
Comparative Analysis of Simulated Cloud Task
Scheduling

Adrián Hamada
University of Žilina

Žilina, Slovakia
hamada@stud.uniza.sk

Jarmila Škrinárová
Matej Bel University

Banská Bystrica, Slovakia
jarmila.skrinarova@umb.sk

Abstract—Cloud systems are autonomous systems, that are
managed on the base of complex set of criteria. In clouds systems,
where large number of tasks runs on numerous machines,
optimized task scheduling causes significant reducing of
computing time. The process of scheduling tasks in a cloud
computing system consists of two steps. The first step is to allocate
computing tasks to virtual machines and the second step is to
create virtual machines on physical machines. In two steps
scheduling takes place, so we talk about combinations of
scheduling models. We introduce a complex analysis of the
behavior of a simulated cloud system to find appropriate
combinations of scheduling models for scaled and dimensional sets
of computational tasks. The tasks have different requirements on
the system, such as those that are focused on the number of
computational cores. We use the minimum completion time of the
last task as the main quality criterion. Based on experiments, 9000
simulations, and subsequent comparative analyses, we find that
the scheduling of tasks to virtual machines has a significant impact
on makespan. We have shown that the optimized task scheduling
(with minimum makespan values), reduces the 6 original classes of
combined models to 2 classes. These are on time sharing and space
sharing models for scheduling tasks on virtual machines.
Keywords—cloud computing, task scheduling, analysis

I. INTRODUCTION

Cloud systems are autonomous systems, that are managed on
the base of complex set of criteria. In clouds systems, where
large number of tasks runs on numerous machines, optimized
task scheduling causes significant reducing of computing time.
A quality cloud system must respect the task requirements for
architecture, number of compute cores, operating system,
compilers, and other application software. Task requirements are
also related to quality of service, which can be expressed in
terms of different time conditions. These are, for example,
requirements for the maximum slowdown of a task, or the
maximum completion time of a task. It is essential that the
system provides the tasks with sufficient computational resource
capacity, particularly the computational time of the processors.
In a complex system, the requirements of many tasks meet and
need to be optimally scheduled. Efficient scheduling of tasks
will result in maximum throughput, minimum waiting time for
individual tasks, minimum completion time for the last task and
meet task requirements. Ensuring the quality criteria, ultimately
minimizes the power consumption of the computing system.
Clouds are virtualized by virtual machines or containers [11].

The process of scheduling tasks in a computing system
consists of:

 allocation computational tasks to virtual machines.
 virtual machine (VM) creation on physical machines

(PMs).

Understanding the behavior of a computing system is a
prerequisite for achieving high system performance. Therefore,
in this paper, we have studied in detail the behavior of the
computing system, in a simulated CloudSim environment [1].

The aim is to reach a comprehensive understanding of the
simulator's behavior when using various scheduling models and
under different loads. This will enable us to modify the
simulator's source code with additional functionalities for Edge
and Fog computing in the future.

The primary contribution of this work is the comparative
analysis required to implement modern heterogeneous cloud
systems (Edge, Fog, microclouds) in the simulator and evaluate
the quality criteria necessary for managing the system to achieve
enhanced performance [11].

The CloudSim simulator allows the creation of scalable
simulations [2]. The aim of this paper is a comparative analysis
of combined scheduling models in the CloudSim cloud
simulator. In this paper, we ask how the processing time of tasks
on VMs will be affected if tasks are multitasked (preemptively)
switched or run continuously on VMs from start to completion
i.e., without interruption. We interpret the results of the analysis
to decide which combined scheduling models are appropriate to
use to make the processing of the simulation tasks as efficient as
possible. The specific objectives of the paper are:

 To perform a thorough analysis and comparison of the
combined models of task scheduling on virtual machines
in CloudSim simulator.

 To create experiments based on which we compare the
behavior of the system when using different scheduling
models using scalable datasets of tasks accomplished by
specifications of requirements.

 To perform comparative analysis and investigate effect of
using different combined scheduling models with varying
loads represented by number tasks on simulation runtime
when quality criterion is the shortest time of completion
of all tasks in a dataset.

We created a simulated cloud system and 30 scaled task load
sets that represented different system workloads. The number of
tasks in these sets varies from 500 to 15 000 tasks. The tasks had
requirements that specified the number of computational cores.
For creating task datasets, we inspired by computing tasks,
which we have used in the High-Performance Computing Center
of the Matej Bel University in Banska Bystrica, Slovakia.

CloudSim supports 6 different combinations of scheduling
models, which can (as we will show) be classified into 2 basic
groups into time sharing (denoted by Ts) and space sharing

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 211 --

(denoted by Ss), depending on how computational tasks are
allocated to virtual machines.

We designed and performed experiments to decide which
combined task scheduling model to choose for individual types
of computing system workloads. We did 9000 simulations, in
total. We analyzed the results of each experiment and then
compared the behavior of the system using each scheduling
combination. Then, we analyzed the behavior of the system
when minimal time of task completion was reached. The
minimal time represents the best schedule.

We will show that the combined models Ss consume
significantly more overhead time to switch tasks to VMs
compared to Ts. If the computing system has enough
computational capacity to solve the tasks while the task
computation quality requirements are met, then the time sharing
combined model runs preferentially in the system. If the set of
tasks to be processed has requirements on the computing system
that cannot be met, the space sharing combined task scheduling
model must be used.

We show analysis of the behavior of the computing system
with Ss based task scheduling in more details. We show that if
the task requests load the system to such an extent that it is not
feasible to schedule the tasks with the Ts model, then it is most
appropriate to use the combined SsTs model. We show that the
optimized scheduling algorithms will enable classification of the
system behavior.

This paper is structured as follows: Section II describes
related works that deal with task scheduling and VMs. Section
III describes the scheduling of tasks and VMs along with the
combined task scheduling models. Section IV characterizes
computational resources and computational tasks. Section V
contains experiments with different types of datasets. Section VI
contains an analysis of the behavior of combined scheduling
models using minimum simulation times.

