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Boğaziçi University

Istanbul, Turkey

devilliers.dube@std.bogazici.edu.tr, mehmet.akar@bogazici.edu.tr

Abstract—Anomaly detection in multivariate time series
(MVTS) is a significant research domain across several indus-
tries, including cybersecurity and industrial systems. There have
been several deep learning-based methods proposed within this
research domain. The development of high capacity frameworks
has received the majority of attention in recent years due to
the availability of large open-source datasets and improvement
in computer processing power. However, there has not been
much attention in investigating the importance of how the data
is presented to these techniques during training. Curriculum
learning (CL), a technique based on ordered learning, was
proposed for machine learning. In CL, the model first learns
from easy data and is progressively trained with increasingly
difficult data. In this paper, we propose data-based CL for MVTS
anomaly detection. We further introduce the CL concept to the
learner (model), in which we first train a simple model and then
utilize a complex model in the final training round. To the best
of our knowledge, we are the first to investigate these approaches
in MVTS anomaly detection. We evaluate the proposed designs
on the SWaT dataset using the F1 score and the results show an
improvement in performance.

I. INTRODUCTION

Anomaly detection has been a prominent research area for

several years. Previously, data being generated by sensors in

the industry was of relatively small dimension, not easily ac-

cessible, and in some cases, simply univariate. Univariate time

series is a sequence of data of a single variable collected over

a period of time. Currently, massive amounts of data with large

dimension are constantly being generated by several sensors in

cyberphysical systems. Since they contain multiple variables,

they are referred to as multivariate time series (MVTS). These

variables may exhibit complex temporal correlation making

it very difficult to identify a single or series of data points

which deviate from the distribution of the rest of the data. Such

data points are known as anomalies and can be identified via

anomaly detection. Anomaly detection is mainly implemented

in industrial systems [1], cybersecurity [2], fraud detection

[3], network intrusion detection [4], and has been introduced

to other areas such as textile processes [5].

Several anomaly detection methods such as statistical,

machine learning, and deep learning have been proposed

across different domains [6]. Statistical or probabilistic mod-

els typically regard anomalies as statistical outliers or extreme

values. Additionally, a few statistical tests may be used to

identify these data points. The primary advantage of these

techniques is that they are easily applicable to any particular

type of data. However, selecting the wrong probability distri-

bution could result in poor anomaly detection performance. A

seasonal autoregressive integrated moving average (SARIMA)

technique is proposed in [7]. SARIMA was trained and

evaluated on a small network traffic data. This conventional

technique requires a lot of training time and may fail learn to

when subjected to large MVTS data.
Machine learning and deep learning frameworks can be

classified into supervised, semi-supervised, and unsupervised
methods [6]. In supervised anomaly detection, the training

set includes both labeled normal and anomalous data points.

In semi-supervised techniques, only the normal data is used

for training whereas no labeled data is used in unsupervised

frameworks. It is generally difficult to label the data, hence

supervised techniques are not preferred. Machine learning

techniques such as k-means clustering [8] and support vector

machines [9] can be used for anomaly detection. However,

these techniques may fail to identify periodic, seasonality

patterns, and correlations within MVTS data.
Curriculum learning (CL) is a machine learning approach

that involves training a model on a sequence of data samples

in a specific order, starting with simpler data and advancing to

more complex ones. It addresses the problems of catastrophic

forgetting, enhances convergence rate of the training process,

and improves model performance in some tasks [10]. The

concept of CL for machine learning was introduced in [11]

and has since gained interest across several fields such as in

federated face recognition [12] and natural language under-

standing [13] tasks. Prior research as summarized in [14] has

shown that the benefits of CL cannot be generalized across all

fields. Therefore, it is necessary to conduct research in new

areas with various curriculum designs to analyze the domain-

specific effects of CL.
In MVTS anomaly detection, to our knowledge, there has

been no research which conducted extensive experiments with

CL. In this paper, we train a semi-supervised reconstruction-

based deep learning technique using CL. The contributions of

our work are summarized as follows:

• We introduce the CL concept to MVTS anomaly detec-

tion and perform several experiments to determine the

efficacy of CL-trained frameworks.

