
Analytical Tool for Oracle SQL Statements 
 

Lukas Jancik, Michal Kvet 
University of Zilina 

Zilina, Slovak Republic 
lukas.jancik.857@gmail.com, michal.kvet@uniza.sk 

 
 

Abstract—Writing statements in Structured Query Language 
for database querying is one of key activity when learning 
database systems. Tasks which should be resolved with the stored 
data using such statements have usually textual character, and 
evaluation of such statement if it is correct or not typically 
involves manual check of person responsible for the knowledge 
provision. The manual check is needed because the correct 
statement can take various form, which results from the 
capabilities of the language itself. In this paper, there is presented 
a solution which performs the evaluation in the automatic way. 
There are few ways how to compare the statements, the way used 
is to compare statements itself. This solution deals also with the 
procession of the input, which is plain text version of statement. 
This input is considered to come from human who could perform 
some mistakes in sense of intentional and unintentional mistakes. 
Unintentional mistakes cover typos and intentional mistakes 
cover both syntax errors and runtime errors. The software 
application which was evolved to perform this evaluation is a 
complex tool, which on one site is highly configurable allowing to 
modify its behaviour during the evaluation according to user’ 
preference, on the other site it provides all information 
concerning the execution run to the user. 

I. INTRODUCTION 

Learning database systems involves not only theoretical 
aspects, but also practical ones, e.g. practicing of SQL 
statements creation. If this process is being done on the 
individual basis with the self-management, then a learning 
person have a wide range of information they can obtain [1], 
practice it, and improve themselves. There are also situations, 
where learning process is covered by some organization, 
typically a university. In this case, demonstrating gained 
knowledge is not being left on the learning person solely, but 
some testing tools are involved. When evaluating answers to 
testing tasks, it can be simple if we have defined sets of right 
answers to tasks. Then, the system can automatically evaluate 
testing tasks and there is no need of human assistance. Set of 
right answers can be defined typically for tasks which allow as 
right answers rather small number of the various answers – 
typically few-word answers, answers in the form of selecting 
items in the graphical way, or answers which match specific 
pattern. In case of testing tasks which allow larger number of 
right answers, there is typically need of human involvement 
and its manual check, to evaluate given answers. Undoubtedly, 
testing tasks which require to create a SQL statement based on 
the given textual description are of this case. SQL statements 
can be written in different form, and they still can be resolving 
right one certain task. There can be a huge number of such 
equal statements, therefore it is very difficult firstly to 
determine all the statements and secondly supply it as input 
into the testing system to create set of right testing answers. 

There is a clear idea to automate process of evaluation of 
testing answers just in case of testing tasks which require as 
the answers the SQL statements. As mentioned, the number of 
different SQL statements which are still equal in sense of right 
answer to the one testing task is huge. Moreover, the larger 
and more complex the SQL statement is, the number is larger. 
Therefore, the ultimate objective of the system used for 
evaluation which would solve this issue is not to give 100% 
certainty that SQL statement which was marked by the system 
as bad answer to testing task is actually bad. But, if the system 
will mark SQL statement as right answer to the testing task, 
then it should be actually right answer – in order to maintain a 
certain reliability of the system. So, the system should serve 
primarily as strong supporting tool for persons who will 
evaluate the statements, allowing them quickly to pass through 
the answers which were marked by the system as correct, and 
focus on the problematic aspects of the certain SQL statement 
more promptly since the output is here from the application. 
The critical data which the system will rely on is the right 
answer to testing task in the form of a single SQL statement 
(typically written by the test creator), not the textual 
description. This approach is the most suitable, because the 
test creator can easily provide a right SQL statement and 
comparing the textual description on one hand to the SQL 
statement on the other hand, would bring much bigger 
comparison difficulties than comparing two SQL statements. 
Also, some other approaches are known how to compare two 
SQL statements. There is possibility to compare the statements 
based on the date the DBS returned. This approach was 
already studied at the Faculty of Management Science and 
Informatics of the University of Zilina. It showed high time 
complexity, so its usage in case of multiple testing SQL 
statements would not be time efficient. The Faculty of 
Management Science and Informatics covers teaching of 
database systems on several subjects [2]. The short, in-terrain 
investigation revealed that no automated approach to process 
SQL statements (as input into the systems for testing) is 
available and used. There is a clear window of opportunity to 
evolve and deploy more specific system for the evaluation. 
The specificity lies in that teaching of relational database 
systems is mostly practiced using the Oracle DBS at the 
faculty, therefore SQL statements are dialect-specific, what 
means that it will surely need to be handled by the evaluating 
system. 