II. RELATED WORKS

The objective of the present paper [3] was to compare the
response times and CPU utilization of VM's for scheduling
tasks in CloudSim simulator with different scheduling
algorithms. These algorithms were used along with combined
time shared and space shared scheduling models. The research
authors measured the least response time using shortest job first
(SJF) algorithm for task scheduling combined with VM
scheduling using round robin (RR) algorithm. They observed
the lowest VM's CPU utilization using SJF for task scheduling
combined with virtual machine scheduling using the length-
wise allocation algorithm (LwA) [3].

The research [4] focused on scheduling tasks in CloudSim
cloud simulator through a hybrid algorithm combining the Grey
Wolf Optimization Algorithm (GWO) and the Genetic
Algorithm (GA). The objective of the research was to minimize
the response time, energy consumption and resource utilization
cost of the cloud system. Scheduling tasks using hybrid
algorithm combining the Grey Wolf Optimization Algorithm
was compared with scheduling algorithms GA, GWO and
Particle Swarm Optimization (PSO). A dataset of both real and
synthetic data was used in the comparison in which the authors
confirmed the advantages of the new hybrid algorithm [4].

Metaheuristics are among the most popular methods
currently used for optimal task scheduling in heterogeneous
cloud systems, but also for optimizing real-world scheduling
problems [5]. The present research [5] focused on the analysis
and comparison of six biologically inspired metaheuristics. The
authors of this paper first performed a detailed analysis of these
optimization algorithms. Then, they performed a comparison of
the response times and computational resource utilization costs
of all six metaheuristic algorithms. From the research result,
they found that Crow Search Algorithm is the best method for
optimizing the response time parameters and resource
utilization cost in cloud system [5].

In the given research [6], the authors load balanced the cloud
system using a hybrid algorithm combining the Genetic
Algorithm (GA) and the PSO. CloudSim simulator was used in
the research. The authors aimed to minimize the total simulation
time, total cost of running VMs, average waiting time and
system response time. The authors concluded that the hybrid
algorithm combining the Genetic Algorithm (GA) and the PSO
is the best algorithm to optimize all the compared parameters.
Hence, the genetic algorithm should be combined with other
metaheuristic methods to improve the efficiency of the
optimization algorithm [6].

The research [7] focused on scheduling tasks in CloudSim
simulator to save power using Greedy strategy. The authors
developed a cloud task clustering method based on three-way
decision (TWD-CTC) and compared it with different
scheduling algorithms. This method divided the pre-scheduling
tasks into three groups. The first group were the tasks with high
CPU power requirements. The second group were tasks with
high RAM capacity requirements. The third group, called Mix,
included tasks that did not make it into the first two groups. This
ensured that tasks were allocated to VM's according to the
demands on computing resources. In their research, the authors
found that using the TWD-CTC scheduling method, the cloud
system had the lowest power consumption. Interestingly, they
measured that the TWD-CTC scheduling method had three
times lower power consumption compared to the Min-Max-Min
and Min-Max algorithms [7].

The authors of the given research [8] focused on optimizing
the task scheduling in the cloud using Hybrid Cuckoo Search
Algorithm (CSA). The comparison was performed using the
CloudSim simulator and three real datasets NASA, HPC2N,
and SDSC. In that paper, the authors presented the hybrid
Nesterov Accelerated Gradient-based Cuckoo Search
Algorithm (NAGCSA) and compared it with GA, PSO, and
Cuckoo Search Algorithm (CSA). The result of the research
was that the hybrid NAGCSA algorithm was able to reduce the
task processing time by a maximum of 19.20% and the VM
running cost by a maximum of 35% [8].

The authors in [4], [5], [6], [7], [8] discuss the design and
implementation of optimized scheduling algorithms in the
CloudSim environment. However, unlike our approach, these
papers do not delve into combined scheduling models. In the
work by Sahkhar et al. [3], four combined task scheduling
models are utilized. The authors employed 10 VMs and two
datasets with 100 and 500 tasks.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 212 --

All tasks required a single computational core, and the task
lengths ranged from 10 000 to 12 000 MI. Our work provides a
comprehensive analysis of a system's behavior based on 100
VMs. We loaded the system with 30 different scaled task
datasets with varying sizes from 500 to 15 000 tasks. The tasks
required varying numbers of computational cores (1-4), and the
task lengths ranged from 10 000 to 50 000 MI.

III. SCHEDULING OF TASKS AND VMS

A quality cloud system must respect the requirements of the
tasks. It is essential that the system provides the tasks with
sufficient computing resource capacity, especially CPU
computing time. The requirements of many tasks collide in the
system and therefore scheduling needs to be addressed. Since in
this paper we focus on scheduling tasks in a system and for
purpose of scheduling a dimensional set of computational tasks,
it is necessary to specify a set of computational tasks and a set
of computational resources, we define the different components
involved in this problem in this section of the paper.

Let J = {J1 , J2 , . . , Jn } is the set of tasks, where the task Ji
can be described as part of the total work performed by the
system in solving a computational problem. Let M = {M1 , M2 ,
. . , Mm } is the set of machines, where a machine or
computational unit represents a set of accumulated resources
(processors, memories, and storage) [9].

We denote by Jij the j - here job processed on the i-th machine
of the system. We denote the completion time of the
computation associated with solving job Jij by Cij. The
completion time of the last job on the i-th machine is denoted
by Cmaxi , where Cmaxi = max {Ci1 , . . , Cin}. The completion time
of the last task on all machines is denoted by Cmax, where Cmax
= max {Cmax1 , . . , Cmaxm} [9]. This parameter forms the basic
criterion for optimizing the runtime of jobs in the system, on
which other system requirements depend. Such requirements,
which need to be satisfied to guarantee Quality of Service (QoS)
compliance in cloud systems, can be the basic task quality
requirements [10]:

 Maximum task slowdown SDmax is introduce in relation
(1), where Sj is the execution start time of task j, rj is the
time when task j is available for processing, and Dj is the
completion time of task j that can be estimated by the
client [11].

 Reserving computing resources in advance - in static job
scheduling, the client can agree with the cloud provider to
provide the service for a specific time, this will allow the
cloud provider to prepare the required resources in
advance before starting the required service [12].

 Last possible time Tj
S to execute task j you can see in

relation (2).

Where rj is the time when job j will be available for
processing, Dj is the completion time of job j that is estimated
by the client, and SDmax is the maximum slowdown of job j.
[11].