• We design data-based CL techniques for MVTS anomaly

detection. Furthermore, we analyze which data feature

can be selected for best model performance improvement.
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• We show that data-based curricula can improve perfor-

mance of the model-based framework.

The rest of the paper is structured as follows: First, the

related work section presents some pertinent methods in

the literature. Subsequently, the methodology section defines

the problem and offers a comprehensive description of the

proposed approach. Then, the experiments section provides

details of the dataset, experimental setup, and results. Lastly,

the conclusion summarizes the principal findings of this work

and outlines the direction for future research.

II. RELATED WORK

Deep learning-based techniques have proven to be effective

in learning important features in high dimensional MVTS data,

hence they dominate the state-of-the-art (SOTA) techniques

[15]. Deep learning anomaly detection techniques can be

classified into three main categories, namely, reconstruction-
based, forecasting-based, and generative methods [15].

Reconstruction-based techniques mainly employ an encoder

to learn the spatial information from normal data only, a

decoder to reconstruct the data, and reconstruction errors as

anomaly scores. The fundamental principle is that the model

should sufficiently learn only the normal patterns and poorly

reconstruct the previously unseen anomalous instances. In

[16], EncDecAD, an LSTM-based encoder-decoder framework

is proposed and the results show that it can detect predictable

and unpredictable anomalies. MSCRED [17] introduces the

concept of representing the data through signature matri-

ces to MVTS anomaly detection. An adversarially trained

transformer based approach is proposed in [18]. The use of

adversarial training enables it to improve its decoding ability.

Forecasting-based methods typically perform training on

normal historical data, forecast future values or patterns, and

then use the deviations as anomaly scores. If a forecasting

horizon contains anomalies, it is expected to produce a high

prediction error. In [19], the authors used stacked LSTM layers

for learning temporal patterns and represented the forecasting

errors as a Gaussian distribution. DeepAnT [20] was trained

on unlabeled data to learn the distribution for forecasting the

normal patterns of the data. It utilizes a predictor based on

convolutional neural networks (CNNs) to make forecasts for

the next data point and an anomaly detector to identify the

points which deviate from the distribution.

Generative techniques use a model to learn the distribution

of the data and then classify anomalies as data points with

probability below a defined marginal likelihood. These tech-

niques utilize a generative model such as Gaussian mixture

model, variational autoencoder, and generative adversarial net-

works. In DAGMM [21], MVTS anomaly detection was per-

formed without considering the temporal dependencies within

the data. The researchers fed only a single observation with

several features to the model rather than temporal patterns. In

MVTS, learning temporal patterns is very important, hence

their method may offer substandard performance in some

datasets. Other proposed generative techniques are STAD-

GAN [22] and MadSGM [23].

III. METHODOLOGY

In this section, we provide a brief description of the Multi-

Scale Convolutional Recurrent Encoder-Decoder (MSCRED)

framework which was designed for anomaly detection and root

cause diagnosis [17]. Then, we explain how we design CL-

based frameworks for anomaly detection.

A. Problem Statement

MVTS anomaly detection aims at identifying anomalies that

exist in the data which, for instance, may be collected from

sensors in industrial systems. Due to the large dimension of

MVTS data, conducting anomaly detection is more difficult in

comparison to in univariate time series data.

Consider an n-dimension MVTS training data of length L;

Xtrain = (x1, x2, · · · , xn) ∈ R
L×n where xi ∈ R

L. The

algorithm has to learn only the normal temporal information

for it to identify novel patterns in the test set as anomalies.

Therefore, the training data should not consist of any anomaly.

For anomaly detection, an output vector y ∈ R
L that consists

of either “0” for normal or “1” for anomaly has to be produced.