II. ANALYSIS OF SYSTEM 

A. Input data 

The input data into the system (for the evaluation) will 
contain set of pairs, where each pair will consist of the SQL 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 275 ----------------------------------------------------------------------------



statement as answer to testing task (mandatory) and the SQL 
statement as right answer (optional). Both SQL statements will 
be represented as plain text values – they will not be structured 
in any way. The right statement is optional, what means that 
the test creator can and do not have to provide this data. In this 
case, comparison feature of the system will be unavailable, but 
some other features of the system will be available to process 
the testing statement, to reveal potential syntax and runtime 
errors. 

B. Required system features 

Undoubtedly, the key feature of the system is comparison of 
two SQL statements. Apart of this, there are other required 
features, some of these works on basis of only one SQL 
statement provided (typically testing statement). 

1) Comparison feature: The feature takes two SQL
statements and do the comparison. Output of the comparison 
should not be binary like the statements are equal or not, but 
there should be detailed view into how the statements are 
different and which its parts are different. 

2) Feature of logs: There should be adjustable logging
feature of the system. This feature will monitor all processes 
during the process of the SQL statements’ evaluation. Logs 
should be gathered in structured way, what will allow a user to 
filter logs based on some criteria to obtain just the wanted 
information. The criteria should comprise the level of detail, 
the type of logs, and the enumerated functional units. In case 
of the first criteria, the level of detail represents logs of each 
possible operation, logs aggregated for whole functional unit, 
and logs aggregated for whole execution. The second criteria 
should allow to filter the logs based on the type of log, what 
means by error log, informational log, transformational log, 
and assessment log. These types are logically concluded based 
on the required features of the system. The third criteria should 
allow to filter only the logs which come from the functional 
unit enumerated. Multiple logs can occur within a single 
situation – e.g. transformation log and assessment log, e.g. if 
the system transformed a word with typo and this caused 
decrease of points in the assessment. Therefore, there is need 
to bundle multiple logs into some logical unit, to be the 
situation readable for the end user. 

3) Assessment feature: This feature should be able to
express the extent of the errors which were detected in the 
testing SQL statement. Also, it should be clear what is the 
cause of the minus points given. Therefore, assessment feature 
and logs feature should be interconnected.  

4) Single-Statement evaluation feature: As mentioned in
the Input data section, it will be allowed to pass to the system 
for evaluation the testing SQL statement only. In this system 
feature, common mistakes should be detected, e.g.: 

 Not allowed expression in SELECT part of the SQL
statement. Let’s take a simple example of this case –
having the SELECT statement with the GROUP BY
part. The rows are grouped by the columns A and B,
in the SELECT part there are listed both A, and B,

but also another column – C. The C column is not 
allowed in this case. 

 Unknown column (or ambiguously defined column)
in SQL statement – error ORA-00918 (in Oracle
DBS). This situation may occur if there is a complex
SQL statement with multiple joined tables and at the
same time there are referenced its columns in the
statement using the simple names. The error occurs
when there are additionally referenced columns of the
same name which are in multiple tables, in the
statement.

C. Other system features 

These features cover mostly preprocessing steps. 

1) Detection and correction of typos: Typos are common
when writing any textual content on keyboard. If the two SQL 
statements should be compared before this preprocessing step 
and if the typos would be present here, it would needlessly 
result in not equality of the statements. It is important to 
realise that typos can occur anywhere in the SQL statement. 
They can occur in names of columns, in names of tables, or in 
key words. The correction should be done based on similar 
words which come from the set which consists of words, 
where the originally intended word surely occurs, e.g. word 
representing a column with detected typo should be corrected 
based on the similarity measured with the other words 
(columns) from the same database table. The smaller the set is, 
and the more different the words within the set are, and the 
smaller the number of the typos within the single word 
occurred, then the correction of the word with typo should be 
the most successful. 

