
An Evaluation Framework for Validating the Quality
of a Data Vault 2.0 Data Model

Heli Helskyaho, Marko Helskyaho
Miracle Finland Oy
Helsinki, Finland

Heli.Helskyaho@miracleoy.fi
Marko.Helskyaho@miracleoy.fi

Laura Ruotsalainen, Tomi Männistö
University of Helsinki

Helsinki, Finland
Laura.Ruotsalainen@helsinki.fi,

Tomi.Mannisto@helsinki.fi

Abstract— Designing databases is essential to provide
businesses with high-quality data for effective and correct
decision-making. Data warehouses, such as Data Vault 2.0, are
important storages for the data and therefore designing the data
warehouse is important. The process of database designing is
usually time-consuming and requires the expertise of data
modeling professionals. Automating the process requires metrics
to evaluate the quality of a data model. We used the newly
created metrics for a Data Vault 2.0 data model and automated
the evaluation process. We created a framework for the
evaluation and revealed it as an application for the evaluation
process to facilitate efficient and effective database design
evaluations.

I. INTRODUCTION

The more data is available for decision making the more
important becomes understanding the data and storing it in a
usable format. This process is called database designing. There
are different kinds of databases for different purposes. For
decision-making, a data warehouse (DW) is often the datastore
where all data is gathered in one format or another. The Data
Vault 2.0 is a methodology for building DWs and it also
defines how a Data Vault 2.0 database should be designed
[1], [2], [3], [4]. A raw database is a layer where all data is
stored, but the users access the data via other layers of Data
Vault 2.0 database. It is important that the raw database has
been designed correctly and that it includes all the data needed
to support the data access in other layers.

Database designing is often done manually by a human
expert and it is time-consuming. Being able to design a
database automatically would bring benefits and efficiency
[5], [6]. One option for automating the design process would be
using Generative AI. Since Generative AI is not deterministic,
we cannot trust the results from one generation of a Data Vault
2.0 database to guarantee the quality of the next generation.
Therefore, we need a process to verify the results, which
applies also when a human expert designs a database. For the
verification we created a set of metrics [7]. Using these metrics,
it might be possible to automate, or at least semi-automate, the
quality evaluation process.

The objective of this paper is to automate the process of
evaluating the Data Vault 2.0 data model quality by utilizing
our metrics [7]. First, we automated the process by creating a
technique for obtaining the measures and metrics
automatically. Then, we tested the automation with three

different data models. Finally, we created a framework for
evaluation and based on this framework an application to
evaluate Data Vault 2.0 data models.

The remainder of this paper is organized as follows. Section
II introduces the materials and methods used in the automation
of the evaluation process. In this section, all measures and
metrics used are introduced, and the method is described.
Section III describes the process needed for collecting
measures and metrics and tests it with three different examples.
Section IV introduces the framework created for the Data Vault
2.0 data model evaluation. It starts with setting up the
environment and continues explaining the framework. At the
end of the section, a tool for using the framework is introduced.
Finally, in Section V, we conclude the paper and set the scene
for future work.

II. MATERIALS AND METHODS

This paper aims to automate the process of Data Vault 2.0
data model quality evaluation using metrics defined in our
previous work [7]. We will first introduce the measures and
metrics, then create the scripts for programmatically
automating the Data Vault 2.0 data model quality evaluation,
test the automation with three data models, and finally we will
create a framework for the evaluations.

A. Measures and Metrics

Based on the predefined measures, introduced in Table I, the
metrics for defining the quality of a Data Vault 2.0 data model
are calculated. These measures include information about the
existence of the key elements of a Data Vault 2.0 database,
such as Hub, Link, or Satellite tables, or key elements of a
relational model, such as primary keys (PK) and foreign keys
(FK). This information is needed to be able to obtain the
metrics for evaluation.

Using these measures, the metrics shown in Table II are
calculated. The metrics are defined based on the Data Vault
2.0 methodology. For example, the number of Link tables
cannot be larger than the number of Hub tables (RoT2), since
the a Link table has been defined to be a m:n relationship
between two or more Hub business keys e.g. Hub tables. Or, a
Hub table can never be a child table to a Hub, Link or Satellite
table, therefore it is not allowed to have any foreign keys
(NoFKH).