We propose to solve this problem using CL-based frame-

works. CL is based on identifying training criteria which

constitute a curriculum [11] that can be used for pro-

gressive training of the algorithm. A curriculum, C =
〈Q1, . . . , Qk, . . . , QK〉 with training data Xtrain divided into

K subsets is a sequence of training criteria Qk which is

a reweighted version of the targeted probability distribution

P (x) and is expressed as:

Qk(x) ∝ Wk(x)P (x), ∀x ∈ Xtrain (1)

where Wk(x) is the weight and the following conditions have

to be satisfied:

i) H(Qk) < H(Qk+1), where H(Qk) is the entropy

ii) Wk(x) ≤ Wk+1(x)
iii) QK(x) = P (x)

According to the first condition, the entropy should increase

in proportion to the diversity and information of the selected

training criterion. As training continues, the likelihood of

sampling more difficult training data increases. Since more

data is being added gradually, under the second condition, the

weight should likewise increase. The third condition indicates

that all the training data is utilized in the final training round

[14]. Moreover, we propose to extend the CL principle to

the models. We suggest to use the algorithmic complexity of

different anomaly detection models as the curriculum for the

model-based CL technique.

B. Overview of MSCRED

MSCRED is a reconstruction-based technique which uses: i)

system signature matrices (SSM) [24] to represent the data, ii)

fully convolutional encoder [25] for encoding spatial patterns

of the SSM, iii) an attention-based Convolutional Long Short-

Term Memory (ConvLSTM) recurrent neural network [26] to

model temporal patterns, and iv) convolutional decoder for

reconstructing the SSM.
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The concept behind MSCRED is that previously unseen

temporal patterns during the encoding stage are poorly recon-

structed, hence, are labeled as anomalies. The researchers in

[24] proposed a Toeplitz Inverse Covariance-Based Clustering

technique for MVTS data where each cluster in their method

is represented by a correlation network. They observed that

in addition to temporal dynamics in MVTS, the correlations

between the time series pairs are essential for characterizing

the status of the system. Given two time series in the time win-

dows from t−ω to t obtained from the i-th and j-th sensors,

respectively; xωi = [xi,t−ω+1, xi,t−ω+2, · · · , xi,t]
T ∈ R

ω,

and xωj = [xj,t−ω+1, xj,t−ω+2, · · · , xj,t]
T ∈ R

ω , their inner

product and correlation matrices are obtained respectively as:

mt
ij =

〈
xωi , xωj

〉

f
(2)

M t =

⎡

⎢⎢⎢⎣

mt
11 mt

12 · · · mt
1n

mt
21 mt

22 · · · mt
2n

...
...

...
...

mt
n1 mt

n2 · · · mt
nn

⎤

⎥⎥⎥⎦ (3)

where mt
ij ∈ M t and f is a scaling factor, f = ω in

this framework. Moreover, three window sizes are used to

represent short, medium, and long inter-sensor correlations.

Then, the SSM are obtained by concatenating M t with these

window sizes to represent multi-scale inter-sensor correlations.

SSM are a mathematical representation of the data that provide

a summary of the correlations and patterns within the data.

Subsequently, these SSM are fed to the convolutional en-

coder to encode spatial patterns. Each of the data layers is

represented as a three-dimensional array with dimensions of

n × n × d, where n × n represents spatial dimensions and d is

the channel dimension [25]. Following that, an attention-based

ConvLSTM is used to capture the temporal information within

the data. The attention mechanism allows the ConvLSTM

cell to adaptively select the most important hidden states for

learning the data features. During the update, not all previous

steps are essential for the current state, thus, the temporal

attention mechanism adaptively selects the most relevant prior

states for temporal pattern modeling. The SSM are then re-

constructed using a convolutional decoder. In reconstruction,

a reverse order is followed by feeding the last hidden state

of the ConvLSTM layer to a convolutional decoder designed

to obtain the output with the same size as that of the input

SSM. The following square loss function is used to assess the

model learning with the objective of minimizing reconstruction

errors:

L =

s∑

c=1

∥∥∥X t
:,:,c − X̂ t

:,:,c

∥∥∥
2

2
, t = 1, 2, ... (4)

where X t
:,:,c and X̂ t

:,:,c denote channel c of the input and

reconstructed SSM, X t and X̂ t respectively. The residual

matrices which are obtained by calculating the difference

between the input and reconstructed SSM are used for anomaly

detection. The number of inaccurately reconstructed entries

of the SSM is used as the anomaly scores. A threshold

that maximizes the anomaly detection F1 score is determined

experimentally. This framework is adopted in this work and

improved using CL as explained in the following subsection.

