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Abstract—The Susceptible, Infected, and Recovered (SIR)
model predicts the number of living beings in a population
who are infected and recovering from a disease. This article
addresses the critical challenge of modelling and simulating
the spread of contagious diseases in a population. Drawing
inspiration from global events like the COVID-19 pandemic,
our proposed simulation aims to comprehensively understand the
epidemic dynamics and thus enhances the public awareness for
effective decision-making. The proposed simulation integrates the
computational models and simulation techniques, including the
logistic functions, agent-based models, SIR models, and network-
based spread models.

Index Terms—Epidemic Simulation, Computational Modeling,
Intervention Strategies, Agent-Based Modeling, SIR Model, Visu-
alization Tool, Public Awareness, epidemic modelling, COVID-19.

I. INTRODUCTION

Studying the spread of diseases that investigates the determi-

nants, occurrence and distribution of diseases in a population

is Epidemiology. There has been significant progress in the

theory and application using mathematical research. A lot

of epidemic models are formulated as dynamical systems of

ordinary differential equations [1]–[8]. On March 11, 2020,

the World Health Organisation (WHO) declared COVID-19

a pandemic [9]. Some factors such as population density

distribution in the local region and living conditions further

spread the infection. Contact with other individuals, both in

the private and public sphere, increases the risk of transmitting

the infection, even over a distance of more than 1 m [10].

This paper introduces simulation programs that integrate

SIR models and Barabási-Albert graphs to simulate the spread

of diseases, providing a valuable tool for researchers and

policymakers alike. COVID-19 has highlighted the necessity

for robust epidemic modeling to guide decision-making pro-

cesses. Accurate models help predict the trajectory of the

disease, assess the effectiveness of interventions, and anticipate

the healthcare demand. The complex nature of COVID-19

transmission, influenced by factors: asymptomatic carriers and

varying transmission rates, necessitates effective modelling

approaches to capture the intricacies of real-world scenarios.

The SIR model is usually applied to the entire population

of a region. The population is divided into three components:

susceptible (S), infected (I) and recovered (R) [8]. Still,

considerable evidence shows that the rate at which diseases

spread is different in urban and rural areas due to the difference

in population density [10]. Epidemics do not occur in isolation;

they spread through social interactions and networks. The

Barabási-Albert graph is used to generate networks that mimic

the structure of real-world networks and exhibit scale-free

properties. It is based on the growth of preferential attachment.

The model starts with m nodes connected by at least one link.

At the beginning of each time step, one new node is added to n
existing nodes where n is less than m. Preferential attachment

determines how new nodes connect to existing nodes in the

network. The probability of a new node connecting to a node

i is proportional to how densely linked node i already is. This

implies that well-connected nodes are more likely to receive

new links. Integrating Barabási-Albert graphs into epidemic

models allows researchers to account for the heterogeneity

in contact patterns, capturing the dynamics of disease spread

more accurately.

Interactive visualizations allow us to understand the sim-

ulated spread of diseases in real time. The visualization

feature is precious for conveying complex epidemiological

concepts to a diverse audience, including policymakers and the

general public. The dynamic network structures, represented

by Barabási-Albert graphs, provide a nuanced understanding

of how diseases propagate through interconnected popula-

tions. Unlike dynamic models, they reflect changes in social

interactions, travel patterns, and community dynamics. The

models are parameterized to be tailored to specific real-world

scenarios and fine-tuned to local conditions. This adaptability

is crucial because disease characteristics vary in every region

and environment. Parameterization allows researchers to incor-

porate data-driven inputs, enhancing the accuracy and applica-

bility of the simulations. The simulations offer a more holistic

view of disease spread by combining the time-tested principles

of SIR models with the dynamic realism of Barabási-Albert

graphs. This could help devise targeted interventions, optimise

resource allocation, and prepare for potential future outbreaks.

The usefulness of these simulation programs extends to multi-

ple stakeholders. For researchers, integrating dynamic network

structures opens avenues for exploring the role of social

connectivity in disease transmission. Policymakers can benefit

from more accurate predictions and scenario analyses, leading

to informed interventions and resource allocation decisions.