A. Scheduling Definition

Task scheduling in a computing system is the assignment of
processing tasks to resources for a specific time interval so that
no two tasks are executed concurrently on the same resource
and the capacity of the computing resource is not exceeded. The
schedule specifies, for each time instant, the set of tasks to be
executed at that instant and the set of resources on which they
are to be executed [12], [13], [14].

The process of scheduling tasks in a computing system
consists of:

 virtual machine (VM) creation on physical machines
(PMs) - determine the method that determines whether
VMs will run on physical machines continuously or
intermittently,

 allocating compute tasks to virtual machines -
determining the method that determines whether tasks are
processed on virtual machines as a single unit or in parts.
Two basic task scheduling models, referred to as the time
shared (Ts) and space shared (Ss) models [15], are
implemented in the CloudSim simulator. Both basic
scheduling models can be used for mapping virtual
machines to physical machines and for allocating
computation tasks to virtual machines.

(1) A model for scheduling virtual machine runs on physical
machines:

The time shared scheduling model from the perspective of
creating virtual machines on physical machines is based on the
principle of running virtual machines on physical machines
continuously without interruptions. The time shared model
works in the same way as non-preemptive process scheduling.
When using the space shared scheduling model, the running of
virtual machines can be intermittent. For example, at a certain
point in time, VM1 runs on a certain physical machine, then
VM2, then VM1 again, and so on. The time shared scheduling
model, for allocating VMs to physical machines, can be
extended with oversubscription (To) - allowing the creation of
VMs with more CPU capacity than is available on the physical
machines.

(2) A model for scheduling computation tasks on virtual
machines

The time-shared scheduling model in terms of allocating
computation tasks to virtual machines is implemented in such a
way that the processing of tasks is not divided into parts, but the
tasks are processed as a single unit. In the case of using the
space shared scheduling model, the tasks are divided into
multiple parts. Subsequently, the given tasks are also processed
in parts (multitasking) [1].

B. Combined Models of Task Scheduling

There are 6 possible combinations of the above scheduling
models. We always list the combinations in order, first for
scheduling tasks on VMs and then for scheduling virtual
machines on physical machines. Therefore, we denote the
specified combinations by:

 TsTs - time shared task scheduling model on VMs and
time shared VM scheduling model on PMs.

(1)

 (2)

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 213 --

 TsSs - time shared task scheduling model on VMs and
space shared VM scheduling model on PMs.

 SsTs - space shared task scheduling model on VMs and
time shared VM scheduling model on PMs.

 TsTo - time shared task scheduling model on VMs and
time shared oversubscription scheduling model on PMs.

 SsTo - space shared task scheduling model on VMs and
time shared oversubscription scheduling model on PMs.

 SsSs - space shared task scheduling model on VMs and
space shared VM scheduling model on PMs.

We do not show the combined TsTo, SsTo scheduling
models below, as they are the same TsTs and SsTs with
oversubscription reasoning.
(1) Combined scheduling model time shared for tasks and VMs

The TsTs scheduling model, applied to tasks and virtual
machines, is shown in Fig. 1. This combined scheduling model
is suitable when we have sufficient computational capacity.
Therefore, both tasks and multiple virtual machines can run
concurrently. Neither tasks nor virtual machines are switched.
It is possible to have multiple identical virtual machines running
on different physical machines.

Fig. 1. Combined model time shared – time shared (TsTs)

(2) Combined scheduling model time shared for tasks and
space shared for VMs

Fig. 2 shows the scheduling model of TsSs. The time shared
scheduling model means that tasks run continuously without
interruptions. Individual tasks can be processed simultaneously.
The space shared model is used to allocate virtual machines, so
virtual machines cannot run concurrently. Each virtual machine
can only process its tasks after the previous machine has
finished processing all tasks.

Fig. 2. Combined model time shared – space shared (TsSs)

(3) Combined scheduling model space shared for tasks and
time shared for VMs

Fig. 3 shows the scheduling model of SsTs. Space shared
task scheduling means that task processing is divided into
multiple parts. Hence, the tasks on a VM are processed
sequentially in parts and not all at the same time. VMs are
allocated in a time shared manner, which makes VMs work
concurrently.

Fig.3. Combined model space shared – time shared (SsTs)

(4) Combined space shared for tasks and VMs scheduling
model

In Fig. 4, we see the SsSs type scheduling model. Space
shared task scheduling means that tasks are divided into
multiple parts that are processed sequentially. Space shared
scheduling model is also used for virtual machines, so VMs
cannot run concurrently but run sequentially. For example,
VM1 must process all its tasks first and then the other VMs.

Fig. 4. Combined model space shared – space shared (SsSs)

(5) Main differences between the combined scheduling models

Based on our knowledge of the behavior of the different task
scheduling models, we can conclude that the combined models
starting at Ss consume significantly more overhead time to
switch tasks to VMs compared to Ts. If the computing system
has enough computational capacity to solve the tasks while the
task computation quality requirements are met, then of course
the time sharing combined model (starting at Ts) runs
preferentially in the system. If the set of tasks to be processed
has requirements on the computing system that cannot be met,
then the space sharing combined task scheduling model
(starting with Ss) must be used. The behavior of the computing
system with Ss-based scheduling needs to be analyzed.
Therefore, we have designed and performed experiments to
decide which combined task scheduling model to choose for
which type of computing system workload.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 214 --

The workload is composed of datasets with complex tasks
with specific requirements. The datasets are scaled, i.e., they
contain increasing numbers of computational tasks.

IV. CLOUD SYSTEM MODELLING

We have created a set of computational resources and a set
of computational tasks in CloudSim simulator to meet the
research objectives, which are:

Perform a thorough analysis and comparison of the
combined scheduling models used in the CloudSim
simulator.
Set up experiments to compare the behavior of the system
using different scheduling models. •
Investigate how the simulation runtime in CloudSim is
affected when using different combined scheduling
models. We are also interested in how the simulation run
changes when we use different task datasets.

A. Modelling of computational resources

Datacenters in the CloudSim simulator represent
geographically separated locations. Each datacenter contains a
certain number of physical machines (Hosts). Each Host
contains a certain number of physical computing elements
(PEs). PEs represent the computational cores of the physical
machines and are defined by their performance in MIPS. Hosts
have defined RAM, storage, and bandwidth.

In the simulator, we first created 2 cloud computing
datacenters, see Table I.