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 244 --

TABLE I. DIFFERENT MEASURES NEEDED FOR CALCULATING
DATA VAULT 2.0 DATA MODEL QUALITY METRICS [7]

Measure Measure description
NoTDS Number of tables in the data source

NoH Number of Hub tables
NoHCNoTDS Number of Hub tables minus Number of tables in the data

source
(NoH-NoTDS)

NoS Number of Satellite tables
NoL Number of Link tables

NoPK Number of Primary keys (PKs)
NoFK Number of Foreign keys (FKs)

NoFKH Number of FKs in Hub tables
NoFKS Number of FKs in Satellite tables
NoFKL Number of FKs in Link tables
MaxD Maximum number of Depth in the model

NoPKA Number of PK columns
NoPKAM Number of mandatory PK columns
NoFKA Number of FK columns

NoFKAM Number of mandatory FK columns
NoPKAH Number of PK columns in Hub tables
NoPKAL Number of PK columns in Link tables
NoPKAS Number of PK columns in Satellite tables
NoFKAH Number of FK columns in Hub tables
NoFKAL Number of FK columns in Link tables
NoFKAS Number of FK columns in Satellite tables

NoAH Number of columns in Hub tables
NoAL Number of columns in Link tables
NoAS Number of columns in Satellite tables

NoMAH Number of mandatory columns in Hub tables
NoMAL Number of mandatory columns in Link tables
NoMAS Number of mandatory columns in Satellite tables

When the specified criteria are satisfied, a score of one is
allocated; conversely, if the criteria are not met, the metric is
assigned a score of zero. The cumulative sum of all allocated
points serves as an aggregate measure. A higher total point
score indicates superior model quality.

TABLE II. METRICS AND THEIR EQUATIONS [7]

No Metric Equation
1

CDTSHS
NoHCNoTDS = 0 or If

NoHCNoTDS < 0, then NoS - Noh
>= 1

2 RoT1 NoS / NoH >= 1
3 RoT2 NoH / NoL > 1
4 RPK (NoH + NoL + NoS) / NoPK = 1
5 MaxD <= 3
6 RPKH NoPKAH / NoH = 1
7 RPKL NoPKAL / NoL =1
8 RPKS NoPKAS / NoS >= 2
9 NoFKH = 0
10 RFKS NoFKS / NoS =1
11 RFKL NoFKL / NoL >= 2
12 RAH NoAH / NoH >= 4
13 RAL NoAL / NoL >= 5
14

RAS

If the Satellite table does not have
the hashdiff column

NoAS / NoS > 3,
if the hashdiff column is used

(recommended) then
NoAS / NoS > 4.

15 RMPKA NoPKAM / NoPKA = 1
16 RMFKA NoFKAM / NoFKA = 1
17 RMAH NoAH / NoMAH = 1
18 RMAL NoAL / NoMAL = 1

B. Methods
We automated the process of Data Vault 2.0 data model

quality evaluation in the Oracle RDBMS environment. First, we
created a technique and a framework for obtaining the measures
and metrics automatically. For the evaluation framework we
defined three database schemas for different purposes:

 SOURCE schema for storing the objects of the source
database

 DVDW schema for storing the objects of the data
model to be evaluated

 DV schema to hold the data of measures and metrics in
general and for a particular data model.

We used the Data Definition Language scripts (DDLs) of the
source database to create the objects in a database in the
SOURCE schema. This is needed to be able to obtain the
measures related to the source database. Then, we used ChatGPT
3.5 to generate the DDLs for the Data Vault 2.0 objects and
executed them in a database using the DVDW schema. The
DDLs can be generated using any technique, including manual
database designing. The only requirement is that there are DDLs
available for the Data Vault 2.0 database under evaluation. Then,
using a PL/SQL package [8] in a database, we acquired the
values of measures, metrics and the quality score using the 18-
point system [7] for the data model by querying the data
dictionary.

We tested the evaluation framework with three different
source databases that were chosen to be simple for easy
understanding but different from each other to create a larger test
base for the metrics and the process.

Finally, we created an application to evaluate Data Vault 2.0
data models. This application was created using a low-code tool
called Oracle Application Express (APEX) [9] and the PL/SQL
scripts created for the evaluation framework.