The public gains a clearer understanding of the factors influ-

encing disease spread, fostering community engagement and

adherence to public health measures.
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II. RELATED WORK

In [11], the Susceptible–Exposed–Infected–Recovered

model is used to simulate the disease spread, considering

parameters like transmission rate, recovery rate, and

incubation period with a focus on intervention dependencies.

Researchers in [12] utilized the SIR model to simulate and

analyze the dynamics of COVID-19 on Erdős–Rényi networks

in Punjab, Pakistan. The authors in [13] proposed a novel

methodology named RL2G for analyzing complex network

structures, showcasing its efficiency in revealing topologies

and its adaptability in various scenarios. The model operates

by dividing a large input network into smaller subgraphs,

understanding the individual topology of each subgraph, and

concatenating those to construct the topology of the original

graph. In [11], COVID-19 data from Pakistan was used for

simulations. In [12], the authors focused on the dynamics

of COVID-19 in Punjab, Pakistan. In [14], deterministic

epidemic models enhanced by stochastic elements like white

noise were used to determine the conditions required for

the extinction or persistence of diseases within populations.

The research introduces a modified definition of the primary

reproduction number and implements mathematical modelling,

equilibrium analysis and theoretical constructs to analyze

disease dynamics.

The authors in [8] employed mathematical models to in-

vestigate optimal control strategies, specifically vaccination,

for managing infectious diseases in populations. The study

begins by analyzing a general epidemic model to identify

an equilibrium state, then introduces vaccination as a control

element in an optimal control problem. The methodology

employs optimal control theory, Runge–Kutta [15] numerical

methods, and real epidemic data to showcase the effectiveness

of these strategies in minimizing infections and maximizing

recoveries. The authors in [10] employed a mathematical

model with two epidemiological models: population kinetics

and regional kinetics models. The population kinetics model

classifies individuals as susceptible, infected, recovered, or

deceased (SIRD) and incorporates carriers who are unaware

of their infection. The regional kinetics model extends the

analysis to multiple geographical regions with individualized

population movements. The methodology used in the work

involves formulating differential equations for both models,

incorporating carriers into the SIR model, and extending the

model to regional dynamics. The time integration process

utilizes the Crank and Nicholson [16] method with an iterative

predictor-corrector scheme, improving accuracy and control

through error-checking time-stepping algorithms. The models

are initialized with known values, and they demonstrated the

application of the methodology through numerical simulations.

The researchers in [17] developed the Susceptible-Exposed-

Infected-Recovered (SEIR) epidemic disease model for inves-

tigating the infectious disease dynamics and control strategies.

The model considers four population classes: Susceptible (S),

Exposed (E), Infected/Infectious (I), and Recovered (R), and

is governed by a set of differential equations. Parameters

such as birth rate (∧), the natural death rate (μ), virus-

induced fatality rate (α), and disease transmission probability

(β) are defined. The paper introduces a numerical algorithm

using a forward Euler finite-difference scheme [18] to solve

the differential equations. The approach includes simulating

disease dynamics, equilibrium points, and control measures

like vaccination. Additionally, key epidemiological measures

such as the basic Reproduction ratio (R0), Infection Fatality

Rate (IFR), and Case Fatality Rate (CFR) are discussed to

assess disease spread and severity. The methodology involves

detailed mathematical analysis and numerical simulations to

understand and control population infectious diseases.

The authors in [19] formulated the Susceptible-Exposed-

Infected-Diagnosed–Recovered (SEIJR) epidemic model to

analyze single outbreaks of SARS in Southern Ontario

(Toronto), Singapore, and Hong Kong. The model incorporates

important characteristics: varying susceptibility, the presence

of asymptomatic individuals, mode of transmission, super-

spreaders, etc. Two distinct susceptible classes, S1 and S2,

are introduced in the work, representing varying degrees of

susceptibility to SARS. The model includes classes for Ex-

posed (E), Infected (I), Diagnosed (J), and Recovered (R) and

considers disease-induced mortality. Diagnosed individuals are

assumed to have a reduced impact on transmission (parameter

l), trying to take into consideration effective isolation mea-

sures. A system of nonlinear differential equations describes

the SEIJR model. Parameters p and q are arbitrarily fixed,

while parameters l and a are optimized to fit data for Hong

Kong, Singapore, and Toronto. The basic Reproductive ratio

(R0) is calculated to evaluate the potential for spreading

disease in each location. The values of l and a are adjusted to

best match existing data, and the sensitivity of the model to

variations in p and q is not explored due to its unknown nature.