C. Curriculum Design

In order to establish a CL design, there are three fundamen-

tal questions that should be addressed:

1) What criteria are utilized to order the training data

according to difficulty?

2) What criteria are utilized to order the models according

to increasing algorithmic complexity?

3) For the data-based method, when should the algorithm

be presented with more difficult data?

By establishing two basic components, the aforementioned

questions may be addressed. To answer the first two questions,

it is necessary to establish a ”Difficulty Measurer” that will

allow the data or models to be sorted from easy to complex.

For the third question, in order to sample the training data to

be fed to the algorithm at each round, a ”Training Scheduler”

must be established. The training scheduler selects which data

to feed the algorithm until all of the data is sampled. Once

these questions are answered, there need to be a method

for producing the previously described components which

facilitate CL [14]. The proposed data-based and model-based

CL approaches are shown in Fig. 1 and Fig. 2, respectively.

Furthermore, Algorithms 1 and 2 which are inspired by the

Baby Step algorithm [11], summarize the data-based and

model-based CL methods, respectively. In our framework, we

manually create the training scheduler and difficulty measurer

using a criterion known as predefined CL which requires prior

knowledge of the features of the data [27] or model. In this

research, we experiment with different difficulty measures and

training schedulers as follows:
1) Data-Based Curriculum Design Based on Sequence

Length: We use the sequence length of the data as the diffi-

culty measure. We draw motivation from the observation that

traditional machine learning frameworks struggle to achieve

good generalization when provided with large datasets. In deep

learning, there are three main factors that have contributed to

performance improvement: i) increased capacity of the models,

ii) higher computational capability, and iii) the accessibility

of massive amounts of data. The authors in [28] investigated

the efficacy of the data in deep learning. They performed

computer vision experiments and observed that large data

improves representation learning. This implies that substantial

acquisition of a larger-scale dataset can significantly enhance

deep leaning model performance. Furthermore, a study in

[29] presents experiments with small data and the results are

significantly lower than those of high-capacity models with

large data. Therefore, the size of the dataset has an effect

in model learning and performance, hence, it can be used to

design a curriculum. We split the data percentage-wise and

feed it to the MSCRED framework with gradual increase in

data length as follows:
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Fig. 1. Proposed data-based curriculum learning for multivariate time series anomaly detection framework. The system signature matrices of the easy subset
are used in the first training round. Then, the model parameters from this training are used as the initial parameters for the following training round, and the
experiments are repeated with the easy signature matrices augmented with more difficult ones.

Algorithm 1 Data-based curriculum learning for multivariate

time series anomaly detection

1: Inputs: Xtrain: Training set; Xtest: Test set; XCL: Cur-

riculum training set; C: Difficulty measurer; th: Anomaly

threshold.

2: Outputs: Θ∗: Optimal model; A: Anomaly score.

3: X ′
train = sort(Xtrain, C);

4:
{
X1

train, X
2
train, · · · , XK

train

}
= X ′

train where C(xa) <

C(xb), xa ∈ Xi
train, xb ∈ Xj

train, ∀i < j;

5: XCL = ∅;
6: for k = 1 · · ·K do
7: XCL = XCL ∪Xk

train;

8: Generate system signature matrices from XCL;

9: while not converged for E epochs do
10: train(Θ, XCL);
11: end while
12: end for
13: Generate system signature matrices from Xtest;

14: for test data points xtest ∈ Xtest do
15: test(xtest,Θ

∗);
16: if A(xtest) > th then
17: xtest is an anomaly;

18: end if
19: end for

• DCL-MSCRED-P2: Data-based CL for MSCRED based

on the dual percentage-wise split. The MSCRED model

is first trained with 50% of the data. Then, it is trained

with the whole data in the last training round.

