PLI, the algorithm does not iterate over single value

clusters, which has positive impact on the algorithms run time.

V. EVALUATION AND DISCUSSION

A. Methodology and Experimental Setup

Methodology. In order to answer research questions posed

in the introduction, we have decided to perform quantita-

tive and qualitative studies. For the former, we are going

to analyze pFDs using examples and conduct an extensive

literature review. For the latter, we are going to run a series of

experiments, featuring AFD, pFD PerTuple, and pFD PerValue

discovery algorithms. All these algorithms were implemented

in Desbordante, and, more specifically, we used our TANE

implementation. It is necessary to mention that, similarly to

Metanome in Desbordante, TANE algorithm can cause a larger

search space than necessary. However, due to the specifics

of implementation, this functionality incurs almost negligible

RAM overhead. Turning to performance, we want to stress

the fact that this also does not negatively affects our study,

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 163 --

Fig. 1. UML class diagram

TABLE IV.
EXAMPLE CASE 1

X Y

0 1
0 2
0 3
0 4
0 5
... ...
1 1
2 2
3 3
4 4
5 5
6 6

TABLE V
EXAMPLE CASE 2

X Y

0 1
0 1
0 1
0 1
0 1
1 1
1 2
2 3
2 4
3 5
3 6

since all experiments either compare methods relatively, or

they compare algorithm output.

For pFD PerValue and pFD PerTuple algorithms, each

dataset have been run with error thresholds ranging from 0 to 1

(inclusively) with an increment of 0.025. For TANE, datasets

have been run with error thresholds located in captions of

Tables IX–XII. This subset was selected due to the fact that

error values close to zero are of more value to user and are

expected to be used much more frequently.

A total of 10 iterations per error threshold value had

been run, after which the average query execution time and

maximum memory usage were calculated with confidence

interval of 95%. Due to large confidence intervals for the run

time of measures v2.csv, an additional set of 20 iterations have

been performed for that specific dataset in order to get a more

accurate data.

Datasets. To perform experimental evaluation, we used

datasets presented in Table VIII. Links to the datasets are avail-

able in the GitHub repository [32]. To perform comprehensive

evaluation, we tried to select a collection of datasets with

different properties. In this table we list the number of rows

and attributes, file size and file source, as well as the number

of minimal non-trivial FDs, AFDs, pFDs (both PerTuple and

PerValue). The AFDs and pFDs were calculated with error

threshold set to 0.01.

We have divided these datasets into two groups, which we

present separately in two distinct figures. The reason for this

is the dataset size difference, which will make them poorly

readable if we put them in the same figure.

Experimental setup. Experiments were performed using

the following hardware and software configuration. Hardware:

AMD® Ryzen 5 7600X CPU @ 5.453GHz (6 cores), 32GB

RAM. Software: Ubuntu 22.04 LTS, Kernel 6.5.0-15-generic

(64-bit).

B. RQ1: Are pFDs of interest to the end-user? How much
of a difference there is between pFDs and AFDs, and what
kind of FD violations are pFDs more tolerant to? Does this
definition allow for discovery of dependencies that could not
be discovered by the AFD definition? And vice versa: how
much AFDs are lost by it?

Let us start with the qualitative comparison of AFDs and

pFDs.

Observation 1. First, lets consider a simplified dataset R
presented in Table IV and X −→ Y dependency.

pFD with PerValue metric is not affected by the fre-

quency of X. Indeed, consider |V0| −→ ∞. In this case

PPerV alue(X −→ Y,R) tends to 6
7 and its respective error

1 − PPerV alue(X −→ Y,R) tends to 1
7 . At the same time,

g3(X −→ Y,R) and e(X −→ Y,R) tends to 1.

Thus, this metric can account for “faulty” LHS, if there

are not too much of them. It allows having a lot of violating

records if they correspond to relatively few distinct LHS

values. For example, such “local” error may arise if a single

sensor of an overall healthy set started to report faulty data.

Observation 2. Now, consider data presented in Table V

and the same dependency.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 164 --

The dependency is less likely to hold with the Per-

Value metric: PPerV alue(X −→ Y,R) = 5
8 = 0.625, and

1 − PPerV alue(X −→ Y,R) = 0.375. At the same time

g3(X −→ Y,R) = 3
11 = 0.27, and e(X −→ Y,R) = 3

55 = 0.05.