III. AUTOMATING THE MEASURE AND METRIC COLLECTION
PROCESS

In this Section, we will discuss the setup of the
environment, collect the data for measures and metrics, and
finally calculate the quality value for the data model using the
18-point system [7].

A. Collecting the Measure data

We created SQL queries for collecting the data needed for
measures. In Table III the SQL clauses for acquiring the data are
introduced. The data is collected from the data dictionary views
of an Oracle Database.

During our automation work we noticed some problems with
the original measures and metrics. Compared to the original
measures [7] we changed the names of MaxD to MMaxD and
NoFKH to MNoFKH to avoid conflicts with the metric names.
We also added one more measure, NoDiff, to accommodate the
metric RAS, which should be >3 if there are no Hashdiff
columns in Satellite tables, and > 4 if there are. Hashdiff is not a
mandatory column according to the Data Vault 2.0
methodology, but it would be best practice to create one to

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 245 --

improve the performance of loading data to the Data Vault 2.0
database. The value of a Hashdiff column is compared to a hash
value of the new data loaded to identify if the new data is
different from the one already stored in the table. If the data has
not been changed, it does not need to be stored again. Without
the Hashdiff column, the data in all columns in the Satellite
table must be compared to the data being loaded, column by
column.

TABLE III. MEASURES AND THE SQL CLAUSES FOR
CALCULATING THEM

Measure Schema SQL Clause
NoTDS SOURCE select count(*) from user_tables;

NoH DVDW select count(*) from user_tables where
upper(table_name) like 'HUB%';

NoHCNoTDS DVDW NoHCNoTDS:=NoH - NoTDS;
NoS DVDW select count(*) from user_tables where

upper(table_name) like 'SAT%';
NoL DVDW select count(*) from user_tables where

upper(table_name) like 'LINK%';
NoPK DVDW select count(*) from user_constraints where

constraint_type = 'P';
NoFK DVDW select count(*) from user_constraints where

constraint_type = 'R';
MNoFKH DVDW select count(*) from user_constraints where

constraint_type = 'R' and upper(table_name)
like 'HUB%';

NoFKS DVDW select count(*) from user_constraints where
constraint_type = 'R' and table_name like
'SAT%';

NoFKL DVDW select count(*) from user_constraints where
constraint_type = 'R' and table_name like
'LINK%';

MMaxD DVDW with pur as (
 select uc.table_name, uc.constraint_type,

uc.constraint_name, uc.r_constraint_name,
ucc.column_name, uc.delete_rule,

max(decode(uc.constraint_type,'R',1,0))
over(partition by uc.table_name) is_r

 from user_constraints uc,
user_cons_columns ucc, user_tables ut
 where uc.table_name = ucc.table_name
and uc.table_name = ut.table_name

 and uc.constraint_name =
ucc.constraint_name

 and uc.constraint_type in ('P', 'U', 'R')
),

 son_mom as (
 select distinct s.table_name son,

m.table_name mom, m.constraint_type,
s.column_name son_column, m.column_name
mom_column, s.constraint_name, s.delete_rule

 from (select * from pur where
constraint_type = 'R' or is_r = 0) s

 left join pur m on s.r_constraint_name =
m.constraint_name and s.table_name !=

m.table_name
)

 select max(lvl) MaxD
 from

 (select son, mom, level lvl
 from son_mom

 where son not like '%TABLExxyy%'
 start with mom is null

 connect by nocycle mom = prior son
 order siblings by mom, son)

 ;
NoPKA DVDW select count(cc.column_name) from

user_cons_columns cc, user_constraints c

where c.constraint_type = 'P'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name;

NoPKAM DVDW select count(cc.column_name) from
user_cons_columns cc,
user_constraints c, user_tab_columns tc
where c.constraint_type = 'P'
and tc.nullable = 'N'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name
and tc.table_name = cc.table_name
and tc.column_name = cc.column_name;

NoFKA DVDW select count(cc.column_name) from
user_cons_columns cc, user_constraints c
where c.constraint_type = 'R'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name;

NoFKAM DVDW select count(cc.column_name) from
user_cons_columns cc,
user_constraints c, user_tab_columns tc
where c.constraint_type = 'R'
and tc.nullable = 'N'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name
and tc.table_name = cc.table_name
and tc.column_name = cc.column_name;

