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Abstract—Cloud systems are autonomous systems, that are 
managed on the base of complex set of criteria. In clouds systems, 
where large number of tasks runs on numerous machines, 
optimized task scheduling causes significant reducing of 
computing time. The process of scheduling tasks in a cloud 
computing system consists of two steps. The first step is to allocate 
computing tasks to virtual machines and the second step is to 
create virtual machines on physical machines. In two steps 
scheduling takes place, so we talk about combinations of 
scheduling models. We introduce a complex analysis of the 
behavior of a simulated cloud system to find appropriate 
combinations of scheduling models for scaled and dimensional sets 
of computational tasks. The tasks have different requirements on 
the system, such as those that are focused on the number of 
computational cores. We use the minimum completion time of the 
last task as the main quality criterion. Based on experiments, 9000 
simulations, and subsequent comparative analyses, we find that 
the scheduling of tasks to virtual machines has a significant impact 
on makespan. We have shown that the optimized task scheduling 
(with minimum makespan values), reduces the 6 original classes of 
combined models to 2 classes. These are on time sharing and space 
sharing models for scheduling tasks on virtual machines. 
Keywords—cloud computing, task scheduling, analysis 

I. INTRODUCTION 

Cloud systems are autonomous systems, that are managed on 
the base of complex set of criteria. In clouds systems, where 
large number of tasks runs on numerous machines, optimized 
task scheduling causes significant reducing of computing time. 
A quality cloud system must respect the task requirements for 
architecture, number of compute cores, operating system, 
compilers, and other application software. Task requirements are 
also related to quality of service, which can be expressed in 
terms of different time conditions. These are, for example, 
requirements for the maximum slowdown of a task, or the 
maximum completion time of a task. It is essential that the 
system provides the tasks with sufficient computational resource 
capacity, particularly the computational time of the processors. 
In a complex system, the requirements of many tasks meet and 
need to be optimally scheduled. Efficient scheduling of tasks 
will result in maximum throughput, minimum waiting time for 
individual tasks, minimum completion time for the last task and 
meet task requirements. Ensuring the quality criteria, ultimately 
minimizes the power consumption of the computing system. 
Clouds are virtualized by virtual machines or containers [11]. 

The process of scheduling tasks in a computing system 
consists of: 

 allocation computational tasks to virtual machines. 
 virtual machine (VM) creation on physical machines 

(PMs). 

Understanding the behavior of a computing system is a 
prerequisite for achieving high system performance. Therefore, 
in this paper, we have studied in detail the behavior of the 
computing system, in a simulated CloudSim environment [1].  

The aim is to reach a comprehensive understanding of the 
simulator's behavior when using various scheduling models and 
under different loads. This will enable us to modify the 
simulator's source code with additional functionalities for Edge 
and Fog computing in the future. 

The primary contribution of this work is the comparative 
analysis required to implement modern heterogeneous cloud 
systems (Edge, Fog, microclouds) in the simulator and evaluate 
the quality criteria necessary for managing the system to achieve 
enhanced performance [11]. 

The CloudSim simulator allows the creation of scalable 
simulations [2]. The aim of this paper is a comparative analysis 
of combined scheduling models in the CloudSim cloud 
simulator. In this paper, we ask how the processing time of tasks 
on VMs will be affected if tasks are multitasked (preemptively) 
switched or run continuously on VMs from start to completion 
i.e., without interruption. We interpret the results of the analysis
to decide which combined scheduling models are appropriate to 
use to make the processing of the simulation tasks as efficient as 
possible. The specific objectives of the paper are: 

 To perform a thorough analysis and comparison of the 
combined models of task scheduling on virtual machines 
in CloudSim simulator. 

 To create experiments based on which we compare the 
behavior of the system when using different scheduling 
models using scalable datasets of tasks accomplished by 
specifications of requirements. 

 To perform comparative analysis and investigate effect of 
using different combined scheduling models with varying 
loads represented by number tasks on simulation runtime 
when quality criterion is the shortest time of completion 
of all tasks in a dataset. 

We created a simulated cloud system and 30 scaled task load 
sets that represented different system workloads. The number of 
tasks in these sets varies from 500 to 15 000 tasks. The tasks had 
requirements that specified the number of computational cores. 
For creating task datasets, we inspired by computing tasks, 
which we have used in the High-Performance Computing Center 
of the Matej Bel University in Banska Bystrica, Slovakia. 

CloudSim supports 6 different combinations of scheduling 
models, which can (as we will show) be classified into 2 basic 
groups into time sharing (denoted by Ts) and space sharing 
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(denoted by Ss), depending on how computational tasks are 
allocated to virtual machines. 

We designed and performed experiments to decide which 
combined task scheduling model to choose for individual types 
of computing system workloads. We did 9000 simulations, in 
total. We analyzed the results of each experiment and then 
compared the behavior of the system using each scheduling 
combination. Then, we analyzed the behavior of the system 
when minimal time of task completion was reached. The 
minimal time represents the best schedule. 

We will show that the combined models Ss consume 
significantly more overhead time to switch tasks to VMs 
compared to Ts. If the computing system has enough 
computational capacity to solve the tasks while the task 
computation quality requirements are met, then the time sharing 
combined model runs preferentially in the system. If the set of 
tasks to be processed has requirements on the computing system 
that cannot be met, the space sharing combined task scheduling 
model must be used. 

We show analysis of the behavior of the computing system 
with Ss based task scheduling in more details. We show that if 
the task requests load the system to such an extent that it is not 
feasible to schedule the tasks with the Ts model, then it is most 
appropriate to use the combined SsTs model. We show that the 
optimized scheduling algorithms will enable classification of the 
system behavior. 

This paper is structured as follows: Section II describes 
related works that deal with task scheduling and VMs. Section 
III describes the scheduling of tasks and VMs along with the 
combined task scheduling models. Section IV characterizes 
computational resources and computational tasks. Section V 
contains experiments with different types of datasets. Section VI 
contains an analysis of the behavior of combined scheduling 
models using minimum simulation times. 

II. RELATED WORKS 

The objective of the present paper [3] was to compare the 
response times and CPU utilization of VM's for scheduling 
tasks in CloudSim simulator with different scheduling 
algorithms. These algorithms were used along with combined 
time shared and space shared scheduling models. The research 
authors measured the least response time using shortest job first 
(SJF) algorithm for task scheduling combined with VM 
scheduling using round robin (RR) algorithm. They observed 
the lowest VM's CPU utilization using SJF for task scheduling 
combined with virtual machine scheduling using the length-
wise allocation algorithm (LwA) [3]. 