Parameters are optimized by least-squares criterion, providing

epidemiological interpretations of the model’s outcomes.

In [20], an SEIR model is used for modeling the spread of

disease where vaccination and isolation are model parameters.

The generation matrix method is used to analyze the model

and to obtain the primary reproduction number and the global

stability for COVID-19 spreading. Simulation of the model

uses secondary data on the number of COVID-19 cases in

Indonesia using MATLAB software [21] to provide preventive

measures for spreading the disease.

The work [22] uses an SEIR epidemic model to study

disease dynamics, dividing the population into Susceptible

(S), Exposed (E), Infected/infectious (I), and Recovered (R)

classes. Differential equations are built to determine the rates

of change within each class. Defined parameters such as birth

rate, natural death rate, virus-induced fatality rate, disease

transmission probability, progression rate from exposed (E)

to infectious (I), and recovery rate are also considered. The

model accommodates the latent stages, crucial for diseases like

COVID-19, and explores key parameters such as virus-induced

fatality rate representing fatality rates. The study focuses on

the transmission, incubation, and recovery processes, introduc-

ing a metric for the dead population and an alternative SEIDR
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model. The basic reproduction ratio measures disease spread,

as well as infection and case fatality rates (IFR and CFR). The

paper presents a numerical algorithm using a forward Euler

finite-difference scheme for solving differential equations,

ensuring positive and bounded solutions that converge to an

equilibrium state.

The methodology in [23] centers on an SEIR model to

study epidemic dynamics. Differential equations with initial

conditions define the changes in the four categories over

time. The model ensures non-negativity and boundedness of

solutions. Key to the analysis is the basic reproduction number,

which indicates epidemic potential when more significant than

one. Stability analysis involves identifying disease-free and

epidemic equilibrium points, with their stability contingent on

the R0 value. This approach allows for a detailed understand-

ing of epidemic behaviour and containment possibilities.

Our paper proposes a novel approach for the simulation of

infectious disease spread. The proposed approach integrates

the SIR models with Barabási-Albert graphs, emphasizing the

dual perspective of disease dynamics and underlying network

structures. The proposed approach uses the COVID-19 Corona

Virus India Data [24]. It contains real-time data of active,

positive, cured and death cases of the previous and the current

day for Indian states and union territories. The proposed model

also uses day-to-day COVID-19 case numbers from Italy, Iran,

China, Norway, Spain, Germany and New York [25]. Table I

summarises the salient features of key related works.

III. METHODOLOGY

The proposed work outlined in this section introduces

epidemic modelling methodologies. Aiming to improve the

accuracy and applicability of simulations, integrating SIR

models and Barabási-Albert graphs helps in capturing the

complex dynamics of disease spread within interconnected

populations.

A. Barabási-Albert Model for Simulation

The Barabási-Albert model is used to create networks that

mimic the structure of real-world networks and exhibit scale-

free properties. It creates a physical network with specified pa-

rameters: mean connectivity, degree distribution, and recovery

rate. Based on the growth of preferential attachment, the model

starts with m nodes, each connected by at least one link. One

new node is added at each time-step such that it connects to n
existing nodes where n is less than m. Preferential attachment

determines how new nodes will connect to the existing nodes

present in a network. The probability that a new node will

connect to node i is proportional to the number of links i
already has. This implies that densely connected nodes are

more likely to receive new links.