NoPKAH DVDW select count(cc.column_name) from
user_cons_columns cc, user_constraints c
where c.constraint_type = 'P'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name and
cc.table_name like 'HUB%';

NoPKAL DVDW select count(cc.column_name) from
user_cons_columns cc, user_constraints c
where c.constraint_type = 'P'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name and
cc.table_name like 'LINK%';

NoPKAS DVDW select count(cc.column_name) from
user_cons_columns cc, user_constraints c
where c.constraint_type = 'P'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name and
cc.table_name like 'SAT%';

NoFKAH DVDW select count(cc.column_name) from
user_cons_columns cc, user_constraints c
where c.constraint_type = 'R'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name and
cc.table_name like 'HUB%';

NoFKAL DVDW select count(cc.column_name) into NoFKAL
from user_cons_columns cc, user_constraints c
where c.constraint_type = 'R'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name
and cc.table_name like 'LINK%';

NoFKAS DVDW select count(cc.column_name) from
user_cons_columns cc, user_constraints c
where c.constraint_type = 'R'
and c.constraint_name = cc.constraint_name
and c.table_name = cc.table_name and
cc.table_name like 'SAT%';

NoAH DVDW select count(column_name) from
user_tab_columns where upper(table_name)
like 'HUB%';

NoAL DVDW select count(column_name) from
user_tab_columns where upper(table_name)
like 'LINK%';

NoAS DVDW select count(column_name) from
user_tab_columns where upper(table_name)
like 'SAT%';

NoMAH DVDW select count(column_name) from
user_tab_columns where upper(table_name)
like 'HUB%' and nullable = 'N';

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 246 --

NoMAL DVDW select count(column_name) from
user_tab_columns where upper(table_name)
like 'LINK%' and nullable = 'N';

NoMAS DVDW select count(column_name) from
user_tab_columns where upper(table_name)
like 'SAT%' and nullable = 'N';

NoDiff DVDW select count(column_name) from
user_tab_columns where upper(table_name)
like 'SAT%' and upper(column_name) like
'%DIFF%';

B. Collecting the Metric data

When the measures have been collected, the metrics can be
defined as shown in Table IV. For each metric, a point is
awarded if the criteria are met; otherwise, zero points are
assigned. The cumulative sum of these points determines the
overall quality score of the data model. A higher score indicates
better quality.

TABLE IV. METRICS AND THEIR LOGIC

No Metric Logic
1

CDTSHS

IF (NoHCNoTDS = 0)
or ((NoHCNoTDS < 0) and ((NoS -
Noh) >= 1))
 THEN CDTSHS:=1;
ELSE CDTSHS:=0;
END IF;

2

RoT1

IF (NoS / NoH >= 1)
 THEN RoT1:=1;
ELSE RoT1:=0;
END IF;

3

RoT2

IF (NoH / NoL > 1)
 THEN RoT2:=1;
ELSE RoT2:=0;
END IF;

4

RPK

IF (((NoH + NoL + NoS) / NoPK) =
1)

 THEN RPK:=1;
ELSE RPK:=0;
END IF;

5

MaxD

IF MMaxD <= 3
 THEN MaxD=1;
ELSE MaxD:=0;
END IF;

6

RPKH

IF (NoPKAH / NoH = 1)
 THEN RPKH:=1;
ELSE RPKH:=0;
END IF;

7

RPKL

IF (NoPKAL / NoL =1)
 THEN RPKL:=1;
ELSE RPKL:=0;
END IF;

8

RPKS

IF (NoPKAS / NoS >= 2)
 THEN RPKS:=1;
ELSE RPKS:=0;
END IF;

9

NoFKH

IF MNoFKH=0
 THEN NoFKH := 1;
ELSE NoFKH := 0;
END IF;

10

RFKS

IF (NoFKS / NoS =1)
 THEN RFKS:=1;
ELSE RFKS:=0;
END IF;

11

RFKL

IF (NoFKL / NoL >= 2)
 THEN RFKL:=1;
ELSE RFKL:=0;
END IF;

12

RAH

IF (NoAH / NoH >= 4)
 THEN RAH:=1;
ELSE RAH:=0;
END IF;