The research [4] focused on scheduling tasks in CloudSim 
cloud simulator through a hybrid algorithm combining the Grey 
Wolf Optimization Algorithm (GWO) and the Genetic 
Algorithm (GA). The objective of the research was to minimize 
the response time, energy consumption and resource utilization 
cost of the cloud system. Scheduling tasks using hybrid 
algorithm combining the Grey Wolf Optimization Algorithm 
was compared with scheduling algorithms GA, GWO and 
Particle Swarm Optimization (PSO). A dataset of both real and 
synthetic data was used in the comparison in which the authors 
confirmed the advantages of the new hybrid algorithm [4].  

Metaheuristics are among the most popular methods 
currently used for optimal task scheduling in heterogeneous 
cloud systems, but also for optimizing real-world scheduling 
problems [5]. The present research [5] focused on the analysis 
and comparison of six biologically inspired metaheuristics. The 
authors of this paper first performed a detailed analysis of these 
optimization algorithms. Then, they performed a comparison of 
the response times and computational resource utilization costs 
of all six metaheuristic algorithms. From the research result, 
they found that Crow Search Algorithm is the best method for 
optimizing the response time parameters and resource 
utilization cost in cloud system [5]. 

In the given research [6], the authors load balanced the cloud 
system using a hybrid algorithm combining the Genetic 
Algorithm (GA) and the PSO. CloudSim simulator was used in 
the research. The authors aimed to minimize the total simulation 
time, total cost of running VMs, average waiting time and 
system response time. The authors concluded that the hybrid 
algorithm combining the Genetic Algorithm (GA) and the PSO 
is the best algorithm to optimize all the compared parameters. 
Hence, the genetic algorithm should be combined with other 
metaheuristic methods to improve the efficiency of the 
optimization algorithm [6]. 

The research [7] focused on scheduling tasks in CloudSim 
simulator to save power using Greedy strategy. The authors 
developed a cloud task clustering method based on three-way 
decision (TWD-CTC) and compared it with different 
scheduling algorithms. This method divided the pre-scheduling 
tasks into three groups. The first group were the tasks with high 
CPU power requirements. The second group were tasks with 
high RAM capacity requirements. The third group, called Mix, 
included tasks that did not make it into the first two groups. This 
ensured that tasks were allocated to VM's according to the 
demands on computing resources. In their research, the authors 
found that using the TWD-CTC scheduling method, the cloud 
system had the lowest power consumption. Interestingly, they 
measured that the TWD-CTC scheduling method had three 
times lower power consumption compared to the Min-Max-Min 
and Min-Max algorithms [7]. 

The authors of the given research [8] focused on optimizing 
the task scheduling in the cloud using Hybrid Cuckoo Search 
Algorithm (CSA). The comparison was performed using the 
CloudSim simulator and three real datasets NASA, HPC2N, 
and SDSC. In that paper, the authors presented the hybrid 
Nesterov Accelerated Gradient-based Cuckoo Search 
Algorithm (NAGCSA) and compared it with GA, PSO, and 
Cuckoo Search Algorithm (CSA). The result of the research 
was that the hybrid NAGCSA algorithm was able to reduce the 
task processing time by a maximum of 19.20% and the VM 
running cost by a maximum of 35% [8]. 

The authors in [4], [5], [6], [7], [8] discuss the design and 
implementation of optimized scheduling algorithms in the 
CloudSim environment. However, unlike our approach, these 
papers do not delve into combined scheduling models. In the 
work by Sahkhar et al. [3], four combined task scheduling 
models are utilized. The authors employed 10 VMs and two 
datasets with 100 and 500 tasks.  
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All tasks required a single computational core, and the task 
lengths ranged from 10 000 to 12 000 MI. Our work provides a 
comprehensive analysis of a system's behavior based on 100 
VMs. We loaded the system with 30 different scaled task 
datasets with varying sizes from 500 to 15 000 tasks. The tasks 
required varying numbers of computational cores (1-4), and the 
task lengths ranged from 10 000 to 50 000 MI. 

III. SCHEDULING OF TASKS AND VMS

A quality cloud system must respect the requirements of the 
tasks. It is essential that the system provides the tasks with 
sufficient computing resource capacity, especially CPU 
computing time. The requirements of many tasks collide in the 
system and therefore scheduling needs to be addressed. Since in 
this paper we focus on scheduling tasks in a system and for 
purpose of scheduling a dimensional set of computational tasks, 
it is necessary to specify a set of computational tasks and a set 
of computational resources, we define the different components 
involved in this problem in this section of the paper. 

Let J = {J1 , J2 , . . , Jn } is the set of tasks, where the task Ji 
can be described as part of the total work performed by the 
system in solving a computational problem. Let M = {M1 , M2 , 
. . , Mm } is the set of machines, where a machine or 
computational unit represents a set of accumulated resources 
(processors, memories, and storage) [9]. 

We denote by Jij the j - here job processed on the i-th machine 
of the system. We denote the completion time of the 
computation associated with solving job Jij by Cij. The 
completion time of the last job on the i-th machine is denoted 
by Cmaxi , where Cmaxi = max {Ci1 , . . , Cin}. The completion time 
of the last task on all machines is denoted by Cmax, where Cmax 
= max {Cmax1 , . . , Cmaxm} [9]. This parameter forms the basic 
criterion for optimizing the runtime of jobs in the system, on 
which other system requirements depend. Such requirements, 
which need to be satisfied to guarantee Quality of Service (QoS) 
compliance in cloud systems, can be the basic task quality 
requirements [10]: 

 Maximum task slowdown SDmax is introduce in relation 
(1), where Sj is the execution start time of task j, rj is the 
time when task j is available for processing, and Dj is the 
completion time of task j that can be estimated by the 
client [11]. 

 Reserving computing resources in advance - in static job 
scheduling, the client can agree with the cloud provider to 
provide the service for a specific time, this will allow the 
cloud provider to prepare the required resources in 
advance before starting the required service [12]. 

 Last possible time Tj
S to execute task j you can see in 

relation (2). 

Where rj is the time when job j will be available for 
processing, Dj is the completion time of job j that is estimated 
by the client, and SDmax is the maximum slowdown of job j. 
[11]. 

A. Scheduling Definition 

Task scheduling in a computing system is the assignment of 
processing tasks to resources for a specific time interval so that 
no two tasks are executed concurrently on the same resource 
and the capacity of the computing resource is not exceeded. The 
schedule specifies, for each time instant, the set of tasks to be 
executed at that instant and the set of resources on which they 
are to be executed [12], [13], [14]. 