The degree distribution of the graph is plotted. The graph

is visualized so the nodes are coloured based on their infec-

tion status: blue if they are susceptible and orange if they

are infected. A specified number of nodes are initialized as

infected in the network, representing the initial number of

infected people. The disease is then propagated in the graph

with a probability influenced by the inception risk. The risk

perception of each node in the graph is calculated based on

its neighbours. The recovery of the infected nodes is modelled

with a specified recovery probability k. The progression is

visualised as the spread of the disease is simulated over the

network. Physical and virtual networks create an information

network with a given parameter. Finally, a Barabási-Albert

physical network is generated, the degree distributions are

visualized, and the disease spread is simulated, visualizing the

physical network. Fig. 1 depicts the work flow of the proposed

modelling approach.

Fig. 1. The methodology of the proposed work

B. Spatio-temporal Dynamics of the SIR Model on a 2D Grid

Using the SIR model, the disease spread is simulated on

a two-dimensional grid. This involves defining parameters

such as initial infected, infection rate, and recovery rate. A

specified number of cells are randomly marked as infected,

initiating the visualization of the epidemic’s progression.

The computation of infected neighbours for each infectious

cell is done by inspecting the adjacent cells, and the grid

is updated based on the SIR model rules. Susceptible cells

are infected with a probability proportional to that of the in-

fected neighbours, and infectious cells recover with a specified

probability k. The resulting grid is visually represented with a

colour map denoting susceptible (blue), infectious (red), and

recovered (green) states, including simulation step indications

and spatial context labels in each frame. A visualization

example is shown in Fig. 5.

C. Visualizing the Dynamics using Pygame

The simulation involves creating and moving entities

(”Dots”) representing individuals on a two-dimensional grid.

Each Dot can exist in one of three states: Susceptible (Blue),

Infectious (Green), or Recovered (Purple). The simulation

ensures continuity by incorporating periodic boundary con-

ditions for the grid. Characteristics of a dot in the simulation

include position, velocity, and state. Features such as periodic

boundary conditions and velocity normalization are incorpo-

rated, including the option to initialize random velocities. A
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TABLE I. SUMMARY OF KEY RELATED WORKS

Reference Model Used Focus Methodology Special Notes

[10] SIR extended Population and regional kinetics Differential equations,
Crank-Nicholson method

Carriers, regional dynamics

[12] SIR on networks COVID-19 dynamics on
Erdős–Rényi networks

Numerical simulation Dynamics in Punjab, Pakistan

[13] RL2G Analyzing network structures Novel methodology Topology revelation and
adaptability

[14] Stochastic models Extinction/persistence of
diseases

Mathematical modelling with
stochastic elements

Modified reproduction number,
equilibrium analysis

[8] Epidemic model Optimal control strategies
(vaccination)

Optimal control theory,
numerical methods

Utilizes real epidemic data

[11] SEIR Disease spread simulation with
intervention dependencies

Simulation with transmission,
recovery rates

Focus on COVID-19 in Pakistan

[17] SEIR Infectious disease dynamics and
control strategies

Numerical algorithm, forward
Euler scheme

Discusses R0, IFR, CFR

[23] SEIR Epidemic dynamics analysis Differential equations, stability
analysis

Basic reproduction number,
equilibrium points

[20] SEIR Spread of disease with
vaccination and isolation

Generation matrix method,
MATLAB simulations

Focus on COVID-19 in
Indonesia

[22] SEIR (SEIDR) Disease dynamics, including
latent stages

Forward Euler finite-difference
scheme

Transmission, incubation,
recovery, fatality rates

[19] SEIJR SARS outbreaks analysis in
closed populations

Nonlinear differential equations Incorporates
symptomatic/asymptomatic
individuals, superspreaders

killswitch mechanism is implemented to simulate mortality or

recovery after a specified number of cycles. Simulation param-

eters include grid size, the number of susceptible, infected, and

quarantined individuals, and the simulation duration.

Pygame is used to create and update the graphical repre-

sentation of the simulation. Populations of susceptible and

infected individuals on the grid are initialized. Statistics like

the number of infections, recoveries, and deaths are displayed

over time. We simulate how susceptible and infected indi-

viduals interact, and the rates at which new infections or

recoveries change can be observed. Randomness in initial

velocity and mortality rates are introduced. Parameters can

be customized, such as the number of susceptible, infected,

and quarantined individuals, mortality rates, and simulation

duration. These randomization options add stochastic elements

to the simulation. Fig. 4 shows an example of the disease

spread visualization using Pygame.