TABLE I. PARAMETERS OF CLOUD DATACENTERS IN CLOUDSIM

Host type Datacenter_0 Datacenter_1

Num of hosts 5 10

Num of cores 50 60

RAM 70 440 MB 70 440 MB

MIPS 200 000 200 000

Bandwidth 200 GB/s 200 GB/s

Storage 1000 GB 1000 GB

We designed the datacenters to have enough power to create
100 virtual machines with multiple processors. All physical
machines that are located in datacenters run on x86 system
architecture with Linux operating system. Cloud computing
usually runs on virtual machines. Therefore, based on the
specified computing infrastructure, we created 4 types of virtual
machines using a simulated Xen hypervisor. A total of 100
virtual machines with 25 machines of each type.

TABLE II PARAMETERS OF 4 TYPES OF VIRTUAL MACHINES IN CLOUDSIM

VM type VM_0 VM_1 VM_2 VM_3
Num of cores 7 6 5 4

RAM 512 MB 1024 MB 2048 MB 4096 MB
MIPS 1000 1200 1400 1600

Bandwidth 1000 1200 1400 1600

Our goal is to model a heterogeneous cloud system, so we
designed four types of virtual machines. We specified the
parameters of the virtual machines so that the cloud system
contains virtual machines with different performance, see
Table II.

The designed virtual machines have a minimum of 4
computational cores to be able to process each of the four types
of tasks, see Table III.

B. Modelling computational tasks

We designed and created sets of computational tasks. The
tasks are referred to as cloudlets in the CloudSim simulator. We
then created three types of datasets that contain different types
of tasks.

For each dataset type, we designed 10 different sets of
computational tasks (30 scaled datasets in total). Each dataset
contains a different number of tasks. The number of tasks in
each dataset increases from 500 to 15000 tasks as follows: 500,
750, 1000, 2000, 3000, 4000, 5000, 7500, 10000 and 15000
tasks.

A comparison of the sum of task lengths across all 30 scaled
datasets is shown in Table V.

Each dataset contains 4 types of computational tasks (see
Table III.). The different types of tasks are specified:

size (task length in millions of instructions, MI),
the size of the program and input data files in MB,
the size of the output result file in MB,
the number of computational cores that the task requires
for its processing.

Parallel tasks require more than 1 compute core. Task_0
requires 4 compute cores, Task_1 requires 3 compute cores, and
Task_3 requires 2 compute cores. Task type Task_2 is not
parallel, it requires one compute core.

TABLE III PARAMETERS OF 4 TYPES OF COMPUTATIONAL TASKS

Task type Task_0 Task_1 Task_2 Task_3
Num of
cores

4 3 1 2

Length of
tasks

10000 -
20000 MI

21000 -
30000 MI

31000 -
40000 MI

41000 -
50000 MI

File size 100 - 200
MB

210 - 300
MB

310 - 400
MB

410 - 500
MB

Output
size

100 - 200
MB

210 - 300
MB

310 - 400
MB

410 - 500
MB

An example of a task specification in the simulator is for
example as follows:

Task type 0, ID 10, Task Length 13353, Task FileSize 196,
Task OutputSize = 184, Num. of CPU = 4.

Using the proposed method, we created 3 datasets of 10 task
sets each, and the distribution of task types in each dataset is
shown in Table IV. For example, the dataset__type_3 contains
70% of the tasks of type Task_0, 10% of the tasks of type
Task_1, 10% of the tasks of type Task_2, and 10% of the tasks
of type Task_3.

TABLE IV DATASETS WITH THE DISTRIBUTION OF 4 TYPES OF TASKS

Task_0 Task_1 Task_2 Task_3
Dataset_type_1 25 % 25 % 25 % 25 %
Dataset_type_2 10 % 10 % 70 % 10 %
Dataset_type_3 70 % 10 % 10 % 10 %

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 215 --

TABLE V Dataset sizes of the tasks used in the experiments

Num. of tasks Tasks lengths (MI)
Dataset_type_1 Dataset_type_2 Dataset_type_3

500 32 413 223 23 448 341 30 479 450
750 48 651 018 35 309 391 45 949 821

1000 65 152 498 47 109 564 61 338 456
2000 130 604 285 94 611 721 123 464 296
3000 196 121 716 141 931 078 185 461 201
4000 261 859 196 189 630 435 247 767 496
5000 327 361 919 236 849 196 309 728 238
7500 491 487 245 355 869 593 464 480 243

10000 655 207 027 474 469 725 620 213 700
15000 983 899 657 712 448 595 931 206 322

V. EXPERIMENTS - BEHAVIOR MODELS OF CLOUD TASK

SCHEDULING ON THE BASE OF VIRTUAL MACHINES

This part of the paper consists of three experiments, labeled
as 1 to 3. In each experiment, we used 10 datasets of tasks of
the same type (see Table IV). The dataset sizes are listed in
Table V. The different datasets represent scaled system
workloads with tasks of different computational requirements.
We modeled a computing environment that contains 2
datacenters, specified in Table I and Table II, in the CloudSim
simulator.

The objective of the experiments is Comparative Analysis
of Combined Models Cloud Task Scheduling on the basis of
virtual machines. Therefore, we sequentially made runs of the
simulations by using 6 different combined scheduling models
for each run: TsTs, TsSs, TsTo, SsTs, SsTo, SsSs. The behavior
of a differently loaded system with different combined
scheduling models is the subject of our investigation. We are
concerned with the analysis of the system using combined
models that start with Ts versus Ss for scheduling tasks to VMs.
In all simulations, the First Come First Served (FCFS)
scheduling algorithm is used for allocating tasks to VMs, thus
guaranteeing scheduling consistency between experiments.

For each experiment, we ran each simulation with 10
datasets 50 times, each time with a different randomly shuffled
task dataset. This caused the tasks to always be scheduled on
different VMs. We ran the simulations for 10 different scaled
datasets by 50 iterations with different VMs. Given that we
repeated all simulations for 6 types of combined scheduling
models, we ran a total of 3000 simulations.

A. Experiment 1 with dataset_type_1

In Experiment 1, we used dataset_type_1, which contains
25% of each type of considered tasks, whose parameters are
depicted in Table III.