The process of scheduling tasks in a computing system 
consists of:  

 virtual machine (VM) creation on physical machines 
(PMs) - determine the method that determines whether 
VMs will run on physical machines continuously or 
intermittently, 

 allocating compute tasks to virtual machines - 
determining the method that determines whether tasks are 
processed on virtual machines as a single unit or in parts. 
Two basic task scheduling models, referred to as the time 
shared (Ts) and space shared (Ss) models [15], are 
implemented in the CloudSim simulator. Both basic 
scheduling models can be used for mapping virtual 
machines to physical machines and for allocating 
computation tasks to virtual machines. 

(1) A model for scheduling virtual machine runs on physical 
machines:  

The time shared scheduling model from the perspective of 
creating virtual machines on physical machines is based on the 
principle of running virtual machines on physical machines 
continuously without interruptions. The time shared model 
works in the same way as non-preemptive process scheduling. 
When using the space shared scheduling model, the running of 
virtual machines can be intermittent. For example, at a certain 
point in time, VM1 runs on a certain physical machine, then 
VM2, then VM1 again, and so on. The time shared scheduling 
model, for allocating VMs to physical machines, can be 
extended with oversubscription (To) - allowing the creation of 
VMs with more CPU capacity than is available on the physical 
machines. 

(2) A model for scheduling computation tasks on virtual 
machines 

The time-shared scheduling model in terms of allocating 
computation tasks to virtual machines is implemented in such a 
way that the processing of tasks is not divided into parts, but the 
tasks are processed as a single unit. In the case of using the 
space shared scheduling model, the tasks are divided into 
multiple parts. Subsequently, the given tasks are also processed 
in parts (multitasking) [1]. 

B. Combined Models of Task Scheduling 

There are 6 possible combinations of the above scheduling 
models. We always list the combinations in order, first for 
scheduling tasks on VMs and then for scheduling virtual 
machines on physical machines. Therefore, we denote the 
specified combinations by: 

 TsTs - time shared task scheduling model on VMs and 
time shared VM scheduling model on PMs. 

(1) 

 (2) 
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 TsSs - time shared task scheduling model on VMs and 
space shared VM scheduling model on PMs. 

 SsTs - space shared task scheduling model on VMs and 
time shared VM scheduling model on PMs. 

 TsTo - time shared task scheduling model on VMs and 
time shared oversubscription scheduling model on PMs. 

 SsTo - space shared task scheduling model on VMs and 
time shared oversubscription scheduling model on PMs. 

 SsSs - space shared task scheduling model on VMs and 
space shared VM scheduling model on PMs. 

We do not show the combined TsTo, SsTo scheduling 
models below, as they are the same TsTs and SsTs with 
oversubscription reasoning. 
(1) Combined scheduling model time shared for tasks and VMs 

The TsTs scheduling model, applied to tasks and virtual 
machines, is shown in Fig. 1. This combined scheduling model 
is suitable when we have sufficient computational capacity. 
Therefore, both tasks and multiple virtual machines can run 
concurrently. Neither tasks nor virtual machines are switched. 
It is possible to have multiple identical virtual machines running 
on different physical machines. 

Fig. 1. Combined model time shared – time shared (TsTs) 

(2) Combined scheduling model time shared for tasks and 
space shared for VMs 

Fig. 2 shows the scheduling model of TsSs. The time shared 
scheduling model means that tasks run continuously without 
interruptions. Individual tasks can be processed simultaneously. 
The space shared model is used to allocate virtual machines, so 
virtual machines cannot run concurrently. Each virtual machine 
can only process its tasks after the previous machine has 
finished processing all tasks. 

Fig. 2. Combined model time shared – space shared (TsSs) 

(3) Combined scheduling model space shared for tasks and 
time shared for VMs 

Fig. 3 shows the scheduling model of SsTs. Space shared 
task scheduling means that task processing is divided into 
multiple parts. Hence, the tasks on a VM are processed 
sequentially in parts and not all at the same time. VMs are 
allocated in a time shared manner, which makes VMs work 
concurrently. 

Fig.3. Combined model space shared – time shared (SsTs) 

(4) Combined space shared for tasks and VMs scheduling 
model 

In Fig. 4, we see the SsSs type scheduling model. Space 
shared task scheduling means that tasks are divided into 
multiple parts that are processed sequentially. Space shared 
scheduling model is also used for virtual machines, so VMs 
cannot run concurrently but run sequentially. For example, 
VM1 must process all its tasks first and then the other VMs. 

Fig. 4. Combined model space shared – space shared (SsSs) 

(5) Main differences between the combined scheduling models 

Based on our knowledge of the behavior of the different task 
scheduling models, we can conclude that the combined models 
starting at Ss consume significantly more overhead time to 
switch tasks to VMs compared to Ts. If the computing system 
has enough computational capacity to solve the tasks while the 
task computation quality requirements are met, then of course 
the time sharing combined model (starting at Ts) runs 
preferentially in the system. If the set of tasks to be processed 
has requirements on the computing system that cannot be met, 
then the space sharing combined task scheduling model 
(starting with Ss) must be used. The behavior of the computing 
system with Ss-based scheduling needs to be analyzed. 
Therefore, we have designed and performed experiments to 
decide which combined task scheduling model to choose for 
which type of computing system workload.  
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The workload is composed of datasets with complex tasks 
with specific requirements. The datasets are scaled, i.e., they 
contain increasing numbers of computational tasks.

IV. CLOUD SYSTEM MODELLING

We have created a set of computational resources and a set 
of computational tasks in CloudSim simulator to meet the 
research objectives, which are:

Perform a thorough analysis and comparison of the
combined scheduling models used in the CloudSim
simulator.
Set up experiments to compare the behavior of the system
using different scheduling models. •
Investigate how the simulation runtime in CloudSim is
affected when using different combined scheduling
models. We are also interested in how the simulation run
changes when we use different task datasets.

A. Modelling of computational resources

Datacenters in the CloudSim simulator represent 
geographically separated locations. Each datacenter contains a 
certain number of physical machines (Hosts). Each Host 
contains a certain number of physical computing elements 
(PEs). PEs represent the computational cores of the physical 
machines and are defined by their performance in MIPS. Hosts 
have defined RAM, storage, and bandwidth.

In the simulator, we first created 2 cloud computing 
datacenters, see Table I.