Thus, pFD’s PerValue will report larger error when there

are a lot of individual LHS where dependency does not hold.

It will ignore the positive contribution of “0”, regardless of

their number.

For a data scientist who explores data, such behavior may be

undesirable and lead to valuable facts being missed. Suppose

that there are one million of those “0” in this table, and

the other six entries stay the same. This table will result in

PerValue error of 0.375, which is rather large and therefore

the pattern described by this pFD can be ignored. However,

a more probable interpretation is the following: one million

records are correct (since there is one million of them) and

these six values are anomalies which should be deleted. At

the same time, such interpretation can be located using AFDs.

FD guessing problem. pFDs were extensively used for

problems where the goal was to “guess” FDs [17], [33],

[34] from low-quality data. In these studies true FDs (gold

standard) were known beforehand and had to be discovered

using pFDs. Authors who originally proposed the pFD concept

have performed experiments [17] which have shown that

PerTuple tends to yield better results than PerValue in finding

correct dependencies in cases where data is of a lower quality

(due to noise).

However, their subsequent experiments [18] with an im-

proved version of TANE that uses transitivity rule have had

PerValue outperforming PerTuple in the majority of cases.

The authors measured recall, precision, and F-measure using

a gold-standard collection.

Recently, the PerValue metric demonstrated [33], [34] better

results for the problem of FD discovery in datasets containing

missing values.

AFDs vs pFDs, quantatively. The above-mentioned studies

have not considered AFDs and their difference from pFDs.

In our qualitative study we have demonstrated cases where

pFDs can be of use and where they are inferior to AFDs.

Now, let us turn to quantative part, which aims to answer

the rest of the RQ1: “Does this definition allow for discovery

of dependencies that could not be discovered by the AFD

definition? And vice versa: how much AFDs are lost by it?”.

Table VI contains the results of a search for three different

dependency types in the monkeypox.csv dataset: AFDs, pFDs

with PerValue, and pFDs with PerTuple. The table shows that

AFD fails to find some pFDs when run with certain error

thresholds, despite the dataset containing a comparable number

of minimal non-trivial AFDs.

Though the minimal sets indeed differ, it doesn’t imme-

diately imply that the complete sets of pFDs and AFDs do.

For example, for a fixed threshold, you may have found the

following minimal dependencies: pfd1 : XZ → A, pfd2 :
XY → A and afd1 : X → A. But afd1 infers all other

AFDs that have X in LHS. That implies pfd1, pfd2 are in

set of all AFDs. In order to highlight the essential difference

0.0 0.2 0.4 0.6 0.8 1.0

Error

1

2

3

4

5

6

7

8

9

T
im

e
 (

s
)

Per Value

Per Tuple

(a) EpicVitals

0.0 0.2 0.4 0.6 0.8 1.0

Error

0

2

4

6

8

10

12

14

T
im

e
 (

s
)

Per Value

Per Tuple

(b) jena climate 2009 2016

Fig. 2. pFDTane running times

of pFDs, we have also included in the table the number of

minimal pFDs that are neither in the set of minimal AFDs nor

inferable from it.

Concluding this RQ, we can say that pFDs have their own

strengths, and that they are different from AFDs. Specifically,

having fixed error threshold, pFDs are not a mere subset of

AFDs, nor are AFDs a subset of pFDs in general. Finally,

existing studies have demonstrated that pFDs have found

applications for the FD guessing problem. However, in those

studies comparison with AFDs was not performed, and it is

outside of scope of this paper.

C. RQ2: How computationally expensive is the candidate
validation procedure of pFD discovery algorithm compared
to the AFD?

To compare the run time and memory consumption of

validation functions of pFDTane and AFDTane, the corre-

sponding algorithms had been run with error set to 0. This

setting guarantees that all algorithms traverse the same part

of the lattice and they all are on the level playing field.

The results presented in Table VII showcase the fact that

both PerValue and PerTuple prove to work slower than the

validation with g1. On the other hand, PerValue and PerTuple

do not demonstrate a significant difference in either run time

or memory consumption.

We can also note that almost all datasets have had less

memory consumed by pFDTane when compared to AFDTane.