2) Procession of aliases of SELECT-part items: These
aliases are in most of the cases redundant. They have their 
reasons why are they used – they simplify expressions so that 
the expression can be referenced through the alias in different 
places of the statement. There is even extended possible usage 
of these aliases, here in the recent version 23c of Oracle 
Database system – it extends to GROUP BY and HAVING 
parts [3]. So, the aliases are useful, but in our process of 
comparison of the two statements, which would have defined 
various aliases upon the same expressions, it would cause 
some kind of not equality. Therefore, simple substitution of 
aliases with their full expressions in every place in the 
statement and deletion of their definitions would be desired 
transformation. 

III. ANALYSIS OF THE APPLICATION

The system for the evaluation is represented as one 
standalone software application. This application provides 
only programmatical access to individual functional units 
(these are differently divided the system features), not the full 
service in the form of the GUI and API for the end user. 

A. Syntax analysis (parsing) of SQL statements 

There is no official way how to obtain or use official 
Oracle parsing logic in the separate software application 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 276 ----------------------------------------------------------------------------



(outside the DBS environment) [4]. As was already 
mentioned, the input SQL statements are in form of the plain 
text. In order to process the SQL statements, they will need to 
have structural form – they need to be parsed firstly. There are 
two main options how to proceed – new and “built from zero” 
parsing tool will be created, or existing non-Oracle parsing 
tool will be used. Syntax of SQL is very complex and creating 
such parsing tool could be much work and a separate project. 
Of course, parsing tool in some primitive form could be 
conducted, but its possibilities in usage would be poor and 
would be working only in case of the simpler SQL statements. 
Second choice is to use third-party solution. There are some 
requirements on the parsing tool – it should be tool, which can 
be used in the programming language in which the application 
will be created (Java) (1), the tool should be capable to process 
specifically the Oracle SQL dialect (2), and it should be well-
documented or white-box solution to better understand its 
implementation and functionality (3). There were found few 
open-source projects (solutions for free) and one paid tool on 
the Internet. In case of the paid tool [5], it was not possible to 
obtain any documentation without buying a license, so this 
option was not used. From the set of open-source solutions, it 
was difficult to determine the most powerful one, because no 
performance-comparison tests were found. The final choice 
was the solution that appeared as the most profaned and the 
most discussed in the Internet IT-related communities [6]. This 
tool is Java SQL parser [7]. The parser converts the textual 
SQL statement into the tree hierarchy of Java classes, which 
can be navigated using the Visitor Pattern [8]. 

B. Design of the application 

Application is created in Java programming language, 
which provide some benefits that can be also practically used. 
Java programs can run on any device or platform that supports 
Java Virtual Machine (JVM), making it highly versatile and 
widely applicable [9]. Java is an object-oriented programming 
language, which promotes modularity, reusability, and 
scalability in software development [9]. As it is supposed that 
development of the application will span long time and maybe 
the development will even never end, this Java feature is very 
practical. The long time of the development is concluded from 
the problem complexity that the application covers. 

C. Connection to the database 

Connection to the Oracle DBS is important because the 
application needs to know things like names of columns in 
particular table, or all table names available. It is need mainly 
in case of typos in the SQL statements, where the application 
needs to know the exact names of metadata. When querying 
database from Java code using OJDBC (Oracle Java Database 
Connection) service [10], it takes some time to obtain result. 
When considering real situation that there are multiple testing 
SQL statements that will need to be processed, it is obvious, 
that this approach of querying database is not time efficient. 
Therefore, there should be Object representation of metadata 
stored in the database – e.g. Java classes representing columns 
and tables. This way, only few database queries are needed to 
be performed to obtain all required metadata for purpose of all 
SQL statements’ evaluations. 

D. Configuration of the application 

The behaviour of the application should be configurable. The 
user should have the option to pass values, which will modify 
process of SQL statements’ evaluations. There should be 
option to set the connecting data to the database (1), which 
cover database URL, username, and password. Another area of 
configurable values is assessment. User of the application 
should have option to set extent of minus points for every 
incorrectness separately (2). This way, user can set strictness 
of the assessment and can differentiate severity of each 
incorrectness occurred. For some incorrectness that user 
consider as not very serious such as typos, they can specify 
even zero minus points. In many cases, when processing the 
testing SQL statement, the application assumes that the 
statement has certain quality to allow preformation of more 
sophisticated evaluations (or transformations). The assumption 
can be transformed into the fact right through the specifying it 
in the configuration (3). 