TABLE I. PARAMETERS OF CLOUD DATACENTERS IN CLOUDSIM

Host type Datacenter_0 Datacenter_1

Num of hosts 5 10

Num of cores 50 60

RAM 70 440 MB 70 440 MB

MIPS 200 000 200 000

Bandwidth 200 GB/s 200 GB/s

Storage 1000 GB 1000 GB

We designed the datacenters to have enough power to create 
100 virtual machines with multiple processors. All physical 
machines that are located in datacenters run on x86 system 
architecture with Linux operating system. Cloud computing 
usually runs on virtual machines. Therefore, based on the 
specified computing infrastructure, we created 4 types of virtual 
machines using a simulated Xen hypervisor. A total of 100 
virtual machines with 25 machines of each type.

TABLE II PARAMETERS OF 4 TYPES OF VIRTUAL MACHINES IN CLOUDSIM

VM type VM_0 VM_1 VM_2 VM_3
Num of cores 7 6 5 4

RAM 512 MB 1024 MB 2048 MB 4096 MB
MIPS 1000 1200 1400 1600

Bandwidth 1000 1200 1400 1600

Our goal is to model a heterogeneous cloud system, so we 
designed four types of virtual machines. We specified the 
parameters of the virtual machines so that the cloud system 
contains virtual machines with different performance, see 
Table II. 

The designed virtual machines have a minimum of 4 
computational cores to be able to process each of the four types 
of tasks, see Table III.

B. Modelling computational tasks

We designed and created sets of computational tasks. The 
tasks are referred to as cloudlets in the CloudSim simulator. We 
then created three types of datasets that contain different types 
of tasks.

For each dataset type, we designed 10 different sets of 
computational tasks (30 scaled datasets in total). Each dataset 
contains a different number of tasks. The number of tasks in 
each dataset increases from 500 to 15000 tasks as follows: 500, 
750, 1000, 2000, 3000, 4000, 5000, 7500, 10000 and 15000 
tasks.

A comparison of the sum of task lengths across all 30 scaled 
datasets is shown in Table V.

Each dataset contains 4 types of computational tasks (see 
Table III.). The different types of tasks are specified:

size (task length in millions of instructions, MI),
the size of the program and input data files in MB,
the size of the output result file in MB,
the number of computational cores that the task requires
for its processing.

Parallel tasks require more than 1 compute core. Task_0 
requires 4 compute cores, Task_1 requires 3 compute cores, and 
Task_3 requires 2 compute cores. Task type Task_2 is not 
parallel, it requires one compute core.

TABLE III PARAMETERS OF 4 TYPES OF COMPUTATIONAL TASKS

Task type Task_0 Task_1 Task_2 Task_3
Num of 
cores

4 3 1 2

Length of 
tasks

10000 -
20000 MI

21000 -
30000 MI

31000 -
40000 MI

41000 -
50000 MI

File size 100 - 200 
MB

210 - 300 
MB

310 - 400 
MB

410 - 500 
MB

Output 
size

100 - 200 
MB

210 - 300 
MB

310 - 400 
MB

410 - 500 
MB

An example of a task specification in the simulator is for 
example as follows:

Task type 0, ID 10, Task Length 13353, Task FileSize 196, 
Task OutputSize = 184, Num. of CPU = 4.

Using the proposed method, we created 3 datasets of 10 task 
sets each, and the distribution of task types in each dataset is 
shown in Table IV. For example, the dataset__type_3 contains 
70% of the tasks of type Task_0, 10% of the tasks of type 
Task_1, 10% of the tasks of type Task_2, and 10% of the tasks 
of type Task_3.

TABLE IV DATASETS WITH THE DISTRIBUTION OF 4 TYPES OF TASKS

Task_0 Task_1 Task_2 Task_3
Dataset_type_1 25 % 25 % 25 % 25 %
Dataset_type_2 10 % 10 % 70 % 10 %
Dataset_type_3 70 % 10 % 10 % 10 %
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TABLE V Dataset sizes of the tasks used in the experiments

Num. of tasks Tasks lengths (MI)
Dataset_type_1 Dataset_type_2 Dataset_type_3

500 32 413 223 23 448 341 30 479 450
750 48 651 018 35 309 391 45 949 821

1000 65 152 498 47 109 564 61 338 456
2000 130 604 285 94 611 721 123 464 296
3000 196 121 716 141 931 078 185 461 201
4000 261 859 196 189 630 435 247 767 496
5000 327 361 919 236 849 196 309 728 238
7500 491 487 245 355 869 593 464 480 243

10000 655 207 027 474 469 725 620 213 700
15000 983 899 657 712 448 595 931 206 322

V. EXPERIMENTS - BEHAVIOR MODELS OF CLOUD TASK 

SCHEDULING ON THE BASE OF VIRTUAL MACHINES

This part of the paper consists of three experiments, labeled 
as 1 to 3. In each experiment, we used 10 datasets of tasks of 
the same type (see Table IV). The dataset sizes are listed in 
Table V. The different datasets represent scaled system 
workloads with tasks of different computational requirements. 
We modeled a computing environment that contains 2 
datacenters, specified in Table I and Table II, in the CloudSim 
simulator.

The objective of the experiments is Comparative Analysis 
of Combined Models Cloud Task Scheduling on the basis of 
virtual machines. Therefore, we sequentially made runs of the 
simulations by using 6 different combined scheduling models 
for each run: TsTs, TsSs, TsTo, SsTs, SsTo, SsSs. The behavior 
of a differently loaded system with different combined 
scheduling models is the subject of our investigation. We are 
concerned with the analysis of the system using combined 
models that start with Ts versus Ss for scheduling tasks to VMs. 
In all simulations, the First Come First Served (FCFS) 
scheduling algorithm is used for allocating tasks to VMs, thus 
guaranteeing scheduling consistency between experiments.

For each experiment, we ran each simulation with 10 
datasets 50 times, each time with a different randomly shuffled 
task dataset. This caused the tasks to always be scheduled on 
different VMs. We ran the simulations for 10 different scaled 
datasets by 50 iterations with different VMs. Given that we 
repeated all simulations for 6 types of combined scheduling 
models, we ran a total of 3000 simulations.

A. Experiment 1 with dataset_type_1

In Experiment 1, we used dataset_type_1, which contains 
25% of each type of considered tasks, whose parameters are 
depicted in Table III. 

Fig. 5. Comparison of task processing time for datataset_type_1

In this experiment, we compare the simulation times 
involved in scheduling tasks on virtual machines. This is the 
group of combined models that start at Ts compared with the 
group of combined models Ss.