13

RAL

IF (NoAL / NoL >= 5)
 THEN RAL:=1;
ELSE RAL:=0;
END IF;

14

RAS

IF (NoDIFF = 0 and (NoAS / NoS >
3)) THEN RAS:=1;
ELSIF (NoDIFF > 0 and (NoAS /
NoS > 4)) THEN RAS:=1;
ELSE RAS:=0;
END IF;

15

RMPKA

IF (NoPKAM / NoPKA = 1)
 THEN RMPKA:=1;
ELSE RMPKA:=0;
END IF;

16

RMFKA

IF (NoFKAM / NoFKA = 1)
 THEN RMFKA:=1;
ELSE RMFKA:=0;
END IF;

17

RMAH

IF (NoAH / NoMAH = 1)
 THEN RMAH:=1;
ELSE RMAH:=0;
END IF;

18

RMAL

IF (NoAL / NoMAL = 1)
 THEN RMAL:=1;
ELSE RMAL:=0;
ELSE IF;

C. Defining the Score for a Data Model Quality

We tested the automated quality evaluation with three data
models. When generating the DDLs using ChatGPT on January
22nd 2024, there were errors which did not appear in previous
experiments. Generation systematically added “, -- Add other
attributes as needed” after the last column in Hubs causing an
error. The constraints (PK and FK) were also added twice for the
Links: first when creating the table and at the end of the DDL
file. This behavior proves the need for metrics and automatic
evaluation of the data model quality since Generative AI is non-
deterministic; previous tests do not guarantee future results.

In Fig. 1, there is a simple example of a birth data source,
including four tables: Birth, Baby, Mother, and Midwife.

Fig. 1. Birth source database

The Data Vault 2.0 data model generated by ChatGPT is
shown in Fig. 2.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 247 --

Fig. 2. The Birth model as Data Vault 2.0 generated by ChatGPT

Upon reviewing the model's visual depiction, it becomes
apparent that ChatGPT's performance was suboptimal. Our
evaluation, conducted through the designated metrics, is
documented in Table V, showcasing the respective values. The
Birth data model accrued a score of 12 points. The data model
quality is considered unsatisfactory for scores below 17 [7]. The
model fails in attributes, primary keys (PKs) and foreign keys
(FKs). The primary keys in Satellites have been misdefined
preventing the history data to be stored. Hubs and Satellites are
missing technical attributes required by the methodology and
some foreign keys are missing. Also, several attributes have been
defined as non-mandatory.

TABLE V. METRICS AND THEIR VALUES

FOR THE BIRTH MODEL

No Metric Value
1 CDTSHS 1
2 RoT1 1
3 RoT2 1
4 RPK 1
5 MaxD 1
6 RPKH 1
7 RPKL 1
8 RPKS 0
9 NoFKH 1
10 RFKS 1
11 RFKL 1
12 RAH 0
13 RAL 1
14 RAS 0
15 RMPKA 1
16 RMFKA 0
17 RMAH 0
18 RMAL 0

TOTAL 12

Then, we tested a MovieMaker model with four tables:
MovieMaker, MovieWriter, Movie, Role, and two sub-entities
for a MovieMaker(Writer, Director). This data model is shown in
Fig. 3.

Fig. 3. Source database for a Moviemaker

The generated Data Vault 2.0 model is shown in Fig. 4.

Fig. 4. Data Vault model for the Moviemaker data source

The metrics and their values for the Moviemaker data model
can be seen in Table VI. The total score for the Moviemaker data
model is 9. The score indicates very poor quality for the model.
The model fails in several ways. The most visible flaw is a
strange relationship between the SatMovie and HubDirector, the
wrongly defined PKs for Satellites, several FKs to Links, and
missing Hubs and relationships. The evaluation shows flaws in
missing Hubs, the number of PK attributes in Link and Satellite
tables is wrong as well as the number of FK attributes in
Satellites. The number of technical attributes required by the
methodology are wrong in Hubs, Links and Satellites. Also, the
number of mandatory FK attributes in general is too low as well
as mandatory attributes in Hubs.