• DCL-MSCRED-P3: Data-based CL for MSCRED based

on the ternary percentage-wise split. The MSCRED

model is first trained with about 33% of the data, followed

by using 67% of the data. Finally, it is trained with the

whole data in the last training round.

2) Data-Based Curriculum Design Based on Window Size:
In this approach, we propose to utilize the window size of the

data as the difficulty measure. The window size refers to the

number of data points used as input features to reconstruct the

next data point in reconstruction-based methods. We define

a shorter window size to be easy because it is easier to

reconstruct the data that is in close proximity to the first

point in the window. However, as the window size increases,

data variability, trend, and seasonality patterns may change

significantly making it more difficult to reconstruct the data.

We propose the following designs:

• DCL-MSCRED-W2: Data-based CL for MSCRED

based on two different window sizes. The MSCRED

model is first trained to learn the short window, ω = 10
data points (100 seconds). Then, it is trained to learn the

short and long windows, ω = 10, 60.

• DCL-MSCRED-W3: Data-based CL for MSCRED

based on three different window sizes. The MSCRED

model is first trained to learn the short window, ω = 10.

Then, the medium window is included, ω = 10, 30. Fi-

nally, the algorithm is trained to learn the short, medium,

and long windows, ω = 10, 30, 60.

3) Model-Based Design Based on Algorithmic Complexity:
In this technique, we propose to apply CL to the learner,

i.e., the model. Deep learning models vary in architecture,

model size, and optimization process. We seek to investigate

the effect of applying CL based on the architectural complexity

of the model. We propose the following CL-based framework:

• MCLAD: Model-based CL for Anomaly Detection.

Comparing model complexity for deep learning frame-

works is a challenging task especially if the models

are designed from very diverse neural networks [30].

We adopt the LSTM-ED [31] which has an architecture

closely related to MSCRED. Since MSCRED consists

of CNNs and an attention mechanism in addition to the
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Fig. 2. Proposed model-based curriculum learning for multivariate time
series anomaly detection framework. First, the simple model is updated using
signature matrices of the whole training data. Subsequently, this data is
introduced to a more complex model for training using the previously trained
model as the initial model for each successive training round.

Algorithm 2 Model-based CL for multivariate time series

anomaly detection

1: Inputs: Xtrain: Training set; Xtest: Test set; C: Difficulty

measurer;
{
Θa,Θb, · · · ,Θz

}
: Anomaly detection models

ordered in increasing complexity, C(Θa) < C(Θb) <
, · · · , < C(Θz); th: Anomaly threshold.

2: Outputs: Θ∗: Optimal model; A: Anomaly score.

3: Generate system signature matrices from Xtrain;

4: for each model Θ ∈ {
Θa,Θb, · · · ,Θz

}
do

5: while not converged for E epochs do
6: train(Θ, Xtrain);
7: end while
8: Set Θ as initial model for subsequent training round;

9: end for
10: Generate system signature matrices from Xtest;

11: for test data points xtest ∈ Xtest do
12: test(xtest,Θ

∗);
13: if A(xtest) > th then
14: xtest is an anomaly;

15: end if
16: end for

LSTM in its architecture, we use it as the more complex

model. Moreover, we separately evaluate these models

with the expectation that the high capacity model will

outperform the low capacity one when trained with the

whole training data. We train the LSTM-ED model with

the SSM obtained from the whole dataset and transfer

the model parameters to be the initial parameters of the

MSCRED which is also trained with all the training data.