In Fig 5 we can see that when using the task scheduling 
model on the Ts virtual machines, the simulation times are 
significantly lower than when using the Ss scheduling model as 
we expected. The larger the number of tasks the more 
appropriate it is to use task scheduling on Ts virtual machines. 
To model the behavior of this system with a workload of 15,000 
tasks, we measured simulation times ranging from 2748.53 sec. 
for the Ss combined models. to 3102.45 sec. and for Ts 
combined model’s times in the interval from 1584.74 sec. to 
1692.82 sec.

B. Experiment 2 with dataset_type_2

In Experiment 2, we used dataset_type_2, which contains 
70% of the tasks that require 1 computational core for their 
processing. The goal of this experiment is to investigate the 
processing time values of the tasks and compare them with 
experiment 1.

Fig. 6. Comparison of taks processing time for dataset_type_2

Fig 6 shows a comparison of simulation times for six 
different scheduling models. We can see that the task 
scheduling model on VMs of type Ss causes the simulation 
times to be significantly higher than when using the Ts 
scheduling model. It can be seen that when using the tasks from 
dataset_type_2 and the task scheduling model on VMs of type 
Ss, the measured values of the times are significantly more 
dispersed than for the tasks in dataset_type_1. The minimum 
values of the simulation times for Ss are almost close to the 
values of the times for Ts. See Table VI.

TABLE VI COMPARISON OF SIMULATION TIMES FOR SS TASK SCHEDULING 

DATASET TYPE 2, WITH THE NUMBERS OF TASKS 7500, 10000, 15000

Num 
of 

tasks

Min. 
simulation 

time (s)

Max. 
simulation 

time (s)

Difference 
max. – min.

(s)

Time 
increase 

in %
7500 1100.45 1750.84 650.39 58.8

10000 1400.55 2300.25 899.7 64.2
15000 1800.10 3288.12 1488.02 82.6

In the analysis, we focused on examining the variance of the 
values. There was a significant difference between the 
simulation times for the number of tasks of 7,500, 10,000 and 
15,000. For the number of 7,500 tasks, the difference in values 
between the minimum and maximum simulation time was 
650.39 s (58.8%), for 10,000 tasks it was 899.7 s (64.2%) and 
for 15,000 tasks it was 1488.02 s (82.6%). Hence, if a combined 
scheduling model starting at Ss (Ss scheduling tasks on VMs) 
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is to be used, then the completion time of the last task should be 
minimized using an optimization algorithm.

C. Experiment 3 with dataset_type_3

In Experiment 3, we used dataset_type_3, which contains 
70% of the tasks that require 4 computational cores for their 
processing. The parameters of all task types are depicted in 
Table III. 

The purpose of this experiment is to investigate the values 
of task processing times (simulation times) and compare them 
with Experiment 1.1 and Experiment 1.2. The comparison of 
simulation times for six different scheduling models is shown 
in Fig 7. Again, we are interested in the behavior of the system 
using the Ss model.

Fig. 7. Comparison of task processing time for dataset_type_3 

In Fig. 7. we can see that using dataset_type_3 and a 
scheduling model that starts at Ss, for a dataset with a task count 
of 15000, we observed simulation times ranging from 2048.98 
sec. to 2453.84 sec. The maximum values of simulation times 
in Experiments 1.1 and 1.2 were 3102.45 sec. and 3288.12 sec. 
In experiment 1.3, the maximum simulation time is 2453.84 sec. 
and it is the lowest time among all the experiments. Also, the 
variance of the measured time values is not as large as that of 
experiment 1.2. For the combined scheduling model starting at 
Ts, we measured simulation times ranging from 1480.74 sec to 
1625.75 sec. These values are slightly higher than those of 
experiment 1.2. We can conclude that for a system workload 
with tasks, 70% of which require 4 compute cores, it is 
appropriate to use the Ss model of scheduling the tasks on VMs. 

VI. BEHAVIORAL ANALYSIS OF COMBINED MODELS OF 

CLOUD TASK SCHEDULING

In this section, we performed the analysis of the combined 
scheduling models using all the prepared datasets. We used the 
results of previous experiments for the analysis. We focused on 
comparing the minimum simulation times because the 
minimum simulation times represent the optimized task 
schedules. The goal of the given analysis was to investigate how 
the simulation runtime in CloudSim is affected when using 
different combined scheduling models, and how the simulation 
runtime changes if we use different task datasets. 

A. Analysis of combined Ts and Ss task scheduling models 

We analyze the minimum simulation times for the combined 
TsTs and SsSs scheduling models and investigate the system 
behavior using all 30 datasets. In total, there are 60 values. See 
Fig 8. 

Fig. 8. Comparison of simulation times for different numbers of tasks from three 
different datasets

In Fig. 8, we can see that using each of the 30 datasets, the 
minimum simulation time is always higher for the SsSs 
combination than for the TsTs combination. For the combined 
SsSs model, it is most appropriate to use a workload where 70%
of the tasks have requirements for 4 computational cores for 
their processing defined in Type 3 datasets. The simulation time 
is higher when using Type 2 datasets and highest when using 
Type 1 datasets.

TABLE VII COMPARISON OF MIN TASK PROCESSING TIMES OF ALL THREE 

DATASETS USING THE COMBINED TSTS AND SSSS MODELS

Dataset_type_1 Dataset_type_2 Dataset_type_3
Number of 

tasks
500 15000 500 15000 500 15000

Min time SsSs
(s)

93.83 2778.9
1

79.6
2

2516.6
6

84.3
9

2075.9
8

Min time 
TsTs (s)

66.20 1585.5
1

56.0
4

1171.1
7

67.1
5

1502.2
0

Enhancement 30 % 43 % 30 % 54 % 21 % 28 %

In Table VII, we can know that using the combined SsSs 
model for dataset 1 with the number of tasks 500, we measured 
a minimum time of 93.83 sec. For the same dataset, using the 
combined TsTs algorithm, we measured a minimum time of 
66.20 sec, which is an improvement of less than 30%. When 
using the combined SsSs model for dataset 1 with 15000 tasks,
we measured a minimum time of 2778.91 sec. For the same 
dataset, using the combined TsTs algorithm, we measured a 
minimum time of 1585.51 sec, an improvement of almost 43%. 
Using the combined SsSs model for dataset 2 with a task count 
of 500, we measured a minimum time of 79.62 sec. For the same 
dataset, using the combined TsTs algorithm, we measured a 
minimum time of 56.04 sec, an improvement of less than 30%. 
However, when using the combined SsSs model for dataset 2 
with a task count of 15000, we measured a minimum time of 
2516.66 sec. For the same dataset, using the combined TsTs 
algorithm, we measured a minimum time of 1171.17 sec, an 
improvement of almost 54%.