D. Analyze and model the growth of cases

A logistic growth model and an exponential growth model

are used to analyze the growth of cases. Given a set of input

values, the observed data is fit into a function and the best-

fitting curve is found. Optimal parameters for the chosen

function are found and the R-squared score is calculated. In

a regression model, the R-squared score indicates how well

the independent variables predict or explain the variation in

the dependent variable. Its value ranges from 0 to 1, where

0 means that the model does not explain any of the variation

in the dependent variable around its mean, and 1 means it

perfectly explains the variation.

The original data and the fitted curve are plotted as green

dots and orange curves for visual inspection. The time it takes

for the growth to slow down is calculated, given a certain

threshold difference (diff ) between consecutive data points. It

takes the fitted parameters, the data, and the chosen growth

function as its inputs. COVID-19 data for New York from

a JSON file is loaded. Daily confirmed cases are extracted,

and corresponding time points are created. The logistic growth

model is fitted to the data where the time until growth is less

than a specified threshold (diff ). The number of cases at each

point is calculated, and the time beyond which the growth

becomes slower than the specified threshold is found. The

result includes the number of days until growth is less than

the threshold and the estimated number of cases.

E. Overview of Working of the Proposed Model

The proposed work uses the Barabási-Albert model to sim-

ulate real-world network structures with scale-free properties.

It generates networks with specified parameters, such as mean

connectivity and degree distribution. It introduces the concept

of preferential attachment, where new nodes prefer to attach

to already well-connected nodes. This model facilitates the

simulation of disease spread within a network, considering

factors like infection status, recovery probability, and risk

perception among nodes.
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The SIR (Susceptible, Infected, Recovered) model is applied

on a two-dimensional grid to simulate how an epidemic

progresses. It describes how the simulation accounts for the

infection and recovery processes, visualizing these states with

different colours (blue for susceptible, red for infectious, and

green for recovered) and incorporating spatial context into the

simulation frames.

The Pygame simulator is used for graphical simulation,

representing individuals as dots moving on a grid, each dot’s

state influencing its interactions and the overall dynamics

of the disease spread. This part of the simulation considers

various changeable parameters, including mortality rates and

the number of individuals in different states, to provide a

stochastic element to the disease modelling. Parameterized

models provide adaptability to diverse situations, enabling

researchers to input real-world data and customize the models

for specific pathogens or community characteristics.

Finally, exponential and logistic growth models are used

to model the growth of cases. Observed data is fitted to

these models to find the best-fitting curves, and the R-squared

score is calculated to assess the model’s accuracy. The logistic

growth model estimates the days until growth decreases below

a specified threshold.

Combining theoretical foundations, interactive features, and

adaptability, the proposed work synergizes the strengths of

established epidemiological models with dynamic network

representations, enhancing our capacity to model and respond

to infectious diseases more effectively.

IV. SIMULATION MODELS AND EQUATIONS

The theoretical underpinning of the proposed epidemic

modelling framework lies in the integration of the SIR

model governed by a system of differential equations and

the Barabási-Albert graph, which incorporates preferential

attachment principles.

A. The SIR Model Theory

The SIR model helps understand the way infectious diseases

spread within a population. It divides the population into

three compartments, namely: Susceptible (S), Infected (I), and

Recovered (R).

It is important to know the number of infected and recovered

people as recovered people have immunity to the disease. The

dead are also included in the recovered group as they are no

longer susceptible. If we do not consider the movement of

people in and out of the borders surrounding the population,

then the remainder of the population is still susceptible to the

disease. Thus, at any time, the fixed total population may be

divided into three distinct groups:

• people who have contracted the disease,

• people who have recovered, and

• those who are susceptible.

The epidemic dynamics are captured through a set of

differential equations representing the rates of change in each

compartment over time. The SIR model parameters are given

in Table II.