TABLE VI. METRICS AND THEIR VALUES FOR THE MOVIEMAKER MODEL

No Metric Value
1 CDTSHS 0
2 RoT1 1
3 RoT2 1
4 RPK 1
5 MaxD 1
6 RPKH 1
7 RPKL 0
8 RPKS 0
9 NoFKH 1
10 RFKS 0

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 248 --

11 RFKL 1
12 RAH 0
13 RAL 0
14 RAS 0
15 RMPKA 1
16 RMFKA 0
17 RMAH 0
18 RMAL 1

TOTAL 9

We also tested the Orders model [7]. The source model can be
seen in Fig. 5. The model consists of four tables: Customers,
Orders, Orderlines and Product. The inconsistency of the naming
is on purpose, since in real life the models are of different quality
and the naming conventions are often forgotten.

Fig. 5. Order source database

In Fig. 6, you can find the generated Data Vault 2.0 data
model. We removed the double FKs of the Link table from the
DDL generated by ChatGPT.

Fig. 6. Data Vault 2.0 data model for Orders model generated by ChatGPT

The metrics and their values for the Order model can be seen
in Table VII. The total score for the model is 10. The model is
missing tables and FKs and the FKs in Satellites are defined
wrong. The evaluation shows missing Hubs since the dependent
child concept has been solved wrongly. This can be seen in
metric CDTSHS’s else clause where the number of Satellites
should be greater than the number of Hubs, which in this case is
untrue. The number of PK attributes in Links and Satellites is
incorrect. Also, the number of attributes in Hubs and Satellites is

incorrect. The number of mandatory FK attributes is incorrect in
general. The number of mandatory attributes in Hubs and Links
is incorrect.

TABLE VII. METRICS AND THEIR VALUES FOR THE ORDER MODEL

No Metric Value
1 CDTSHS 0
2 RoT1 1
3 RoT2 1
4 RPK 1
5 MaxD 1
6 RPKH 1
7 RPKL 0
8 RPKS 0
9 NoFKH 1
10 RFKS 1
11 RFKL 1
12 RAH 0
13 RAL 1
14 RAS 0
15 RMPKA 1
16 RMFKA 0
17 RMAH 0
18 RMAL 0

TOTAL 10

The manually created Data Vault 2.0 data model for the
Orders data source can be found in Fig. 7.

Fig. 7. Manually designed Data Vault 2.0 data model for the Orders model

In Table VIII, you can see the scores for the manually created
Data Vault 2.0 data model for the Orders source database. This
model scores 18, passing all the metrics.

TABLE VIII. METRICS AND THEIR VALUES FOR THE MANUALLY

CREATED DATA VAULT 2.0 DATA MODEL FOR THE ORDER MODEL

No Metric Value
1 CDTSHS 1
2 RoT1 1
3 RoT2 1
4 RPK 1
5 MaxD 1
6 RPKH 1
7 RPKL 1
8 RPKS 1
9 NoFKH 1
10 RFKS 1
11 RFKL 1

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 249 --

12 RAH 1
13 RAL 1
14 RAS 1
15 RMPKA 1
16 RMFKA 1
17 RMAH 1
18 RMAL 1

TOTAL 18

While evaluating the models with our scripts, we also
evaluated them manually to verify the metrics and the scripts
reflect the real quality of a model. The Data Vault 2.0 data
models evaluated herein were found to exhibit suboptimal
quality, both using the metrics and the evaluation of a human
expert. This observation implies that the proficiency of ChatGPT
in generating the Data Vault 2.0 model has declined relative to
its previous state, resulting in a diminished capability to produce
DDL statements of adequate quality. This observation
underscores the necessity for easily applicable quality metrics to
assess the quality of generated Data Vault 2.0 data models.

IV. CREATING A FRAMEWORK

In this section, we will create the framework for
automatically obtaining the quality evaluation for a Data Vault
2.0 data model. Finally, we will create an application for the
framework.

A. Setting up the environment

We inserted all the necessary data for quality assessment into
an Oracle Database. We then retrieved the required measures by
querying the data dictionary. Following this, we utilized the
obtained measures to perform the calculations necessary for
deriving the metrics. Details regarding measures and metrics,
along with the corresponding data for each data model, is stored
in dedicated tables described in Fig 8. Tables Measures and
Metrics include the general data about them. Tables
MeasureValues and MetricValues include data about each
individual model evaluated.