Using the combined SsSs model for dataset 3 with a task 
count of 500, we measured a minimum time of 84.39 sec. For 
the same dataset, using the combined TsTs algorithm, we 
measured a minimum time of 67.15 sec, an improvement of less 
than 21%. However, when using the combined SsSs model for 
dataset 3 with a task count of 15000, we measured a minimum 
time of 2075.98 sec. For the same dataset, using the combined 
TsTs algorithm, we measured a minimum time of 1502.20 sec, 
an improvement of almost 28%.
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Based on the experiments, we can conclude that the use of 
the combined TsTs model is preferable to the SsSs model (it has 
a shorter completion time for the last task) for all types of 
workloads. The reduction in the last task completion time 
depends on the task composition of the dataset and also the 
number of tasks. In our case, we observed the smallest reduction 
in minimum simulation time for dataset 3, namely 21% for 500 
tasks and 28% for 15000 tasks. We measured a larger reduction 
in minimum simulation time for dataset 1, namely 30% for 500 
tasks and 43% for 15000 tasks. The largest improvement in 
minimum simulation time was observed for dataset 2, namely 
30% for 500 tasks and 54% for 15000 tasks. This suggests that 
the combined scheduling model of TsTs is best suited to dataset 
2, which contains 70% of the tasks that require only 1 core for 
their processing.

B. Analysis of combined scheduling models using tasks in type 
1 datasets

We analyze the minimum simulation times using 10 
different scaled type-1 datasets and all 6 combined task 
scheduling models. We analyze 60 minimum simulation times.

Fig. 9. Comparison of simulation times for different numbers of tasks from 
dataset_type_1

We can see that two triads of tenses have arisen which are 
almost identical and overlap. The first triplet consists of the 
minimum simulation times that have been generated using the 
three combined Ss-based scheduling models. The second triplet 
is formed by the minimum simulation times that were generated 
using the three combined Ts based scheduling models. In we go 
that the minimum simulation times for the combined scheduling 
models, where the combined scheduling model Ts is more 
appropriate for all the workloads represented by our datasets. 
Interestingly, it does not matter the detail of the combined 
model, just choose a model starting with Ts or Ss as appropriate.

TABLE VIII  COMPARISON OF MIN TASK PROCESSING TIMES FOR DATASET_TYPE_1 
USING THE COMBINED TSSS AND SSTS MODELS

Number of 
tasks

500 2000 5000 7500 10000 15000

Min time 
SsTs (s)

99.3
2

374.5
3

928.9
8

1418.5
6

1909.0
9

2813.6
0

Min time 
TsSs (s)

66.0
2

224.4
7

543.7
7

798.90 1063.3
1

1583.3
5

Enhancement 34 % 40 % 42 % 44 % 44 % 44 %

In Table VIII The values of the minimum run times of the 
tasks that when using the combined models SsTs and TsSs for 
dataset 1 are shown.

Using the combined SsTs model for dataset 1 with a task 
count of 10000, we measured a minimum time of 1909.09 sec. 
For the same dataset, using the combined TsSs algorithm, we 
measured a minimum time of 1063.31 sec, an improvement of 
less than 44%. When using the combined SsTs model for 
dataset 1 with 15000 tasks, we measured a minimum time of 
2813.60 sec. For the same dataset, using the combined TsSs 
algorithm, we measured a minimum time of 1583.35 sec, an 
improvement of almost 44%.

C. Analysis of combined scheduling models using tasks in type 
2 datasets

We analyze the minimum simulation times using 10 
different scaled type-2 datasets (70% of the tasks that require 1 
computational core for their processing) and all 6 combined task
scheduling models. We analyze 60 minimum simulation times. 
Fig 10. shows a comparison of the minimum simulation times 
for the six different combined scheduling models.

Fig. 10. Comparison of simulation times for different numbers of tasks from 
dataset_type_2

All the simulation run times of the tasks that we schedule 
based on Ts are very similar and overlap. However, the 
simulation run times of tasks where tasks are allocated using Ss 
only overlap when the number of tasks range from 500 to 5000. 
Where the number of tasks to be processed was greater than or 
equal to 7500, so are the values of the lowest simulation times 
for different combinations, see Fig. 10.

TABLE IX COMPARISON OF MIN TASK PROCESSING TIMES FOR DATASET_TYPE_2 
USING THE COMBINED TSSS AND SSTS MODELS

Number of 
tasks

500 2000 5000 7500 10000 15000

Min time 
SsTs (s)

75.44 271.6
7

630.6
0

1071.3
3

1635.6
3

3016.4
1

Min time 
TsSs (s)

54.32 167.9
7

407.7
1

596.33 790.67 1155.3
7

Enhancement 28 % 38 % 35 % 44 % 52 % 62 %

In Table IX. you can know that using the combined SsTs 
model for dataset 2 with a number of tasks of 500, we measured 
a minimum time of 75.44 sec. For the same dataset, when using 
the combined TsSs algorithm, we measured a minimum time of 
54.32 sec, an improvement of less than 28%. Using the 
combined SsTs model for dataset 2 with a task count of 2000, 
we measured a minimum time of 271.67 sec. For the same 
dataset, using the combined TsSs algorithm, we measured a 
minimum time of 167.97 sec, an improvement of almost 38%.
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Using the combined SsTs model for dataset 2 with a task 
count of 5000, we measured a minimum time of 630.60 sec. For 
the same dataset, using the combined TsSs algorithm, we 
measured a minimum time of 407.71 sec, an improvement of 
less than 35%. Using the combined SsTs model for dataset 2 
with a task count of 7500, we measured a minimum time of 
1071.33 sec. For the same dataset, using the combined TsSs 
algorithm, we measured a minimum time of 596.33 sec, an 
improvement of almost 44%.

Using the combined SsTs model for dataset 2 with a task
count of 10000, we measured a minimum time of 1635.63 sec. 
For the same dataset, using the combined TsSs algorithm, we 
measured a minimum time of 790.67 sec, an improvement of 
less than 52%. When using the combined SsTs model for 
dataset 2 with a task count of 15000, we measured a minimum 
time of 3016.41 sec. For the same dataset, using the combined 
TsSs algorithm, we measured a minimum time of 1155.37 sec, 
an improvement of almost 62%.