IV. DESCRIPTION OF THE APPLICATION

A. Section Typos detection and correction 

In this section, typos in column names and table names are 
considered. The idea is to detect the word with typo(s) and 
then take the set of the words, where the originally intended 
and correct word exists. Subsequently, find the correct word 
and repair the word with typo(s). Basically, the word which is 
chosen for the repair is the word which have the closest 
distance to the word with typo(s). There are some well-known 
metrics which measure distance between two words [11]. In 
this case, there are words which have been created using the 
human as a keyboard input. Based on this knowledge, the 
Damerau-Levenshtein distance is the most suitable metric [11] 
and is used in the application to compare the similarity of the 
two words. This metrics treats all common typo’s types as 
single edit – the insertion of character, the deletion of 
character, the substitution of character, and the transpositions 
of characters. In the application, firstly the table names and 
secondly the column names are being repaired. In case of the 
table names with typos, all the tables from the referenced 
database are obtained to create the set of the words. Then the 
mentioned minimum distance approach is used to find the 
correct table name. In case of columns, the set of words would 
be too large if all the columns of all the database tables should 
be taken. At this point, all the table names in the SQL 
statement are repaired, so the application firstly takes these 
table names, and the set of words is being created based on all 
the columns which originate just from these tables. 

The process of identifying the columns and tables with the 
typos inside the SQL statements can be performed by two 
possible ways using the Java SQL parser. First one is to 
traverse whole the hierarchy of the Java classes and look for 
columns and tables and check them whether they have typo(s) 
or not. The check would compare the word with typo(s) with 
the corresponding database metadata. The second way how to 
identify the words with typos is to use parser’s feature called 
DatabaseValidationMetadata [12]. The second approach is 
used in the application since this feature is available and 
therefore the traversal within the Java classes’ hierarchy is not 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 277 ----------------------------------------------------------------------------



needed to be newly implemented. However, the feature is not 
as complex in sense that it does not allow to repair the 
detected word with typo(s) directly since it only gives the 
textual description – not the Java object directly. Within the 
textual description, there is the name of the column, 
respectively the name of the table. Therefore, the traversal of 
the Java classes’ hierarchy is needed to be performed, but 
when column or table is detected, there is no need to perform 
the comparison with the database metadata, which is still more 
complex operation then the comparison with the set of 
detected words with typos. If the column or table which is 
detected during the traversal is word with typo, then and just 
then, will proceed to the step where the similarity distances 
will be calculated between this word and the words from the 
set. Once the word with typo(s), being it column or table, is 
obtained during the Java classes’ traversal, then the word itself 
is represented as parser’s class representation – it allows to 
modify it – repair its name. 

It is important to mention, that accidental typo creation by the 
person which performs the input of the SQL statement can 
result in various situations. Undesirable situations cover such 
cases as that typo causes transformation of proper column or 
table to another proper column or table, or when typo caused 
not proper name but there is not only one but more of the 
smallest distances to the “correct” words. In the latter case, it 
is important to aware that there exists other information that 
can be used in decision of what word should be used for the 
repair. Let us take one specific case of repair with an 
ambiguity, which is resolved by the application successfully. 
SQL statement have in its SELECT part listed 3 columns, one 
of them was detected to have a typo. The calculation of the 
distances to words from the set, resulted in two same smallest 
distances. Therefore, it is unknow how should be the word 
with the typo(s) repaired. But the SQL statement includes 
GROUP BY section, where are listed 3 columns, and 2 of 
them are identical with the 2 columns from SELECT section. 
The third GROUP BY column is different to the third column 
from the SELECT section (one with the typo(s)). At the same 
time, it is the one column from the two columns (which had 
the smallest distances to the SELECT column with the 
typo(s)). Based on an assumption that the third GROUP BY 
column is without a typo and that the statement’ creator had 
complied the GROUP BY rule (which says that only columns 
in the GROUP BY section can be listed in the SELECT 
section), then can be inferred that the intended proper name of 
the column in the SELECT section is just the third one from 
the GROUP BY section. 