The exception — which was the SEA.csv dataset — used

approximately the same amount of memory.

D. RQ3: How does maximum error threshold affect run time
and memory consumption of the pFD discovery algorithm?

The pFDTane algorithm have been run with various error

thresholds ranging from 0 to 1 on eight different datasets

depicted in Table VIII. Figure 2a and Figure 2b show two dif-

ferent patterns of behaviours of pFDTane. When it’s supplied

with the jena climate 2009 2016.csv dataset, run time does

not demonstrate a noteworthy difference past the 0.25 error

threshold. Contrary to that, when run on the EpicVitals.csv

dataset, the algorithm gets progressively faster as the error

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 165 --

TABLE VI. MINIMAL NON-TRIVIAL PFDS AND AFDS FOUND IN
MONKEYPOX.CSV

Total |pFDs \AFDs| Non-inferable pFDs |AFDs \ pFDs| |pFDs ∩AFDs|
Error AFD pFD PerValue pFD PerTuple PerValue PerTuple PerValue PerTuple PerValue PerTuple PerValue PerTuple
0.01 126 142 134 133 124 3 1 117 116 9 10
0.05 73 69 71 62 64 2 2 66 66 7 7
0.1 55 81 64 72 55 2 0 46 46 9 9
0.2 69 168 70 153 60 29 0 54 59 15 10
0.3 63 70 51 61 42 30 2 54 54 9 9

TABLE VII. EXACT FDS DISCOVERY TIME
AND MEMORY

Datasets
Time (s) Memory (MB)

pFDTane per value pFDTane per tuple AFDTane pFDTane per value pFDTane per tuple AFDTane
BKB WaterQualityData 2020084 2.013 2.018 0.935 216 216 260

EpicVitals 8.609 8.583 4.266 807 807 1490
jena climate 2009 2016 12.711 12.720 6.205 530 530 1490

measures v2 16.245 16.334 15.278 1758 1758 1785
nuclear explosions 2.198 2.203 0.795 189 189 1490
parking citations 25.908 25.953 7.360 1381 1381 1491

SEA 1.963 1.956 1.193 279 279 270
games 3.207 3.222 1.492 399 399 1490

TABLE VIII. DATASETS USED FOR
EXPERIMENTS

Dataset Rows Attributes Size Source pFD PT count pFD PV count AFD count
EpicVitals.csv 1246303 7 33MB EPF 10 13 21

BKB WaterQualityData 2020084.csv 2370 17 180KB U.S. FWS 3389 3712 901
games.csv 20058 16 7.67MB kaggle 2264 1810 266

jena climate 2009 2016.csv 420550 15 43.16MB kaggle 3003 3148 210
measures v2.csv 1330816 13 300.06MB kaggle 642 573 144

nuclear explosions.csv 2046 16 220KB tidytudesday repository 2795 3619 1459
parking citations.csv 95433 13 10MB norfolk opendata 224 269 565

SEA.csv 1000000 4 33MB openml.com 3 3 9
monkeypox.csv 5875 14 516KB who.int 134 142 126

threshold increases. In our experiments six out of eight datasets

behaved similarly to EpicVitals.
The number of steps in Tane is determined by the number

of vertices in the lattice. However, the algorithm discards

some vertices during its execution due to the nature of the

task of searching for the minimal functional dependencies.

Thus, the observed trend could be explained by the difference

between 0.2 and 0.8 error threshold not generating any new

dependencies, which would subsequently lead to an inability

to discard additional vertices in the lattice.
Finally, as could be observed from Figure 3, PerValue yields

better results in terms of run time on every dataset but SEA.csv

when compared to pFDs with PerTuple.

E. RQ4: What is the run time and memory expenses of pFD
discovery, compared to AFD?

To compare pFDTane and AFDTane algorithms in the

probabilistic and approximate dependency discovery tasks, the

algorithms’ implementations have been tested with different

error thresholds. The results are presented in Table IX, Table X

for the run time and in Table XI and Table XII for the

memory consumption respectively. Each cell contains the ratio

of pFDTane to AFDTane respective measurements. For the

ease of understanding we have plotted the maximum amount

memory consumed graph in Figure 4.
Almost all of the datasets depict AFDTane as a faster

discovery algorithm when compared to pFDTane, with an

exception of measures v2.csv. The results suggest a decrease

in performance difference with the error threshold exceeding

0.1.
Memory consumption have been observed to be lower for

pFDTane on all datasets but SEA.csv. In contrast to the run

time metric, the memory consumption seems to be equal for

pFDTane and AFDTane for each of error threshold values.