TABLE II. SIR MODEL PARAMETERS

Parameter Symbol
Individuals who are Susceptible S

Individuals who have been Infected I
Individuals who have Recovered R

Susceptible fraction s
Infected fraction i

Recovered fraction r
Number of new Infections everyday b

Recovery rate k
Total time elapsed t
Total Population N

B. Parameters and Assumptions

Initially, the independent and dependent variables are iden-

tified. Time t, measured in days, is the independent variable.

The dependent variables are divided into two sets. The first

one is as follows:

• S = S(t): Individuals who are Susceptible

• I = I(t): Individuals who have been Infected

• R = R(t): Individuals who have Recovered

If N denotes the total population, the fractions of population

in the three categories are defined as follows:

• s(t) = S/N : Susceptible population fraction

• i(t) = I/N : Infected population fraction

• r(t) = R/N : Recovered population fraction

Fractions are used instead of population counts due to the

resulting simplicity in calculations. Both dependent variables

are proportionally related, providing equivalent information

about the epidemic’s progression. Under the established as-

sumptions, considerations are made regarding the variation of

s(t), r(t), and i(t) with time. A visual representation of the

anticipated graphs for the said functions is suggested through

sketches as shown in Fig. 2.

Fig. 2. A visual representation of graphs for the functions

The expression s(t)+i(t)+r(t) = 1 implies that the suscep-

tible, infected, and recovered fractions collectively account for

the entire population at any given time, ensuring a consistent

representation. Following are a few assumptions made related

to change in dependent variables:
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• Births and immigration do not affect the Susceptible pop-

ulation. Susceptible individuals transition to the infected

group, assuming homogeneous population mixing.

• The rate of change of S(t) (susceptible population)

depends on the susceptible and infected population, and

contact intensity between the two groups. Infected indi-

viduals generate new infections per day, considering a

fixed number b of contacts and a fraction s(t) of these

contacts being with susceptible individuals.

• k is the fraction of Infected population that recovers every

day.

These assumptions lead to differential equations governing

the dynamics of the epidemic.

C. Differential Equations

The three differential equations are as follows:

• The Susceptible Equation relates S(t) with I(t), where b
and s(t) play crucial roles.

dS

dt
= −s(t) · b · I(t) (1)

• The Recovered Equation: Represents the recovery dy-

namics of r(t) based on the recovery fraction k.

i(t) · k =

∫

t

k · d

dt
r · i(t) (2)

• The Infected Equation: Incorporates the flow rate from

the infected to the recovered population, influenced by

i(t), k, and b.

ds

dt
+

di

dt
+

dr

dt
= 0 (3)

dr

dt
+

ds

dt
=

−di

dt
(4)

di

dt
= −k · i(t) + b · s(t) · I(t) (5)

The model is completed by specifying initial conditions for

each differential equation.

D. Barabási-Albert Graph

Barabási-Albert graphs contribute uniquely to epidemic

modelling by introducing a dynamic network structure. Unlike

static models assuming a uniform distribution of connections,

these dynamic graphs evolve, reflecting preferential attachment

observed in various social systems. Two mechanisms govern

this model:

• Growth: The model initially has m nodes connected by

at least one link. A new node is added at each time step

such that it connects to n existing nodes where n is less

than m.

• Preferential attachment: Determines how new nodes con-

nect to existing nodes in the network. The probability

that a new node will connect to node i is proportional to

how well connected node i already is. This means that

high-degree nodes (hubs) are more likely to receive new

connections.

The scale-free nature of Barabási-Albert graphs implies that

many nodes have a significantly higher degree than others.

This mirrors real-world scenarios where a few individuals,

often called super-spreaders, play a disproportionate role in

disease transmission. Incorporating such network structures

into epidemic models allows for a more realistic representation

of how outbreaks initiate and propagate within populations.

They are also crucial for capturing the heterogeneity in contact

patterns.

In the model, each time a new node enters the network, an

existing node’s degree is increased. This new node will link

to m of the N(t) nodes already present in the system. The

probability that one of these links connects to node i is given

by equation 6:

pi =
ki∑
j kj

(6)

Here, ki is the degree of node i, and the denominator is the

sum of the degrees of all nodes in the network.