4) Data and Model-Based Curriculum Design: In [29],

besides observing the importance of large data for high

capacity models, it was also discovered that relatively less

complex models perform better with small data than their

more complex counterparts. From this observation, we draw

inspiration to combine the data-based and model-based CL

frameworks. We propose to train the less complex model with

Fig. 3. Reconstruction-based anomaly detection

small data and transfer the learned model parameters to be the

initial parameters for the training of the more complex model

with the whole data. We design the following curriculum:

• D-MCLAD: Data and Model-based CL for Anomaly

Detection. The LSTM-ED framework is trained with 50%

of the data. Then, the MSCRED is trained with the whole

training data and we perform evaluation on the test data

as shown in Fig. 3.

IV. EXPERIMENTS

A. Dataset

The Secure Water Treatment (SWaT) dataset is a cyber-

security dataset collected from a real-world water treatment

testbed and is widely used in MVTS anomaly detection. The

SWaT testbed which consists of six stages, is a small version

of a real industrial water treatment facility. Its setup includes

programmable logic controllers (PLCs) and a supervisory

control and data acquisition (SCADA) system among other

systems. The dataset includes a variety of data types that

were obtained from the operational technology network of

the plant, such as sensor readings, actuator statuses, network

traffic, and system logs. It also consists of two communication

networks: level 0 which allows each PLC to communicate

with its sensors and actuators and level 1 which facilitates

communication between the PLCs and SCADA.

The purpose of this dataset is to aid research in industrial

control system (ICS) security by understanding the effects

of anomalies in ICSs and evaluating the extent of cyber and

physical attacks on ICSs. In addition, it is used to assess the

performance of anomaly detection frameworks and determine

the efficiency of defense mechanisms. In this research, we

utilize the dataset which contains just the physical attacks.

The data was collected over a period of 11 days in which

the first 7 days were under normal operation and attacks were

launched in the remaining 4 days. The data points of the first

30 minutes were removed to prevent starting process instability

as the systems require a certain amount of time for startup

before stabilizing. The dataset we used contains a total of

946, 722 samples, representing 51 time series. The duration of

the attacks vary from about one minute to an hour [32], [33].

Fig. 4 shows some of the time series data and the anomaly

locations in the SWaT dataset.
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Fig. 4. Time series data of some of the sensors of the downsampled SWaT
test set with the respective labeled anomalies

B. Experimental Setup

1) Data Preprocessing: First, the time series data in the

SWaT dataset are downsampled by a factor of ten so as

to improve training efficiency. The resulting dataset contains

49, 500 training and 44, 992 test points with 5, 463 anomalies

which is about 12.14% of the test set. It is important to note

that since the system statuses do not change instantaneously,

downsampling by this factor does not have notable negative

impact on the model performance. Rather, it offers compu-

tational benefits as the required training time is significantly

reduced [34].

Then, we normalize each of the time series data using the

maximum and minimum values of each time series data to

increase the robustness of the algorithm. We perform data

normalization to both the training and test sets. The following

min-max normalization method is used:

x̃ = −1 +
2× (x−min(x))
max(x)−min(x)

(5)

where x is the data point, min(x) and max(x) are the

minimum and maximum values of each time series data,

respectively. The resulting normalized data, x̃ ∈ [−1, 1] is

used to generate the SSM which are used for model training

and testing.

2) Model Design: Since the dataset contains 51 time series,

we generate 51 × 51 SSM to represent each row of data points.

We use the following design for MSCRED: 4 convolutional

encoders; conv1 to conv4, 32 filters of size 1 × 1 × 3, 64 filters

of size 1 × 1 × 32, 128 filters of size 1 × 1 × 64, and 256

filters of size 1 × 1 × 128, respectively. Also, we use strides

of 1 × 1 for all the convolutional encoder layers. We choose
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Fig. 5. F1 scores of the MSCRED model at different learning rates using the
ADAM optimizer

a step length of 2 for the ConvLSTM. For reconstructing the

SSM we use: 4 convolutional decoders; deconv4 to deconv1

with 128 filters of size 1 × 1 × 256, 64 filters of size 1 × 1 ×

128, 32 filters of size 1 × 1 × 64, and 3 filters of size 1 × 1

× 64, respectively, each with 1 × 1 stride size [17].