B. Section SELECT-part aliases removement 

In the SELECT part of the SQL statement, there can be 
defined aliases of items, which can be simple columns, or 
more complex expressions. These aliases can be then used in 
the same statement in different parts (see the Analysis of the 
system). The application operates with the information 
whether the SQL statement is targeted to DBS which version 
is less than 23c, or greater than or equal to 23c. In latter case, 
process of removement is extended to the mentioned 
additional parts of the statement. The process of removement 
of the aliases is much more complex, at least because the 

aliases can be nested deeply in functions, and there can be 
nested SELECT statements, from which aliases are taken to 
the outer level. In case of nested SELECT statements, 
application uses kind of iterative way, which allows to resolve 
the aliases removement in full extent independently of number 
of nesting. Application firstly needs to obtain all nested 
SELECT statements, it does so by traversing the Java class 
hierarchy created by the Java SQL Parser. When traversing the 
tree hierarchy, it proceeds from outermost SELECT statement 
to innermost statement. Concurrently as the class 
representations of SELECT statements are traversed, they are 
being put into stack data structure. It is because when the 
aliases removement will be proceeding, the aliases need to be 
removed from the innermost SELECT statement and 
afterwards proceed towards the outer ones, and in case of 
using the stack data structure innermost one is located on the 
top. 

When removing the aliases, the application removes indexes 
too, these indexes can be used in exactly same statements’ 
parts as the aliases and in same parts also with respect to 
database version as in case of the aliases. SELECT-items 
aliases removement on level of one SELECT statement (no 
nested SELECT statements) is relatively a simple task. At this 
point, SELECT statements are stored separately and 
chronologically in the stack data structure as they follow in the 
nesting in the statement. In the one level removement process 
it is enough to detect all aliases and search them in particular 
statement’ parts, in which they are allowed to be placed. 
Subsequently, replacement with full expression is being done. 
Now, when this inner one-level SELECT-items aliases 
removement is done, outer SELECT needs to be processed. In 
this situation, it is important to realize that aliases that are now 
removed in the inner SELECT, can be still used in outer 
SELECT, in other words, the references are breached. 
Therefore, removed aliases from inner SELECT need to be 
saved firstly and removed secondly. Along with aliases also its 
full expressions need to be saved, because in the outer 
SELECT the application will substitute the aliases with the full 
expressions. It is important to note, that not in every case it is 
possible to perform removement of alias, this concerns nested 
SELECT statements. If in inner SELECT there is a SELECT-
item alias, where the item is not simple column, but more 
complex expression such as function, then the alias can not be 
removed in case that the alias is used in the outer SELECT. 
This is simply because SQL does not allow to pass such 
expression verbosely from the inner SELECT to the outer 
SELECT, this is only possible by using the alias. 

C. Section of aggregation analysis 

In this section, there are treated SQL statements which include 
GROUP BY part. Once this part is present, there are some 
rules, that need to be complied in SELECT part, otherwise, the 
statement will encounter runtime error during execution, and it 
is therefore an incorrectness in the answer of the testing 
person. Simple situation would be if there would be only 
columns in the GROUP BY section and also in the SELECT 
section. However, GROUP BY item can be complex 
expression like nested functions with various parameters. 
Moreover, SELECT item can consists of expression which is 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 278 ----------------------------------------------------------------------------



not equal to any of the GROUP BY items but still is allowed 
and comply with the GROUP BY rule. Such as an expression 
from the GROUP BY part which is a parameter in a function. 

The application takes SELECT items one by one and explores 
them to evaluate whether it complies with the GROUP BY 
rule or not. If certain SELECT item complies with GROUP 
BY rule, then no minus points are given, otherwise they are 
given. One SELECT item is represented as a single object of 
multiway tree (data structure) in the application, where the 
tree’ root is whole expression of the SELECT item itself. 
Children of the tree node are parameters, which can also be 
functions and can have children too. The GROUP BY part, as 
was mentioned, can have items which are also expressions 
such like functions. The multiway tree structure is being 
traversed in preorder order, which means that firstly is visited 
current node and after that, children are being visited. If 
current node being visited is one of the GROUP BY items, 
being it complex expression or simple column, then children 
of this node are not being traversed whether they are present or 
not, because the current node was already found to be present 
in the GROUP BY section. It was not mentioned directly, but 
based on the tree structure, it is obvious that one SELECT 
item can comprise multiple GROUP BY expressions and all of 
them need to be found the tree structure. If the tree traversal 
encountered a node which have zero children and the node is 
column, then it must be in the GROUP BY part, otherwise, 
minus points are given. 