VI. CONCLUSION

We started with qualitative analysis of pFDs, as well as

showing cases in which they have the edge over AFDs and vice

versa. Essentially, we demonstrated that data interpretation

and data context leave room for both of them, since neither

can substitute the other one. Ultimately, it’s up to a data

scientist to decide what to consider a violation of an exact

FD, and the two concepts allow its user to target different

cases. Experiments have also shown that pFD is capable of

discovering some dependencies that AFD fails to find. The

results featured in Table VI demonstrate that fact by counting

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 166 --

0.0 0.2 0.4 0.6 0.8 1.0

Error

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 (

s
)

BKB_WaterQualityData_2020084 Per Value

BKB_WaterQualityData_2020084 Per Tuple

games Per Value

games Per Tuple

nuclear_explosions Per Value

nuclear_explosions Per Tuple

SEA Per Value

SEA Per Tuple

(a) First Batch

0.0 0.2 0.4 0.6 0.8 1.0

Error

0

5

10

15

20

25

T
im

e
 (

s
)

EpicVitals Per Value

EpicVitals Per Tuple

measures_v2 Per Value

measures_v2 Per Tuple

jena_climate_2009_2016 Per Value

jena_climate_2009_2016 Per Tuple

parking_citations Per Value

parking_citations Per Tuple

(b) Second Batch

Fig. 3. Running time by error threshold

TABLE IX. RATIO OF RUNNING TIME OF AFDTANE AND PFDTANE PERVALUE
ALGORITHMS

Dataset
Error threshold

0.025 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5

BKB WaterQualityData 2020084 2.529 2.199 2.010 1.763 1.432 1.267 1.128 1.076 1.050 1.027
EpicVitals 2.671 2.637 2.623 2.589 2.145 1.952 1.679 1.636 1.548 1.547

jena climate 2009 2016 1.455 1.475 1.470 1.359 1.387 1.316 1.308 1.322 1.320 1.360
measures v2 0.962 0.972 0.951 0.921 0.946 0.953 0.992 0.985 0.949 0.915

nuclear explosions 2.160 1.862 1.668 1.466 1.220 1.101 1.070 1.048 1.024 1.015
parking citations 3.358 3.261 3.177 3.079 2.882 2.513 2.073 1.550 1.351 1.231

SEA 1.745 1.815 1.767 1.805 1.752 1.821 1.794 1.773 1.615 1.674
games 1.785 1.587 1.517 1.446 1.361 1.299 1.277 1.217 1.212 1.162

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 167 --

TABLE X. RATIO OF RUNNING TIME OF AFDTANE AND PFDTANE PERTUPLE
ALGORITHMS

Dataset
Error threshold

0.025 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5

BKB WaterQualityData 2020084 2.685 2.415 2.320 2.262 2.127 2.007 1.908 1.804 1.578 1.417
EpicVitals 2.642 2.636 2.677 2.638 2.283 2.087 2.086 2.031 2.017 1.974

jena climate 2009 2016 1.465 1.479 1.514 1.487 1.410 1.343 1.326 1.396 1.316 1.368
measures v2 0.894 0.952 0.904 0.892 0.928 0.948 0.961 0.965 0.943 0.914

nuclear explosions 2.475 2.316 2.251 2.153 2.010 1.802 1.701 1.542 1.419 1.264
parking citations 3.386 3.373 3.344 3.289 3.197 2.987 2.740 2.681 2.557 2.318

SEA 1.742 1.800 1.747 1.780 1.796 1.819 1.777 1.776 1.626 1.636
games 2.064 1.810 1.723 1.630 1.529 1.503 1.451 1.399 1.356 1.300