D. Analysis of combined scheduling models using tasks in type 
3 datasets

We analyze the minimum simulation times using 10 
different scaled datasets of type 3 and all 6 combined task 
scheduling models. We analyze 60 minimum simulation times. 
Fig 11. shows a comparison of the minimum simulation times 
for the six different combined scheduling models.

Fig. 11. Comparison of simulation times for different numbers of tasks from 
dataset_type_3

In Fig. 11 we can see that we again only get two resulting 
trajectories of simulation times, such that three of the six 
combined scheduling models overlap each time. The first 
waveform of the task run times is when using the Ss based 
combined models. The second is the waveform of task run times 
when using the Ts-based combined models.

Thus, as we expected we see that the simulation times for 
the combined scheduling models where the scheduling model 
Ts is used for the tasks are always lower than the simulation 
times for the combined scheduling models in which the tasks 
are allocated through the scheduling model Ss.

We can see that the smallest difference between the 
simulation times when combined scheduling models are used, 
where tasks are allocated via a time shared or space shared 
scheduling model, is when dataset 3 is used, which contains 
70% of the tasks that require 4 cores for their processing.

TABLE X COMPARISON OF MIN TASK PROCESSING TIMES FOR

DATASET_TYPE_3 USING THE COMBINED TSSS AND SSTS MODELS

Number of 
tasks

500 2000 5000 7500 10000 15000

Min time 
SsTs (s)

87.02 292.5
3

713.6
1

1034.3
6

1363.1
9

2044.3
1

Min time 
TsSs (s)

66.71 207.9
9

505.9
2

751.77 1003.0
9

1488.8
9

Enhancement 23 % 28 % 29 % 27 % 26 % 27 %

In Table X. The values of the minimum run times of the 
tasks that when using the combined models SsTs and TsSs for 
dataset 3 are shown.

Using the combined SsTs model for dataset 3 with a task
count of 10000, we measured a minimum time of 1363.19 sec. 
For the same dataset, using the combined TsSs algorithm, we 
measured a minimum time of 1003.09 sec, an improvement of 
less than 26%. When using the combined SsTs model for 
dataset 3 with a task count of 15000, we measured a minimum 
time of 2044.31 sec. For the same dataset, using the combined 
TsSs algorithm, we measured a minimum time of 1488.89 sec, 
an improvement of almost 27%.

E. Evaluation of the analysis of combined scheduling models

We used the results of previous experiments for the analysis. 
We focused on minimum simulation times using all prepared 
datasets. The minimum simulation times represent the 
optimized task schedules. The optimized task schedules showed 
interesting analysis results. Comparing the combinations of 
TsTs and SsSs used. For the optimized combination model of 
SsSs, it is most appropriate to use tasks in datasets of type 3 and 
for the optimized combination model of TsTs, it is most 
appropriate to use tasks in datasets of type 2. Interestingly, for 
the optimized models starting with Ts or Ss, they behave the 
same for datasets of type 1 and 3. We can conclude that as long 
as the sets of computational tasks have all requirements 
satisfied, it is necessary to use scheduling models starting at Ts.

VII. CONCLUSION

A quality cloud system must respect the requirements of the 
tasks. It is essential that the system provides the tasks with 
sufficient computing resource capacity, especially CPU 
computing time. The requirements of many tasks collide in the 
system and need to be optimally scheduled. Quality scheduling 
of tasks will be reflected in maximum throughput, minimum 
waiting time for individual tasks, minimum completion time for 
the last task (e.g. in batch processing) and adherence to task 
requirements. Ensuring the above quality criteria will ultimately 
result in minimizing the power consumption of the computing 
system.

Understanding the behavior of a computing system is a 
prerequisite for achieving high system performance. Therefore, 
in this paper, we have studied in detail the behavior of the 
computing system, in a simulated CloudSim environment. We 
created a simulated cloud system and 30 scaled task load sets 
that represented different workloads of the system. The number 
of tasks in these sets grew from 500 to 15,000 tasks. The tasks 
had requirements that specified the number of computational 
cores.
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CloudSim supports 6 different combinations of scheduling 
models, which can be classified into 2 basic groups of time
sharing and space sharing, depending on how compute tasks are 
allocated to virtual machines.

Based on our knowledge of the behavior of the different task 
scheduling models, we can conclude that the combined models 
starting at Ss consume significantly more overhead time to 
switch tasks to VMs compared to Ts. If the computing system 
has enough computational capacity to solve the tasks while the 
task computation quality requirements are met, then of course 
the time sharing combined model (starting at Ts) runs 
preferentially in the system. If the set of tasks to be processed 
has requirements on the computing system that cannot be met, 
then the space sharing combined task scheduling model 
(starting with Ss) must be used. The behavior of the computing 
system with Ss-based tasks scheduling needs to be analyzed in 
more details. 

Therefore, we designed and performed experiments to 
decide which combined task scheduling model to choose for 
which type of computing system workload. In total, we did 
9000 simulations.

We analyzed the results of each experiment and then 
compared the behavior of the system using each scheduling 
combination.

We then analyzed the behavior of the system in achieving 
the best task completion times. The minimum time represents 
the best schedule.

As we expected, the Ts combined task scheduling model on
VMs has a shorter completion time than Ss for the last task for 
all types of workloads. If we consider a dataset with 15000 
tasks, then using the Ts model will reduce the completion time 
of the last task by 43% when using a dataset of type 1 tasks, by 
54% when using a dataset of type 2 tasks, and by 28% when 
using a dataset of type 3 tasks, compared to the Ss model.

If the task requests are so taxing on the system that it is not 
feasible to schedule tasks with the Ts model, then it is most 
appropriate to use the combined SsTs model and compose the 
task dataset with requests from 70% of the tasks with 4 cores 
and 10% each of the tasks with 1, 2, and 3 cores.

Based on the experiments, we can conclude that the use of 
the combined TsTs model is preferable to the SsSs model (it has 
a shorter completion time for the last task) for all types of 
workloads. The reduction in the last task completion time 
depends on the task composition of the dataset and the number 
of tasks. In our case, we observed the smallest reduction in 
minimum simulation time for dataset 3, namely 21% for 500 
tasks and 28% for 15000 tasks. We measured a larger reduction 
in minimum simulation time for dataset 1, namely 30% for 500 
tasks and 43% for 15000 tasks. The largest improvement in 
minimum simulation time was observed for dataset 2, namely 
30% for 500 tasks and 54% for 15000 tasks. This suggests that 
the combined scheduling model of TsTs is best suited to dataset 
2, which contains 70% of the tasks that require only 1 core for 
their processing. Which inspires us to extend the automatic 
scheduling model based on big data analysis [16], [17], [18].