We conduct experiments to determine the best learning rate

as shown in Fig. 5. We observe that the largest learning

rate, 10−3 in our experiments, gives the worst performance

in the earlier iterations. At 5 epochs, the learning rate of

10−6 gives the best results whereas at 10 and 15 epochs,

10−4 performs the best. In order to determine our training

scheduler, we conduct experiments with 15 epochs for each

training round and a total of 15 epochs for all the training

rounds. We observed that conducting experiments with 15

epochs per training round did not improve model performance

and significantly prolonged the training time. Hence, we select

a learning rate of 10−4 and use E = 15 epochs as the

total number of iterations for each proposed design. For all

the proposed curriculum designs that consist of two training

rounds, we use 5 epochs in the first and 10 epochs in the final

round. For example, in DCL-MSCRED-P2, the first training

with the shorter sequence is conducted for 5 epochs and the

training with the longer sequence is performed with 10 epochs.

For those with three curriculum designs, we select 5 epochs for

each training round. We implement the model using PyTorch

and train each proposed framework with the ADAM optimizer.

C. Evaluation Metrics

The performance of the implemented frameworks and the

SOTA techniques is evaluated on the SWaT dataset using

the F1 score which is calculated from precision and recall.

Precision evaluates the ratio of data points classified as anoma-

lies that were actually anomalies whereas recall measures

the proportion of true anomalies that the model accurately

detected. The F1 score is the harmonic mean of precision and

recall. These metrics are calculated as:
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TABLE I. ANOMALY DETECTION RESULTS USING SWAT DATASET. 
THE BEST DESIGN AND RESULT IS SHOWN IN BOLD.

Model Precision (%) Recall (%) F1 (%)

DAGMM 27.46 69.52 39.00
AE 72.63 52.63 61.00
LSTM-ED 78.60 66.60 72.10
LSTM-VAE 96.24 59.91 74.01
MSCRED 94.74 69.09 79.91
GAFM 89.10 74.34 81.06
DCL-MSCRED-P2 98.83 69.19 81.40
DCL-MSCRED-P3 97.25 70.01 81.41
DCL-MSCRED-W2 95.10 71.37 81.54
DCL-MSCRED-W3 96.07 71.64 82.08
MCLAD 96.25 68.23 79.86
D-MCLAD 94.80 70.82 81.08
Anti-MCLAD 89.59 62.78 73.83

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2× Precision×Recall

Precision+Recall
(8)

where TP , FP , and FN represent the true positives, false

positives, and false negatives, respectively. We perform the

evaluation on the SSM of the test set as shown in Fig. 3.

We compare the reconstructed SSM with the input SSM and

experimentally determine the threshold which maximizes the

F1 score.

D. Anomaly Detection Results

The anomaly detection evaluation results of our proposed

approaches and the SOTA frameworks on the SWaT dataset

are presented in Table I.

1) Discussion: It can be seen that generally, introducing CL

to the model can improve the anomaly detection performance.

Overall, DCL-MSCRED-W3 performs the best amongst our

designs with an increase of 2.17% in the F1 score compared to

MSCRED. The improvement in performance can be attributed

to the use of the window size as the difficulty measure. Cap-

turing short local patterns first, facilitates faster convergence

and better learning dynamics. This benefits optimization in the

subsequent training and by gradually introducing medium and

long-term patterns, model generalization is improved which

leads to performance improvement. It is also observed that

the window size-based CL designs outperform those based

on the sequence length. In [35], the researchers use the

forecast horizon as the difficulty measure for their forecasting-

based framework and observe a significant improvement in

performance. Therefore, the window size or forecast horizon

is an important feature for CL designs.