Let us explore situation, where there is given a SELECT 
statement, in which there is the GORUP BY section with one 
column and one SELECT item, which is an expression of 
function, where the parameter is the GROUP BY column. 
There is no error, and the application will properly inspect the 
inside of the function and will confirm the parameter as 
allowed as it is used in the GROUP BY section. 

Let us have another situation, which is often encountered 
among faults of the students. There is a GROUP BY item, 
which is not a simple column, but function and one of its 
parameters is a column, or there is some kind of concatenation 
of textual values and also column is being involved here. The 
typical situation can look like the item is 
“SUBSTR(NAME,1,2)” – it means that the grouping of rows 
is based on the first two characters of the column named 
“NAME”. Then, the fault occurs when on of the SELECT 
items is the “NAME” and not the whole expression. In this 
situation, the application will take the column “NAME” and 
will not find it as a GROUP BY item. 

In the process of evaluation by the application, there is one 
exception, and that is using of aggregation functions. These 
functions can be used also without GROUP BY section, but 
once they are used with this section, then the aggregation is 
being done for the groups of rows, not for whole extent of 
resulted rows. In case of these functions, also not-GROUP BY 
items can be listed as their parameters and also the parameters 
can have each its subtree not occurring in the GROUP BY 
section – this is said more like in terms of the application 
logic, but simply said it means that also other columns that are 
not in the GROUP BY section can occur in such function’ 
parameter. 

D. Section of comparison of two SQL Statements 

SQL statements are compared in their different parts. One of 
areas of variations is order of elements, these elements can 
occur in various parts of the statement, such as SELECT, 
WHERE, HAVING, etc. There can be different order of these 
elements in testing statement and in the correct one, and the 
statements should be treated as equal. However, there are 
some statements’ parts where the order is crucial, e.g. ORDER 
BY part or functions’ parameters. Not only item can be 
variated in its order, but even its subparts. Particularly, in 
WHERE part there can be items – logical expressions, which 
can consist of relational operators. Operands can change their 
positions vice versa and with change of the relational operator 
to opposite one, the expression have then the same meaning as 
the original one. Therefore, the application needs to perform 
all variations in particular statement’ part and then also do 
variations in items itself. This operation is naturally being 
done only if the two statements differ in their part. Once there 
is the difference, then the variations are created. If two 
statements’ parts should be equal, then just one variation 
should exist in the variations which literally equals to the other 
statement’ part. By other words, the application performs 
variation steps on one of the SQL statements (do not matter 
which one) which preserve original meaning of the statement 
and does the literal comparison with the second statement. If 
the application finds any statement’ part to be not equal to 
second statement’ part, then minus points are given. The 
application is capable to distinguish some extent of different 
statement’ parts, where it performs the variations and for each 
such part, not equality is punished with specific amounts of 
minus points for that part. I already mentioned that there are 
some statement’ parts where order of elements must be fixed 
in order the original meaning of statement to be preserved. In 
case of ORDER BY part, the situation is relative complex, 
because values at specific positions must be same, but their 
representations can differ, since representation of form of full 
expression, index, or alias can be used. Moreover, if no 
direction keyword is being used, then the direction is treated as 
ascending. Otherwise, keyword “ASC” refers to ascending 
order and keyword “DESC” refers to descending order. So, the 
application takes item by item from the ORDER BY part and 
is looking for its equivalent at the same position in the second 
statement’ ORDER BY part. If the item is index or alias, the 
application firstly needs to find its full expression. Now, there 
could be used directly the expression from the first statement, 
in the second statement. If so, the equality at the first ORDER 
BY position is confirmed. Otherwise, there can also be used 
index or alias in the second statement, therefore firstly the 
transformation to full expression needs to be done and 
afterwards the final comparison is being done. 