Fig. 8. Tables for measures and metrics in DV schema

First, we created three database schemas with the needed
content:

 DV schema stores the measures (Measures) and
metrics (Metrics) used for scoring the quality. The
values of measures by model are stored in the
MeasureValues table and the values of metrics in
the MetricValues table. The tables needed are
shown in Fig 8. The process is explained in
Algorithm 1.

 SOURCE schema holds the original source data
model. The process is explained in Algorithm 2.

 DVDW schema holds the Data Vault 2.0 data
model objects that will be evaluated. The process
is explained in Algorithm 2.

Algorithm 1 Setting up the environment, create DV
schema
0: Connect to the database using admin privileges
1: If DV user does not exist
2: then create DV user with privileges needed
3: end if
4: If DV user does not have table MEASURES
5: then create table MEASURES and insert values
6: end if
7: If DV user does not have table METRICS
8: then create table METRICS and insert values
9: end if
10: If DV user does not have table MEASUREVALUES
11: then create table MEASUREVALUES
12: end if
13: If DV user does not have table METRICVALUES
14: then create table METRICVALUES
15: end if

Algorithm 2 Setting up the environment, SOURCE and
DVDW
0: Connect to the database using admin privileges
1: If SOURCE user exists
2: then drop all tables owned by SOURCE and
3: purge recyclebin
4: else
5: create user SOURCE
6: with privileges needed
7: end if
8: If DVDW exists
9: then drop all tables owned by DVDW and
 purge recyclebin
9: else
10: create user DVDW
11: with privileges needed
12: end if

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 250 --

B. Using the framework

When the environment was created, we executed the DDLs
in the database. The source database DDLs were executed as
explained in Algorithm 3 and the Data Vault 2.0 DDLs as
explained in Algorithm 4.

Algorithm 3 Insert data (DDLs) for SOURCE
0: Connect to the database using SOURCE credentials
1: Execute DDLs for the source data model

Algorithm 4 Insert data (DDLs) for DVDW
0: Connect to the database using DVDW credentials
1: Execute DDLs for the data model under evaluation

Now, all the information regarding database objects is
accessible within the database for further investigation. First,
we obtained measures, as explained in Algorithm 5, then we
calculated the metrics based on the measures, as explained in
Algorithm 6.

Algorithm 5 Obtaining Measures
0: Connect to the database using DV credentials
1: Define a unique name for the model
2: For all measures in MEASURES do
3: select a measure name from the MEASURES table
4: execute the SQL clause for the measure
5: insert the model’s name, the measure name and

 the SQL-query result to DV.MeasureValues
6: end for

Algorithm 6 Obtaining Metrics
0: Connect to the database using DV credentials
1: For all metrics in METRICS do
2: select a metric name from the table
3: execute the Logic clause for the metric
4: insert the model’s name, the metric name and

 the Logic query result to DV.MetricValues
5: end for

The total score for each model can be calculated from the
Metricvalues table as shown in Algorithm 7.

Algorithm 7 Obtaining Total Score
0: Connect to the database using DV credentials
1: Set TotalScore := 0;
2: For all metrics in METRICVALUES
 where modelname = :Model do
3: select metric value
4: TotalScore:= TotalScore+metric value
5: end for
6: Printout TotalScore

C. Introducing the application

In order to automate the process, we developed an APEX
[9] application. The application consists of a user interface for
inserting the source database DDL, the model’s name and the
DDL for creating a Data Vault 2.0 database. Every time a new
source or target DDL is inserted, the database objects created
by a previous DDL are deleted from the database. Using this
technique, we are able to query the data catalog views without
the previous experiments interfering with the results.

When a DDL has been uploaded, a PL/SQL package
executes the DDL in Source or DVDW schema, depending
which one has been chosen, and calculates the measures and
metrics using the data in the data dictionary. Finally, the
application shows the results in a user interface. In Fig. 9, the
menu of the application is shown. It consists of five
functionalities: inserting the source DDLs, inserting the target
(Data Vault 2.0 model to be evaluated) DDL, measure and
metric values for the data models, and administration
functionalities. The measures and metrics for each experiment
are stored in the database using the model’s name defined by a
user. These measures and metrics can be seen and compared if
needed. The user interface also includes a functionality for
updating the measure and metric definitions if they need to be
changed or fine-tuned. The application uses the logic defined
in database tables; the logic is not hardcoded.