The rate at which an existing node i acquires links as a

result of new nodes connecting to it is given in equation 7.

dki
dt

= m · pi where pi =
ki∑N−1

j=1 kj
(7)

Each new node arrives with m links. This implies that node

i has m chances of being chosen.

N−1∑

j=1

kj = 2 ·m · t−m (8)

Therefore equation 7 becomes the equation 9.

dki
dt

=
ki

2 · t− 1
(9)

For large t,
dki
ki

=
1

2
· dt
t

(10)

We know that node i joins the network at time t i with m
links. Using this, we integrate equation 10 to obtain equation

11.

ki(t) = m

(
t

ti

)β

(11)

E. Logistic Growth Model

The logistic growth model describes population growth that

starts slowly, accelerates, and slows down as it approaches

a maximum limit or carrying capacity. It is characterized by

an initial phase of exponential growth, followed by a gradual

decrease in the growth rate. The mathematical formula for

logistic growth is given as

P (t) =
K

1 + e−r(t−t0)
(12)

where:

• P (t) is the population at time t,
• K is the carrying capacity or the maximum population,

• r is the rate of growth,

• t0 is when the population starts its rapid growth.
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F. Exponential Growth Model

The exponential growth model describes a scenario where

a quantity increases at a constant proportional rate over time.

It is characterized by continuous and unrestricted growth. The

exponential growth is often denoted by equation 13:

P (t) = P (0) · er·t (13)

where:

• P (t) is the population at time t,
• r is the growth rate,

• t0 is the time at which the population starts its rapid

growth,

• P0 is the initial population.

V. EXPERIMENTAL RESULTS AND ANALYSIS

Integrating SIR models, Barabási-Albert graphs, and dy-

namic network structures allows for a comprehensive under-

standing of epidemic outcomes. Parameters like transmission

rate (b), recovery rate (k), and initial infected (I(0)) count are

defined, gives a foundation for comprehending the dynamics

of simulated epidemics. The initialized parameters are:

• b = 0.3
• k = 0.05
• I0 = 3
• t = 100

The parameters used in the simulation and their correspond-

ing notations are given in Table I. The experiments involve

visualizations that expose the inner workings of Barabási-

Albert graphs. These visualizations are dynamic illustrations of

the graph’s evolution over time. Nodes connect preferentially.

A. Simulation of Disease Spread on Barabási-Albert Network

The Barabási-Albert model creates a physical network with

specified parameters, including mean connectivity, degree dis-

tribution, and recovery rate. The graph’s degree distribution is

plotted, nodes are colour-coded based on infection status, and

several nodes are initially infected. Node risk perception is

calculated from neighbours, influencing disease propagation

with a probability tied to the perceived risk. Recovery is

modelled with a specified probability (k). The disease spread

is simulated over the network as shown in Fig. 3, visually

depicting its progression. An information network is formed by

combining physical and virtual networks. Degree distributions

are visualized, and disease spread is simulated over time

with updates. Finally, a Barabási-Albert physical network is

generated for disease spread simulation and visualisation, as

shown in Fig. 3. In the developed network, the nodes are

coloured blue if susceptible and orange if infected.

B. Spatiotemporal Dynamics of the SIR Model on a 2D Grid

A spatial domain is represented by creating a 2D grid with

dimensions of 200 × 200, where each cell can exist in one of

three states: Susceptible (0), Infectious (1), or Recovered (2).

The SIR model parameters, including initial infected denoting

the initial count of infected cells, infection rate determining

Fig. 3. Barabasi-Albert Physical network

the probability of infection, and recovery rate representing the

probability of recovery, are defined. An initial selection of a

specified number of cells, randomly marked as infected on the

grid, is observed. Fig 5 facilitates visualising the epidemic’s

progression over time. The number of infected neighbours for

each infectious cell is computed by inspecting adjacent cells.

The grid undergoes updates according to the SIR model rules:

• Susceptible cells undergo infection with a probability

proportional to the number of infected neighbours.

• Infectious cells recover with a specified probability.