Fig. 5. Comparison of task processing time for datataset_type_1

In this experiment, we compare the simulation times
involved in scheduling tasks on virtual machines. This is the
group of combined models that start at Ts compared with the
group of combined models Ss.

In Fig 5 we can see that when using the task scheduling
model on the Ts virtual machines, the simulation times are
significantly lower than when using the Ss scheduling model as
we expected. The larger the number of tasks the more
appropriate it is to use task scheduling on Ts virtual machines.
To model the behavior of this system with a workload of 15,000
tasks, we measured simulation times ranging from 2748.53 sec.
for the Ss combined models. to 3102.45 sec. and for Ts
combined model’s times in the interval from 1584.74 sec. to
1692.82 sec.

B. Experiment 2 with dataset_type_2

In Experiment 2, we used dataset_type_2, which contains
70% of the tasks that require 1 computational core for their
processing. The goal of this experiment is to investigate the
processing time values of the tasks and compare them with
experiment 1.

Fig. 6. Comparison of taks processing time for dataset_type_2

Fig 6 shows a comparison of simulation times for six
different scheduling models. We can see that the task
scheduling model on VMs of type Ss causes the simulation
times to be significantly higher than when using the Ts
scheduling model. It can be seen that when using the tasks from
dataset_type_2 and the task scheduling model on VMs of type
Ss, the measured values of the times are significantly more
dispersed than for the tasks in dataset_type_1. The minimum
values of the simulation times for Ss are almost close to the
values of the times for Ts. See Table VI.

TABLE VI COMPARISON OF SIMULATION TIMES FOR SS TASK SCHEDULING

DATASET TYPE 2, WITH THE NUMBERS OF TASKS 7500, 10000, 15000

Num
of

tasks

Min.
simulation

time (s)

Max.
simulation

time (s)

Difference
max. – min.

(s)

Time
increase

in %
7500 1100.45 1750.84 650.39 58.8

10000 1400.55 2300.25 899.7 64.2
15000 1800.10 3288.12 1488.02 82.6

In the analysis, we focused on examining the variance of the
values. There was a significant difference between the
simulation times for the number of tasks of 7,500, 10,000 and
15,000. For the number of 7,500 tasks, the difference in values
between the minimum and maximum simulation time was
650.39 s (58.8%), for 10,000 tasks it was 899.7 s (64.2%) and
for 15,000 tasks it was 1488.02 s (82.6%). Hence, if a combined
scheduling model starting at Ss (Ss scheduling tasks on VMs)

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 216 --

is to be used, then the completion time of the last task should be
minimized using an optimization algorithm.

C. Experiment 3 with dataset_type_3

In Experiment 3, we used dataset_type_3, which contains
70% of the tasks that require 4 computational cores for their
processing. The parameters of all task types are depicted in
Table III.

The purpose of this experiment is to investigate the values
of task processing times (simulation times) and compare them
with Experiment 1.1 and Experiment 1.2. The comparison of
simulation times for six different scheduling models is shown
in Fig 7. Again, we are interested in the behavior of the system
using the Ss model.

Fig. 7. Comparison of task processing time for dataset_type_3

In Fig. 7. we can see that using dataset_type_3 and a
scheduling model that starts at Ss, for a dataset with a task count
of 15000, we observed simulation times ranging from 2048.98
sec. to 2453.84 sec. The maximum values of simulation times
in Experiments 1.1 and 1.2 were 3102.45 sec. and 3288.12 sec.
In experiment 1.3, the maximum simulation time is 2453.84 sec.
and it is the lowest time among all the experiments. Also, the
variance of the measured time values is not as large as that of
experiment 1.2. For the combined scheduling model starting at
Ts, we measured simulation times ranging from 1480.74 sec to
1625.75 sec. These values are slightly higher than those of
experiment 1.2. We can conclude that for a system workload
with tasks, 70% of which require 4 compute cores, it is
appropriate to use the Ss model of scheduling the tasks on VMs.

VI. BEHAVIORAL ANALYSIS OF COMBINED MODELS OF

CLOUD TASK SCHEDULING

In this section, we performed the analysis of the combined
scheduling models using all the prepared datasets. We used the
results of previous experiments for the analysis. We focused on
comparing the minimum simulation times because the
minimum simulation times represent the optimized task
schedules. The goal of the given analysis was to investigate how
the simulation runtime in CloudSim is affected when using
different combined scheduling models, and how the simulation
runtime changes if we use different task datasets.

A. Analysis of combined Ts and Ss task scheduling models

We analyze the minimum simulation times for the combined
TsTs and SsSs scheduling models and investigate the system
behavior using all 30 datasets. In total, there are 60 values. See
Fig 8.

Fig. 8. Comparison of simulation times for different numbers of tasks from three
different datasets

In Fig. 8, we can see that using each of the 30 datasets, the
minimum simulation time is always higher for the SsSs
combination than for the TsTs combination. For the combined
SsSs model, it is most appropriate to use a workload where 70%
of the tasks have requirements for 4 computational cores for
their processing defined in Type 3 datasets. The simulation time
is higher when using Type 2 datasets and highest when using
Type 1 datasets.

TABLE VII COMPARISON OF MIN TASK PROCESSING TIMES OF ALL THREE

DATASETS USING THE COMBINED TSTS AND SSSS MODELS

Dataset_type_1 Dataset_type_2 Dataset_type_3
Number of

tasks
500 15000 500 15000 500 15000

Min time SsSs
(s)

93.83 2778.9
1

79.6
2

2516.6
6

84.3
9

2075.9
8

Min time
TsTs (s)

66.20 1585.5
1

56.0
4

1171.1
7

67.1
5

1502.2
0

Enhancement 30 % 43 % 30 % 54 % 21 % 28 %

In Table VII, we can know that using the combined SsSs
model for dataset 1 with the number of tasks 500, we measured
a minimum time of 93.83 sec. For the same dataset, using the
combined TsTs algorithm, we measured a minimum time of
66.20 sec, which is an improvement of less than 30%. When
using the combined SsSs model for dataset 1 with 15000 tasks,
we measured a minimum time of 2778.91 sec. For the same
dataset, using the combined TsTs algorithm, we measured a
minimum time of 1585.51 sec, an improvement of almost 43%.
Using the combined SsSs model for dataset 2 with a task count
of 500, we measured a minimum time of 79.62 sec. For the same
dataset, using the combined TsTs algorithm, we measured a
minimum time of 56.04 sec, an improvement of less than 30%.
However, when using the combined SsSs model for dataset 2
with a task count of 15000, we measured a minimum time of
2516.66 sec. For the same dataset, using the combined TsTs
algorithm, we measured a minimum time of 1171.17 sec, an
improvement of almost 54%.