The process starts with the DDLs of the source data model
as shown in Fig 9. The name of the source database schema
and its DDLs are inserted. By pressing the “Run DDL” button
the schema objects of the source schema are created in the
database. By separating the source database DDL management
from the target DDL management. we allow experimenting
with several target models against one source model.

Fig. 9. The application menu and the database object creation for the
source data model

Then, by selecting “Target” from the menu and inserting the
schema name, the model a name, and the DDLs of the Data
Vault 2.0 data model evaluated, as shown in Fig. 10, and
pressing the “Run DDL” button, the data model objects are

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 251 --

created to the target schema defined. To calculate the
measures for the data model “Measures” button is pressed.
And, to calculate the metrics, the “Metrics” button is pressed.

Fig. 10. Creating the Data Vault 2.0 model objects to the database
and calculating the measures and metrics

When the measures and metrics have been calculated, they can
be seen by selecting “Measure values” or “Metric values”
from the menu. Measure values for the Orders model are
shown in Fig. 11, and the Metric values in Fig. 12.

Fig. 11. Measure values for the Orders data model

Fig. 12. Metric values and the total score for the Orders data model

V. CONCLUSION

The framework and application we created support the
quality evaluation of a Data Vault 2.0 model using metrics
defined in our previous work [7]. The evaluation process
requires the DDLs of the source database and the DDLs for the
Data Vault 2.0 database under evaluation. In our tests we used
ChatGPT 3.5 to generate the Data Vault 2.0 DDLs based on
the source data model DDLs.

While the automation of the quality measuring functions as
intended, the data models' quality does not meet expectations.
Regrettably, none of the generated DDLs met the standard
required for utilization as a Data Vault 2.0 database. The
future work should include tools and techniques for improving
the quality of the generated DDLs. It could, for example, use
prompt engineering to improve the quality of the Generative
AI generated DDLs by adding Data Vault 2.0 governance to
the process. For example, generating correct business key
definitions instead of assuming the primary key is always the
business key. Additionally, Retrieval-Augmented Generation
(RAG) could facilitate the introduction of novel metrics, for
example, via naming conventions, or it could, for example,
create the possibility of adding knowledge about the hash rules
to the generation process.

For future research, it would also be valuable to investigate
the metrics when the DW already exists and new data sources
are added. It would be interesting to see if the same metrics
still apply.

REFERENCES

[1] Data Vault Alliance official website, Data Vault 2.0 Data Modeling
Specification v2.0.4, Web: https://datavaultalliance.com/news/data-
vault-2-0-data-modeling-specification-v2-0-4/ (accessed on 28 02
2024).

[2] D. Linstedt, and M. Olschimke, Building a scalable data warehouse
with Data Vault 2.0. Morgan Kaufmann, 2015.

[3] W.H. Inmon, and D. Linstedt, Data architecture: a primer for the
data scientist: big data, data warehouse and data vault. Chapters 4.1-
4.5. Morgan Kaufmann, 2015.

[4] W.H. Inmon, D. Linstedt, and M. Levins, Data Architecture: A
Primer for the Data Scientist: A Primer for the Data Scientist. 2nd
Edition. Chapters 6.1-6.5. Academic Press, 2019

[5] H. Helskyaho, “Towards Automating Database Designing”. 34th
Conference of Open Innovations Association (FRUCT) 2023, pp. 41-
48

[6] V.C. Storey, C.B. Thompson, and S. Ram. “Understanding database
design expertise”, Data & Knowledge Engineering, 16(2), 1995.
pp.97-124.

[7] H. Helskyaho, L. Ruotsalainen, and T. Männistö, “Defining Data
Model Quality Metrics for Data Vault 2.0 Model Evaluation”,
Inventions, 9(1), 2024, p.21.

[8] Oracle Database PL/SQL Language Reference, Web:
https://docs.oracle.com/en/database/oracle/oracle-
database/23/lnpls/preface.html#GUID-9952D28D-0310-4869-8002-
4462BDC679BB (accessed on 28 02 2024).

[9] Official APEX website, Web: https://apex.oracle.com/en/ (accessed
on 28 02 2024).

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 252 --