TABLE XI. RATIO OF CONSUMED MEMORY OF AFDTANE AND PFDTANE PERVALUE
ALGORITHMS

Dataset
Error threshold

0.025 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5

BKB WaterQualityData 2020084 0.931 0.932 0.922 0.911 0.894 0.885 0.873 0.871 0.874 0.873
EpicVitals 0.542 0.542 0.542 0.542 0.521 0.521 0.486 0.486 0.486 0.486

jena climate 2009 2016 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356
measures v2 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985

nuclear explosions 0.127 0.128 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127
parking citations 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.925 0.925 0.925

SEA 1.029 1.030 1.029 1.030 1.030 1.030 1.030 1.030 1.030 1.046
games 0.170 0.162 0.160 0.160 0.159 0.159 0.159 0.159 0.159 0.159

TABLE XII. RATIO OF CONSUMED MEMORY OF AFDTANE AND PFDTANE PERTUPLE
ALGORITHMS

Dataset
Error threshold

0.025 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5

BKB WaterQualityData 2020084 0.942 0.940 0.935 0.934 0.927 0.918 0.915 0.911 0.901 0.890
EpicVitals 0.542 0.542 0.542 0.542 0.543 0.542 0.542 0.521 0.521 0.521

jena climate 2009 2016 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356
measures v2 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985

nuclear explosions 0.127 0.128 0.127 0.127 0.127 0.126 0.126 0.126 0.127 0.127
parking citations 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926

SEA 1.029 1.030 1.029 1.030 1.030 1.030 1.030 1.030 1.030 1.046
games 0.184 0.169 0.165 0.163 0.161 0.160 0.160 0.160 0.159 0.159

discovered dependencies with the same error threshold for both

algorithms.

As for performance, the discovery of both pFD types is

almost always considerably slower than AFD. However, the

memory consumption shows the opposite trend, with pFD

using less memory compared to AFD. The difference between

run time of pFD and AFD decreases as the error threshold

increases, though useful information is primarily mined with

a low error threshold. Experiments have also shown similar

run time and memory consumption for both pFD PerTuple

and pFD PerValue.

Overall, we have introduced pFD discovery functionality

into Desbordante for both PerValue and PerTuple metrics,

as we had shown that their utility depends on data inter-

pretation and context. At the same time, while building a

science-intensive data profiler it is an imperative to expand

the catalogue of available tools. Therefore, we hope that this

primitive will become another useful tool which will allow

our users to uncover knowledge hidden in data. Source code

of the implementation is available in the GitHub repository

(PR 300) [11].

REFERENCES

[1] Z. Abedjan, L. Golab, F. Naumann, and T. Papenbrock, Data Profiling.
Morgan & Claypool Publishers, 2018.

[2] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P. Rudolph,
M. Schönberg, J. Zwiener, and F. Naumann, “Functional dependency
discovery: An experimental evaluation of seven algorithms,” Proc.
VLDB Endow., vol. 8, no. 10, p. 1082–1093, Jun. 2015. [Online].
Available: https://doi.org/10.14778/2794367.2794377

[3] F. Dürsch, A. Stebner, F. Windheuser, M. Fischer, T. Friedrich,
N. Strelow, T. Bleifuß, H. Harmouch, L. Jiang, T. Papenbrock,
and F. Naumann, “Inclusion dependency discovery: An experimental
evaluation of thirteen algorithms,” in Proceedings of the 28th
ACM International Conference on Information and Knowledge
Management, ser. CIKM ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 219–228. [Online]. Available:
https://doi.org/10.1145/3357384.3357916

[4] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer
Publishing Company, Incorporated, 2014.

[5] P. G. Brown and P. J. Hass, “Bhunt: Automatic discovery of fuzzy
algebraic constraints in relational data,” in Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29, ser.
VLDB ’03. VLDB Endowment, 2003, p. 668–679.