Using the combined SsSs model for dataset 3 with a task
count of 500, we measured a minimum time of 84.39 sec. For
the same dataset, using the combined TsTs algorithm, we
measured a minimum time of 67.15 sec, an improvement of less
than 21%. However, when using the combined SsSs model for
dataset 3 with a task count of 15000, we measured a minimum
time of 2075.98 sec. For the same dataset, using the combined
TsTs algorithm, we measured a minimum time of 1502.20 sec,
an improvement of almost 28%.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 217 --

Based on the experiments, we can conclude that the use of
the combined TsTs model is preferable to the SsSs model (it has
a shorter completion time for the last task) for all types of
workloads. The reduction in the last task completion time
depends on the task composition of the dataset and also the
number of tasks. In our case, we observed the smallest reduction
in minimum simulation time for dataset 3, namely 21% for 500
tasks and 28% for 15000 tasks. We measured a larger reduction
in minimum simulation time for dataset 1, namely 30% for 500
tasks and 43% for 15000 tasks. The largest improvement in
minimum simulation time was observed for dataset 2, namely
30% for 500 tasks and 54% for 15000 tasks. This suggests that
the combined scheduling model of TsTs is best suited to dataset
2, which contains 70% of the tasks that require only 1 core for
their processing.

B. Analysis of combined scheduling models using tasks in type
1 datasets

We analyze the minimum simulation times using 10
different scaled type-1 datasets and all 6 combined task
scheduling models. We analyze 60 minimum simulation times.

Fig. 9. Comparison of simulation times for different numbers of tasks from
dataset_type_1

We can see that two triads of tenses have arisen which are
almost identical and overlap. The first triplet consists of the
minimum simulation times that have been generated using the
three combined Ss-based scheduling models. The second triplet
is formed by the minimum simulation times that were generated
using the three combined Ts based scheduling models. In we go
that the minimum simulation times for the combined scheduling
models, where the combined scheduling model Ts is more
appropriate for all the workloads represented by our datasets.
Interestingly, it does not matter the detail of the combined
model, just choose a model starting with Ts or Ss as appropriate.

TABLE VIII COMPARISON OF MIN TASK PROCESSING TIMES FOR DATASET_TYPE_1
USING THE COMBINED TSSS AND SSTS MODELS

Number of
tasks

500 2000 5000 7500 10000 15000

Min time
SsTs (s)

99.3
2

374.5
3

928.9
8

1418.5
6

1909.0
9

2813.6
0

Min time
TsSs (s)

66.0
2

224.4
7

543.7
7

798.90 1063.3
1

1583.3
5

Enhancement 34 % 40 % 42 % 44 % 44 % 44 %

In Table VIII The values of the minimum run times of the
tasks that when using the combined models SsTs and TsSs for
dataset 1 are shown.

Using the combined SsTs model for dataset 1 with a task
count of 10000, we measured a minimum time of 1909.09 sec.
For the same dataset, using the combined TsSs algorithm, we
measured a minimum time of 1063.31 sec, an improvement of
less than 44%. When using the combined SsTs model for
dataset 1 with 15000 tasks, we measured a minimum time of
2813.60 sec. For the same dataset, using the combined TsSs
algorithm, we measured a minimum time of 1583.35 sec, an
improvement of almost 44%.

C. Analysis of combined scheduling models using tasks in type
2 datasets

We analyze the minimum simulation times using 10
different scaled type-2 datasets (70% of the tasks that require 1
computational core for their processing) and all 6 combined task
scheduling models. We analyze 60 minimum simulation times.
Fig 10. shows a comparison of the minimum simulation times
for the six different combined scheduling models.

Fig. 10. Comparison of simulation times for different numbers of tasks from
dataset_type_2

All the simulation run times of the tasks that we schedule
based on Ts are very similar and overlap. However, the
simulation run times of tasks where tasks are allocated using Ss
only overlap when the number of tasks range from 500 to 5000.
Where the number of tasks to be processed was greater than or
equal to 7500, so are the values of the lowest simulation times
for different combinations, see Fig. 10.

TABLE IX COMPARISON OF MIN TASK PROCESSING TIMES FOR DATASET_TYPE_2
USING THE COMBINED TSSS AND SSTS MODELS

Number of
tasks

500 2000 5000 7500 10000 15000

Min time
SsTs (s)

75.44 271.6
7

630.6
0

1071.3
3

1635.6
3

3016.4
1

Min time
TsSs (s)

54.32 167.9
7

407.7
1

596.33 790.67 1155.3
7

Enhancement 28 % 38 % 35 % 44 % 52 % 62 %

In Table IX. you can know that using the combined SsTs
model for dataset 2 with a number of tasks of 500, we measured
a minimum time of 75.44 sec. For the same dataset, when using
the combined TsSs algorithm, we measured a minimum time of
54.32 sec, an improvement of less than 28%. Using the
combined SsTs model for dataset 2 with a task count of 2000,
we measured a minimum time of 271.67 sec. For the same
dataset, using the combined TsSs algorithm, we measured a
minimum time of 167.97 sec, an improvement of almost 38%.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 218 --

Using the combined SsTs model for dataset 2 with a task
count of 5000, we measured a minimum time of 630.60 sec. For
the same dataset, using the combined TsSs algorithm, we
measured a minimum time of 407.71 sec, an improvement of
less than 35%. Using the combined SsTs model for dataset 2
with a task count of 7500, we measured a minimum time of
1071.33 sec. For the same dataset, using the combined TsSs
algorithm, we measured a minimum time of 596.33 sec, an
improvement of almost 44%.

Using the combined SsTs model for dataset 2 with a task
count of 10000, we measured a minimum time of 1635.63 sec.
For the same dataset, using the combined TsSs algorithm, we
measured a minimum time of 790.67 sec, an improvement of
less than 52%. When using the combined SsTs model for
dataset 2 with a task count of 15000, we measured a minimum
time of 3016.41 sec. For the same dataset, using the combined
TsSs algorithm, we measured a minimum time of 1155.37 sec,
an improvement of almost 62%.