We used the results of previous experiments for the analysis. 
We focused on minimum simulation times using all prepared 
datasets. The minimum simulation times represent the 
optimized task schedules. The optimized task schedules showed 
interesting analysis results. Comparing the combinations of 
TsTs and SsSs used. For the optimized combination model of 
SsSs, it is most appropriate to use tasks in datasets of type 3 and 
for the optimized combination model of TsTs, it is most 
appropriate to use tasks in datasets of type 2. Interestingly, for 
the optimized models starting with Ts or Ss, they behave the 
same for datasets of type 1 and 3. We can conclude that as long 
as the sets of computational tasks have all requirements 
satisfied, it is necessary to use scheduling models starting at Ts.

ACKNOWLEDGMENT

Computing was performed in the High-Performance
Computing Center of the Matej Bel University in Banska 
Bystrica using the HPC infrastructure acquired in project 
ITMS26230120002 and 26210120002 (Slovak infrastructure 
for high-performance computing) supported by the Research & 
Development Operational Programme funded by the ERDF.

It was supported by the Erasmus+ project: Project number: 
2022-1-SK01-KA220-HED-000089149, Project title: Including 
EVERyone in GREEN Data Analysis (EVERGREEN) funded 
by the European Union. Views and opinions expressed are 
however those of the author(s) only and do not necessarily 
reflect those of the European Union or the Slovak Academic 
Association for International Cooperation (SAAIC). Neither the 
European Union nor SAAIC can be held responsible for them.

REFERENCES

[1] Buyya, R., Ranjan, R., & Calheiros, R. (2009). Modeling and 
Simulation of Scalable Cloud Computing Environments and the 
CloudSim Toolkit: Challenges and Opportunities. IEEE Access, 10, 
34996-35011. ISBN 978-1-4244-4906-4.

[2] Calheiros, R. N., Ranjan, R., Rose, C. A. F. D., & Buyya, R. (2009). 
CloudSim: A Novel Framework for Modeling and Simulation of 
Cloud Computing Infrastructures and Services.

[3] Sahkhar, L., & Yadav, S. S. (2022). Efficient Cloudlet Allocation to 
Virtual Machine to Impact Cloud System Performance. International 
Journal of Information System Modeling and Design. International 
Journal of Information System Modeling and Design (IJISMD) 
13(6). DOI: 10.4018/IJISMD.297630

[4] Behera, I., & Sobhanayak, S. (2024). Task scheduling optimization 
in heterogeneous cloud computing environments: A hybrid GA-
GWO approach. Journal of Parallel and Distributed Computing.
Volume 183. DOI: 10.1016/j.jpdc.2023.104766.

[5] Singh, H., Tyagi, S., Kumar, P., Gill, S. S., & Buyya, R. (2021). 
Metaheuristics for scheduling of heterogeneous tasks in cloud 
computing environments: Analysis, performance evaluation, and 
future directions. Simulation Modelling Practice and Theory. DOI: 
10.1016/j.simpat.2021.102353

[6] Vijay, R., & Sree, T. R. (2023). Resource Scheduling and Load 
Balancing Algorithms in Cloud Computing. SN Computer Science. 
DOI: 10.1007/s42979-022-01609-9

[7] Liu, S., Ma, X., Jia, Y., & Liu, Y. (2022). An Energy-Saving Task 
Scheduling Model via Greedy Strategy under Cloud Environment. 
Hindawi Wireless Communications and Mobile Computing. DOI: 
10.1155/2022/8769674

[8] Kumar, M., & Suman. (2022). Hybrid Cuckoo Search Algorithm for 
Scheduling in Cloud Computing. Computers, Materials & Continua.
DOI: 10.32604/cmc.2022.021793

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 220 ----------------------------------------------------------------------------



[9] Škrinárová, J., & Dudáš, A. (2022). Optimization of the functional 
decomposition of parallel and distributed computations in graph 
coloring with the use of high-performance computing. IEEE Access, 
10, 34996-35011. ISSN 2169-3536. 

[10] Hussain, A., Aleem, M., Iqbal, M. A., & Islam, M. A. (2019). 
Investigation of cloud scheduling algorithms for resource utilization 
using cloudsim. Comput Inform. DOI: 10.31577/cai_2019_3_525 

[11] Škrinárová, J. (2022). Heterogeneous Cloud Systems and Criteria 
for Enhanced Performance. 2022 IEEE 16th International Scientific 
Conference on Informatics. 
10.1109/Informatics57926.2022.10083443 

[12] Chawla, Y., & Bhonsle, M. (2012). A study on scheduling methods 
in cloud computing. Int. J. Emerg. Trends Technol. Comput. Sci., 
1(3), 12-17. 

[13] Aladwani, T. (2019). Scheduling IoT Healthcare Tasks in Fog 
Computing Based on their Importance. International Learning & 
Technology Conference. DOI: 10.1016/j.procs.2019.12.138 
 

[14] Ma, T., Chu, Y., Zhao, L., & Ankhbayar, O. (2014). Resource 
Allocation and Scheduling in Cloud Computing: Policy and 
Algorithm. IETE Tech. Rev., 31(1), 4-16. DOI: 
10.1080/02564602.2014.890837 

[15] Himthani, P., & Dubey, G. P. (2019). Performance Analysis of Space 
Shared Scheduling and Time Shared Scheduling in Cloud Sim. 
IJRDET. DOI: 10.5120/17092-7629 

[16] Purkrabková, Z., et al. (2021). Traffic Accident Risk Classification 
Using Neural Networks. Neural Network World, 31(5). 
DOI:10.14311/NNW.2021.31.019 

[17] Horaisova, K., et al. (2018). Discrimination between Alzheimer’s 
disease and amyotrophic lateral sclerosis via affine invariant spherical 
harmonics analysis of spect images. Neural Network World, 28(1). 
DOI:10.14311/NNW.2018.28.002 

[18] Čerešňák, R., et al. (2021). Mapping rules for schema transformation: 
SQL to NoSQL and back. In 2021 International Conference on 
Information and Digital Technologies (IDT) (pp. 52-58). Zilina, 
Slovakia. doi: 10.1109/IDT52577.2021.9497629. 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 221 ----------------------------------------------------------------------------