[6] M. Hulsebos, K. Hu, M. Bakker, E. Zgraggen, A. Satyanarayan,
T. Kraska, c. Demiralp, and C. Hidalgo, “Sherlock: A deep learning
approach to semantic data type detection,” in SIGKDD’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1500–1508.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 168 --

0.0 0.2 0.4 0.6 0.8 1.0

47.7 MB

95.4 MB

143.1 MB

190.7 MB

238.4 MB

286.1 MB

333.8 MB

381.5 MB

M
e
m

o
ry

BKB_WaterQualityData_2020084 Per Value

BKB_WaterQualityData_2020084 Per Tuple

games Per Value

games Per Tuple

nuclear_explosions Per Value

nuclear_explosions Per Tuple

SEA Per Value

SEA Per Tuple

0.0 0.2 0.4 0.6 0.8 1.0

0.0 bytes

238.4 MB

476.8 MB

715.3 MB

953.7 MB

1.2 GB

1.4 GB

1.6 GB

M
e
m

o
ry

EpicVitals Per Value

EpicVitals Per Tuple

measures_v2 Per Value

measures_v2 Per Tuple

jena_climate_2009_2016 Per Value

jena_climate_2009_2016 Per Tuple

parking_citations Per Value

parking_citations Per Tuple

 (a) First Batch (b) Second Batch

Fig. 4. Maximum memory consumption by error threshold

[7] P. Tsurinov, O. Shpynov, N. Lukashina, D. Likholetova, and
M. Artyomov, “Farm: Hierarchical association rule mining and
visualization method,” in Proceedings of the 12th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, ser.
BCB ’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3459930.3469499

[8] l. Koumarelas, T. Papenbrock, and F. Naumann, “Mdedup: duplicate
detection with matching dependencies,” Proc. VLDB Endow., vol. 13,
no. 5, p. 712–725, jan 2020. [Online]. Available: https://doi.org/10.
14778/3377369.3377379

[9] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann,
“Data profiling with Metanome,” Proc. VLDB Endow., vol. 8,
no. 12, p. 1860–1863, Aug. 2015. [Online]. Available: https:
//doi.org/10.14778/2824032.2824086

[10] G. Chernishev et al., “Desbordante: from benchmarking suite
to high-performance science-intensive data profiler,” CoRR, vol.
abs/2301.05965, 2023.

[11] Desbordante GitHub repository. [Online]. Available: https://github.com/
Mstrutov/Desbordante

[12] T. Bleifuß, S. Bülow, J. Frohnhofen, J. Risch, G. Wiese, S. Kruse,
T. Papenbrock, and F. Naumann, “Approximate discovery of functional
dependencies for large datasets,” in CIKM’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1803–1812. [Online].
Available: https://doi.org/10.1145/2983323.2983781

[13] S. Kruse, T. Papenbrock, C. Dullweber, M. Finke, M. Hegner,
M. Zabel, C. Zöllner, and F. Naumann, “Fast Approximate Discovery
of Inclusion Dependencies,” in BTW 2017, ser. LNI, B. Mitschang and
et al., Eds., vol. P-265. GI, 2017, pp. 207–226. [Online]. Available:
https://dl.gi.de/20.500.12116/629

[14] L. Caruccio, V. Deufemia, and G. Polese, “Relaxed functional dependen-
cies—a survey of approaches,” IEEE Transactions on Knowledge and
Data Engineering, vol. 28, no. 1, pp. 147–165, 2016.

[15] J. Kivinen and H. Mannila, “Approximate inference of functional
dependencies from relations,” Theoretical Computer Science, vol. 149,
no. 1, pp. 129–149, 1995, fourth International Conference on Database
Theory (ICDT ’92). [Online]. Available: https://www.sciencedirect.com/
science/article/pii/030439759500028U

[16] S. Kruse and F. Naumann, “Efficient discovery of approximate
dependencies,” Proc. VLDB Endow., vol. 11, no. 7, p. 759–772, mar
2018. [Online]. Available: https://doi.org/10.14778/3192965.3192968

[17] D. Z. Wang, X. L. Dong, A. D. Sarma, M. J. Franklin, and
A. Y. Halevy, “Functional dependency generation and applications
in pay-as-you-go data integration systems,” in 12th International
Workshop on the Web and Databases, WebDB 2009, Providence,
Rhode Island, USA, June 28, 2009, 2009. [Online]. Available:
http://webdb09.cse.buffalo.edu/papers/Paper18/webdb09.pdf

[18] D. Z. Wang, M. Franklin, L. Dong, A. D. Sarma, and
A. Halevy, “Discovering functional dependencies in pay-as-
you-go data integration systems,” Tech. Rep. UCB/EECS-2009-
119, 2009. [Online]. Available: https://www2.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-119.pdf

[19] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, “Tane: An
efficient algorithm for discovering functional and approximate depen-
dencies,” The Computer Journal, vol. 42, no. 2, pp. 100–111, 1999.