D. Analysis of combined scheduling models using tasks in type
3 datasets

We analyze the minimum simulation times using 10
different scaled datasets of type 3 and all 6 combined task
scheduling models. We analyze 60 minimum simulation times.
Fig 11. shows a comparison of the minimum simulation times
for the six different combined scheduling models.

Fig. 11. Comparison of simulation times for different numbers of tasks from
dataset_type_3

In Fig. 11 we can see that we again only get two resulting
trajectories of simulation times, such that three of the six
combined scheduling models overlap each time. The first
waveform of the task run times is when using the Ss based
combined models. The second is the waveform of task run times
when using the Ts-based combined models.

Thus, as we expected we see that the simulation times for
the combined scheduling models where the scheduling model
Ts is used for the tasks are always lower than the simulation
times for the combined scheduling models in which the tasks
are allocated through the scheduling model Ss.

We can see that the smallest difference between the
simulation times when combined scheduling models are used,
where tasks are allocated via a time shared or space shared
scheduling model, is when dataset 3 is used, which contains
70% of the tasks that require 4 cores for their processing.

TABLE X COMPARISON OF MIN TASK PROCESSING TIMES FOR

DATASET_TYPE_3 USING THE COMBINED TSSS AND SSTS MODELS

Number of
tasks

500 2000 5000 7500 10000 15000

Min time
SsTs (s)

87.02 292.5
3

713.6
1

1034.3
6

1363.1
9

2044.3
1

Min time
TsSs (s)

66.71 207.9
9

505.9
2

751.77 1003.0
9

1488.8
9

Enhancement 23 % 28 % 29 % 27 % 26 % 27 %

In Table X. The values of the minimum run times of the
tasks that when using the combined models SsTs and TsSs for
dataset 3 are shown.

Using the combined SsTs model for dataset 3 with a task
count of 10000, we measured a minimum time of 1363.19 sec.
For the same dataset, using the combined TsSs algorithm, we
measured a minimum time of 1003.09 sec, an improvement of
less than 26%. When using the combined SsTs model for
dataset 3 with a task count of 15000, we measured a minimum
time of 2044.31 sec. For the same dataset, using the combined
TsSs algorithm, we measured a minimum time of 1488.89 sec,
an improvement of almost 27%.

E. Evaluation of the analysis of combined scheduling models

We used the results of previous experiments for the analysis.
We focused on minimum simulation times using all prepared
datasets. The minimum simulation times represent the
optimized task schedules. The optimized task schedules showed
interesting analysis results. Comparing the combinations of
TsTs and SsSs used. For the optimized combination model of
SsSs, it is most appropriate to use tasks in datasets of type 3 and
for the optimized combination model of TsTs, it is most
appropriate to use tasks in datasets of type 2. Interestingly, for
the optimized models starting with Ts or Ss, they behave the
same for datasets of type 1 and 3. We can conclude that as long
as the sets of computational tasks have all requirements
satisfied, it is necessary to use scheduling models starting at Ts.

VII. CONCLUSION

A quality cloud system must respect the requirements of the
tasks. It is essential that the system provides the tasks with
sufficient computing resource capacity, especially CPU
computing time. The requirements of many tasks collide in the
system and need to be optimally scheduled. Quality scheduling
of tasks will be reflected in maximum throughput, minimum
waiting time for individual tasks, minimum completion time for
the last task (e.g. in batch processing) and adherence to task
requirements. Ensuring the above quality criteria will ultimately
result in minimizing the power consumption of the computing
system.

Understanding the behavior of a computing system is a
prerequisite for achieving high system performance. Therefore,
in this paper, we have studied in detail the behavior of the
computing system, in a simulated CloudSim environment. We
created a simulated cloud system and 30 scaled task load sets
that represented different workloads of the system. The number
of tasks in these sets grew from 500 to 15,000 tasks. The tasks
had requirements that specified the number of computational
cores.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 219 --

CloudSim supports 6 different combinations of scheduling
models, which can be classified into 2 basic groups of time
sharing and space sharing, depending on how compute tasks are
allocated to virtual machines.

Based on our knowledge of the behavior of the different task
scheduling models, we can conclude that the combined models
starting at Ss consume significantly more overhead time to
switch tasks to VMs compared to Ts. If the computing system
has enough computational capacity to solve the tasks while the
task computation quality requirements are met, then of course
the time sharing combined model (starting at Ts) runs
preferentially in the system. If the set of tasks to be processed
has requirements on the computing system that cannot be met,
then the space sharing combined task scheduling model
(starting with Ss) must be used. The behavior of the computing
system with Ss-based tasks scheduling needs to be analyzed in
more details.

Therefore, we designed and performed experiments to
decide which combined task scheduling model to choose for
which type of computing system workload. In total, we did
9000 simulations.

We analyzed the results of each experiment and then
compared the behavior of the system using each scheduling
combination.

We then analyzed the behavior of the system in achieving
the best task completion times. The minimum time represents
the best schedule.

As we expected, the Ts combined task scheduling model on
VMs has a shorter completion time than Ss for the last task for
all types of workloads. If we consider a dataset with 15000
tasks, then using the Ts model will reduce the completion time
of the last task by 43% when using a dataset of type 1 tasks, by
54% when using a dataset of type 2 tasks, and by 28% when
using a dataset of type 3 tasks, compared to the Ss model.

If the task requests are so taxing on the system that it is not
feasible to schedule tasks with the Ts model, then it is most
appropriate to use the combined SsTs model and compose the
task dataset with requests from 70% of the tasks with 4 cores
and 10% each of the tasks with 1, 2, and 3 cores.

Based on the experiments, we can conclude that the use of
the combined TsTs model is preferable to the SsSs model (it has
a shorter completion time for the last task) for all types of
workloads. The reduction in the last task completion time
depends on the task composition of the dataset and the number
of tasks. In our case, we observed the smallest reduction in
minimum simulation time for dataset 3, namely 21% for 500
tasks and 28% for 15000 tasks. We measured a larger reduction
in minimum simulation time for dataset 1, namely 30% for 500
tasks and 43% for 15000 tasks. The largest improvement in
minimum simulation time was observed for dataset 2, namely
30% for 500 tasks and 54% for 15000 tasks. This suggests that
the combined scheduling model of TsTs is best suited to dataset
2, which contains 70% of the tasks that require only 1 core for
their processing. Which inspires us to extend the automatic
scheduling model based on big data analysis [16], [17], [18].