The resulting grid is visually represented using a colour map

reflecting susceptible (blue), infectious (red), and recovered

(green) states. Simulation step indications and spatial context

labels are incorporated into each frame’s title and axes. Fig 5

shows the disease spread using the SIR model on a 2D grid.

C. Visualizing the Dynamics using Pygame

The simulation employs entities (”Dots”) representing in-

dividuals on a two-dimensional grid with states: Susceptible

(Blue), Infectious (Green), or Recovered (Purple). Periodic

boundary conditions ensure grid continuity. Dot characteristics

include position, velocity, and state, with features like periodic

boundaries and velocity normalization. A killswitch simulates

mortality or recovery after a specified cycle count. Parame-

ters include grid size, individuals’ numbers, and simulation

duration.

Pygame updates the graphical representation, displaying

statistics like infections, recoveries, and deaths. Interactions

simulate disease spread, introducing randomness in velocity

and mortality rates. Parameters, including the number of

individuals and simulation duration, are customizable, adding

stochastic elements to the simulation. Fig. 4 shows the model-

ing of the disease spread with changing parameters and time.

D. Analyzing and Modeling Growth of Cases

Logistic and exponential growth models are applied to

the observed data, finding the best-fitting curve with opti-

mal parameters. COVID-19 cases in New York are used for

plotting. The R-squared score assesses the model performance

and accuracy. Original data and the fitted curve are visually

represented using the model shown in Fig 6. The time taken

for growth slowdown is calculated using a specified threshold

difference. Modeling results provide the number of days until

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 176 ----------------------------------------------------------------------------



(a) (b) (c)

Fig. 4. Visualization of the spread of the disease (as t continuously increases). Susceptible individuals are represented by blue dots, Infected individuals by 
green, and Recovered individuals by purple.

Fig. 5. The spread of disease using SIR model on a 2D grid

Fig. 6. Logistic fitted curve for growth cases

the growth is below the threshold and the count of the number

of cases at that point.

The R-squared score indicates how well the independent

variables predict or explain the variation in the dependent

variable. Its value ranges from 0 to 1, where 0 means that the

model does not explain any of the variation in the dependent

variable around its mean, and 1 means it perfectly explains

the variation.

For the simulation experiments carried out in the work, the

R-squared score is 0.9984, and there were 18 days until growth

was less than 500. The model estimates the number of cases

to be 234700.

VI. CONCLUSION AND FUTURE SCOPE

The methodology presented in the paper covers a range of

strategies, including simulating disease spread on a Barabasi-

Albert network, exploring spatiotemporal dynamics on a 2D

grid, and visualizing these dynamics using Pygame. Including

logistic and exponential growth models enhances the research,

providing a holistic understanding of epidemic growth pat-

terns. A distinctive feature of the proposed work is the

combination of established epidemiological models with dy-

namic network representations, incorporating interactive visu-

alizations and parameterized models. This synergy enhances

the accuracy and applicability of simulations. One of this

research’s primary contributions lies in enhancing realism

within epidemic simulations. By embracing weakly-supervised

methods, the simulation programs move closer to mimicking

real-world conditions.

The analysis of experimental results opens avenues for

future research. Researchers may consider exploring variations

in SIR model parameters, different network topologies, or

alternative graph evolution mechanisms. The dynamic simula-

tions provide a foundation for further investigations into the

complex interplay between individual-level interactions and

population-wide disease dynamics. The proposed simulation

programs are a robust and versatile framework for studying

epidemics. Future work could delve into integrating spatial

dynamics and considering heterogeneous populations. Bench-

marking against existing models and datasets would contribute

to a more comprehensive understanding of the proposed simu-

lation programs’ strengths and limitations. Exploring the inte-

gration of human behaviour models and intervention strategies

represents an exciting trajectory for future research. Under-

standing how individual behaviors impact disease spread and

evaluating the effectiveness of various intervention measures

can provide invaluable insights for public health planning
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and policy-making. As we look ahead, the trajectory involves

refining the existing models, embracing additional complexi-

ties, and ensuring these simulations’ continued relevance and

applicability in addressing evolving global health challenges.
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