[20] M. Strutovskiy, N. Bobrov, K. Smirnov, and G. Chernishev, “Des-
bordante: a framework for exploring limits of dependency discovery
algorithms,” in 2021 29th Conference of Open Innovations Association
(FRUCT), 2021, pp. 344–354.

[21] TANE implementation in the Metanome project. [Online]. Avail-
able: https://github.com/HPI-Information-Systems/pyro/blob/master/
pyro-metanome/src/main/java/de/hpi/isg/pyro/algorithms/TaneX.java

[22] S. Vilmin, P. Faure-Giovagnoli, J. Petit, and V. Scuturici, “Functional
dependencies with predicates: What makes the g3-error easy to
compute?” in ICCS’23, ser. Lecture Notes in Computer Science, M. O.
et al., Ed., vol. 14133. Springer, 2023, pp. 3–16. [Online]. Available:
https://doi.org/10.1007/978-3-031-40960-8\ 1

[23] E. H. Pena, E. C. De Almeida, and F. Naumann, “Discovery of
approximate (and exact) denial constraints,” Proceedings of the VLDB
Endowment, vol. 13, no. 3, pp. 266–278, 2019.

[24] L. Caruccio, V. Deufemia, and G. Polese, “Mining relaxed functional
dependencies from data,” Data Mining and Knowledge Discovery,
vol. 34, no. 2, pp. 443–477, 2020.

[25] F. D. Marchi, S. Lopes, and J.-M. Petit, “Unary and n-ary inclusion
dependency discovery in relational databases,” Journal of Intelligent
Information Systems, vol. 32, pp. 53–73, 2009.

[26] J. Bauckmann, U. Leser, and F. Naumann, Efficient and
Exact Computation of Inclusion Dependencies for Data
Integration, ser. Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam. Univ.-Verlag, 2010.
[Online]. Available: https://books.google.ru/books?id=A2UqdXlpVOEC

[27] N. Shaabani and C. Meinel, “Scalable inclusion dependency discovery,”
in Database Systems for Advanced Applications, M. Renz, C. Shahabi,
X. Zhou, and M. A. Cheema, Eds. Cham: Springer International
Publishing, 2015, pp. 425–440.

[28] F. De Marchi, S. Lopes, and J.-M. Petit, “Efficient algorithms for mining
inclusion dependencies,” in Advances in Database Technology — EDBT
2002, C. S. Jensen, S. Šaltenis, K. G. Jeffery, J. Pokorny, E. Bertino,
K. Böhn, and M. Jarke, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 464–476.

[29] G. Zhou, S. Kwashie, Y. Zhang, M. Bewong, V. M. Nofong, J. Hu,
D. Cheng, K. He, S. Liu, and Z. Feng, “Fastageds: fast approximate
graph entity dependency discovery,” in International Conference on Web
Information Systems Engineering. Springer, 2023, pp. 451–465.

[30] C. Combi and P. Sala, “Mining approximate interval-based temporal
dependencies,” Acta Informatica, vol. 53, 09 2015.

[31] P. Sala, “Approximate interval-based temporal dependencies: The
complexity landscape,” in 2014 21st International Symposium on
Temporal Representation and Reasoning (TIME). Los Alamitos,
CA, USA: IEEE Computer Society, sep 2014, pp. 69–78. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/TIME.2014.20

[32] Links to the datasets used in experiments. [Online]. Available:
https://gist.github.com/iliya-b/f67cf0aa8397ec0a5ab7849376ec8a31

[33] L. Berti-Équille, H. Harmouch, F. Naumann, N. Novelli, and
S. Thirumuruganathan, “Discovery of genuine functional dependencies
from relational data with missing values,” Proc. VLDB Endow.,
vol. 11, no. 8, pp. 880–892, 2018. [Online]. Available: http:
//www.vldb.org/pvldb/vol11/p880-berti-equille.pdf

[34] H. Harmouch, “Single-column data profiling,” Ph.D. dissertation,
University of Potsdam, Germany, 2020. [Online]. Available: https:
//publishup.uni-potsdam.de/frontdoor/index/index/docId/47455

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 169 --