We used the results of previous experiments for the analysis.
We focused on minimum simulation times using all prepared
datasets. The minimum simulation times represent the
optimized task schedules. The optimized task schedules showed
interesting analysis results. Comparing the combinations of
TsTs and SsSs used. For the optimized combination model of
SsSs, it is most appropriate to use tasks in datasets of type 3 and
for the optimized combination model of TsTs, it is most
appropriate to use tasks in datasets of type 2. Interestingly, for
the optimized models starting with Ts or Ss, they behave the
same for datasets of type 1 and 3. We can conclude that as long
as the sets of computational tasks have all requirements
satisfied, it is necessary to use scheduling models starting at Ts.

ACKNOWLEDGMENT

Computing was performed in the High-Performance
Computing Center of the Matej Bel University in Banska
Bystrica using the HPC infrastructure acquired in project
ITMS26230120002 and 26210120002 (Slovak infrastructure
for high-performance computing) supported by the Research &
Development Operational Programme funded by the ERDF.

It was supported by the Erasmus+ project: Project number:
2022-1-SK01-KA220-HED-000089149, Project title: Including
EVERyone in GREEN Data Analysis (EVERGREEN) funded
by the European Union. Views and opinions expressed are
however those of the author(s) only and do not necessarily
reflect those of the European Union or the Slovak Academic
Association for International Cooperation (SAAIC). Neither the
European Union nor SAAIC can be held responsible for them.

REFERENCES

[1] Buyya, R., Ranjan, R., & Calheiros, R. (2009). Modeling and
Simulation of Scalable Cloud Computing Environments and the
CloudSim Toolkit: Challenges and Opportunities. IEEE Access, 10,
34996-35011. ISBN 978-1-4244-4906-4.

[2] Calheiros, R. N., Ranjan, R., Rose, C. A. F. D., & Buyya, R. (2009).
CloudSim: A Novel Framework for Modeling and Simulation of
Cloud Computing Infrastructures and Services.

[3] Sahkhar, L., & Yadav, S. S. (2022). Efficient Cloudlet Allocation to
Virtual Machine to Impact Cloud System Performance. International
Journal of Information System Modeling and Design. International
Journal of Information System Modeling and Design (IJISMD)
13(6). DOI: 10.4018/IJISMD.297630

[4] Behera, I., & Sobhanayak, S. (2024). Task scheduling optimization
in heterogeneous cloud computing environments: A hybrid GA-
GWO approach. Journal of Parallel and Distributed Computing.
Volume 183. DOI: 10.1016/j.jpdc.2023.104766.

[5] Singh, H., Tyagi, S., Kumar, P., Gill, S. S., & Buyya, R. (2021).
Metaheuristics for scheduling of heterogeneous tasks in cloud
computing environments: Analysis, performance evaluation, and
future directions. Simulation Modelling Practice and Theory. DOI:
10.1016/j.simpat.2021.102353

[6] Vijay, R., & Sree, T. R. (2023). Resource Scheduling and Load
Balancing Algorithms in Cloud Computing. SN Computer Science.
DOI: 10.1007/s42979-022-01609-9

[7] Liu, S., Ma, X., Jia, Y., & Liu, Y. (2022). An Energy-Saving Task
Scheduling Model via Greedy Strategy under Cloud Environment.
Hindawi Wireless Communications and Mobile Computing. DOI:
10.1155/2022/8769674

[8] Kumar, M., & Suman. (2022). Hybrid Cuckoo Search Algorithm for
Scheduling in Cloud Computing. Computers, Materials & Continua.
DOI: 10.32604/cmc.2022.021793

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 220 --

[9] Škrinárová, J., & Dudáš, A. (2022). Optimization of the functional
decomposition of parallel and distributed computations in graph
coloring with the use of high-performance computing. IEEE Access,
10, 34996-35011. ISSN 2169-3536.

[10] Hussain, A., Aleem, M., Iqbal, M. A., & Islam, M. A. (2019).
Investigation of cloud scheduling algorithms for resource utilization
using cloudsim. Comput Inform. DOI: 10.31577/cai_2019_3_525

[11] Škrinárová, J. (2022). Heterogeneous Cloud Systems and Criteria
for Enhanced Performance. 2022 IEEE 16th International Scientific
Conference on Informatics.
10.1109/Informatics57926.2022.10083443

[12] Chawla, Y., & Bhonsle, M. (2012). A study on scheduling methods
in cloud computing. Int. J. Emerg. Trends Technol. Comput. Sci.,
1(3), 12-17.

[13] Aladwani, T. (2019). Scheduling IoT Healthcare Tasks in Fog
Computing Based on their Importance. International Learning &
Technology Conference. DOI: 10.1016/j.procs.2019.12.138

[14] Ma, T., Chu, Y., Zhao, L., & Ankhbayar, O. (2014). Resource
Allocation and Scheduling in Cloud Computing: Policy and
Algorithm. IETE Tech. Rev., 31(1), 4-16. DOI:
10.1080/02564602.2014.890837

[15] Himthani, P., & Dubey, G. P. (2019). Performance Analysis of Space
Shared Scheduling and Time Shared Scheduling in Cloud Sim.
IJRDET. DOI: 10.5120/17092-7629

[16] Purkrabková, Z., et al. (2021). Traffic Accident Risk Classification
Using Neural Networks. Neural Network World, 31(5).
DOI:10.14311/NNW.2021.31.019

[17] Horaisova, K., et al. (2018). Discrimination between Alzheimer’s
disease and amyotrophic lateral sclerosis via affine invariant spherical
harmonics analysis of spect images. Neural Network World, 28(1).
DOI:10.14311/NNW.2018.28.002

[18] Čerešňák, R., et al. (2021). Mapping rules for schema transformation:
SQL to NoSQL and back. In 2021 International Conference on
Information and Digital Technologies (IDT) (pp. 52-58). Zilina,
Slovakia. doi: 10.1109/IDT52577.2021.9497629.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 221 --