The model-based CL design, MCLAD produces the worst

results amongst our CL designs. This shows that it does not

benefit from CL as the less complex LSTM-ED model is

trained with difficult data. As seen by the performance of

D-MCLAD, we observe the importance of a CL design for

anomaly detection. By introducing data-based CL to MCLAD,

an improvement of 1.22% in the F1 score is observed. There-

fore, a model-based CL design cannot solely offer notable

improvement, however, by training the low capacity model

with less complex data, more optimal model parameters can be

transferred to the final round of the training to offer better F1

score. Also, to further justify the importance of CL designs, we

conduct experiments using an anti-CL technique, hard-to-easy

training. In Anti-MCLAD, we first train the more complex

MSCRED model with the whole training set and transfer the

model parameters to be the initial parameters of the LSTM-

ED. We observe a significant drop in performance compared

to both MCLAD and MSCRED.

2) Comparison with SOTA Models: We compare our

anomaly detection results with related SOTA models using the

SWaT dataset. Generally, there is a significant improvement

in performance when comparing all our proposed CL-based

frameworks to the baseline techniques, MSCRED [17] and

LSTM-ED [31].

The autoencoder-based framework (AE) [36] performs bet-

ter than the DAGMM [21] model due to its ability to learn

non-linear correlations in the time series data. The LSTM-

based frameworks, LSTM-ED [31] and LSTM-VAE [37] out-

perform the AE model because of the LSTM network which

is capable of adaptively learning the most relevant information

and forgetting the less relevant features during training. Fur-

thermore, MSCRED integrates LSTM with CNNs consisting

of an attention mechanism to improve the anomaly detection

performance. The attention mechanism has a strong capability

of learning relevant information required for learning temporal

patterns. We also consider GAFM [38], a time series encoding

framework which outperforms MSCRED. By introducing CL

to the MSCRED framework, all our proposed data-based CL

frameworks and D-MCLAD outperform GAFM.

V. CONCLUSION

In this paper, we analyzed the effects of CL and introduced

data-based and model-based CL designs for MVTS anomaly

detection. First, we examined the importance of sequence

length and window size in CL. Then, we investigated whether

designing a model-based curriculum would benefit the baseline

frameworks. We observed that data-based curriculum designs

offer notable performance increases. On the other hand, the

model-based curriculum designs did not benefit the baseline

MSCRED framework. Hence, we introduced data-based CL to

the model-based design and observed improvement in anomaly

detection performance. We evaluated the proposed approaches

on an open-source anomaly detection dataset, SWaT, and

observed an increase in the F1 score in any framework that

consists of a data-based curriculum design. In conclusion, CL

can improve model performance for deep learning algorithms

for MVTS anomaly detection. Our future work will involve

analyzing the effect of more data features for CL and extending

these approaches to a different case study.
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[5] D. C. Dube, M. Çom, and M. Akar, “Temporal pattern-based collective
anomaly detection in textile processes,” in Turkish Automatic Control
Conference (TOK), vol. 24, 2023, pp. 844–848.

[6] A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine
learning for anomaly detection: A systematic review,” IEEE Access,
vol. 9, pp. 78 658–78 700, 2021.

[7] P. Kromkowski, S. Li, W. Zhao, B. Abraham, A. Osborne, and D. E.
Brown, “Evaluating statistical models for network traffic anomaly detec-
tion,” in 2019 Systems and Information Engineering Design Symposium
(SIEDS), 2019, pp. 1–6.

[8] A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Hem-
ing, “K-means clustering algorithms: A comprehensive review, variants
analysis, and advances in the era of big data,” Information Sciences, vol.
622, pp. 178–210, 2023.

[9] M. Hosseinzadeh, A. M. Rahmani, B. Vo, M. Bidaki, M. Masdari, and
M. Zangakani, “Improving security using svm-based anomaly detection:
issues and challenges,” Soft Computing, vol. 25, pp. 3195–3223, 2021.

[10] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learning:
A survey,” International Journal of Computer Vision, vol. 130, no. 6,
pp. 1526–1565, 2022.

[11] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 41–48.
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