V. DEMONSTRATION OF PROCESS EVALUATING SQL 

STATEMENTS

A. Procession of typos 

In the fig. 1 we can see SELECT SQL statement, which have 
typos in multiple column names. The columns with typos are 
“_nme” (deletion, “_name”), “surrrrname” (multiple insertion, 
“surname”), “_description0” (deletion, “_description01”), 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 279 ----------------------------------------------------------------------------



“identification_ocde” (transposition, “identification_code”), 
and “nome” (substitution, “name”). Typos occurred in 
multiple statement’ parts – SELECT, FROM (ON), and 
GROUP BY. All typos were repaired successfully (fig. 2). 
With the knowledge of database metadata and tables which are 
used in the SQL statement, it was enough to repair all typos 
except the column “_description0”. In this situation, two 
columns with same smallest distances were found to occur in 
set of words, where the proper name of column exists. These 
columns are “_description01” and “_description02” and based 
on usage of one of these two words in the GROUP BY section, 
the column with typo was repaired to “_description01”. This 
approach is not definitely correct, because typo could occur 
also in the GROUP BY item “_description01” where the 
originally intended word could be “description_02” and then 
the correct word in SELECT part would be this word too. In 
other words, the application presumes that if the typo occurred 
in SELECT item and that item is also used in GROUP BY 
part, then the typo in GROUP BY item does absent. 

Fig. 1. SQL statement with typos, which is textual input into the application 

Fig. 2. SQL statement without typos, which is output from the application 

B. Procession of SELECT-items 

In fig. 3 it can be seen SELECT statement with two nested 
SELECTs. There should be noted, that the innermost SELECT 
(1) have defined three aliases over three SELECT items (“i”, 
“n”, “s”). Also, indexes are used in ORDER BY part at this 
level. SELECT (2) takes all three aliases from SELECT (1) 
and use them in SELECT part, WHERE part, and ORDER BY 
part. SELECT (2) defined new SELECT-items aliases and 
uses them in ORDER BY part. SELECT (3) takes all three 
aliases from SELECT (2), defines new aliases over them and 
uses alias “identification_number” in ORDER BY part. 

Fig. 4 depicts output after procession of SELECT-items 
aliases. When reading the output, it is important to proceed 
from the innermost nested SELECT to the outermost 
SELECT. In SELECT (1) indexes in ORDER BY section are 
replaced with column names and that aliases over these 
columns disappeared. 

Fig. 3. SQL statement, which is textual input into the application 

In SELECT (2), in ORDER BY section it can be seen, that 
rows are sorted firstly by “identification_number” ascending, 
then by “nam” descending, and then by “surname” ascending. 
Let us break the ORDER BY items down step by step. Where 
did the “identification_number” come from? In fig. 3 it can be 
seen that there is index 1 at the corresponding position in 
ORDER BY section, which refers to SELECT item number 1 
– “i” with defined alias “_id”. Firstly, index 1 was replaced
with column name “i”, then alias “_id” was removed. 
Afterwards, the column “i” was replaced with column 
“identification_number” (from Fig. 4 – SELECT (1)) in 
SELECT part and ORDER BY part. 

The second ORDER BY item “nam” in fig. 4 comes from the 
SELECT part where it is firstly defined, so there is no 
transformation towards the Fig. 3. Alias men is used in the 
ORDER BY part without any change because it is alias over 
expression, which is not a simple column. Of course, the alias 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 280 ----------------------------------------------------------------------------



could be replaced in the ORDER BY part with its expression, 
but it is not possible to refer to this expression in outer 
SELECT (3) – there is alias required, so once the alias is 
needed, then it is used in the ORDER BY part too. Slight 
change occurred in the expression itself, over which the alias 
is defined – it can be seen that on Fig. 3 inside the expression 
occurs “n” column, while in the Fig. 4 this is transformed to 
“name”. It is because the column “n” does not exist no more 
after procession of the innermost SELECT (1). 

Where did the “surname” as third item in the ORDER BY part 
in Fig. 4 come from? It came directly from the nested 
SELECT (1), where it is now transformed (fig. 4), it is also 
used in “upper” function in SELECT part, where it was also 
transformed from “s”. 

Fig. 4. SQL statement, which is output from the application. 

C. Procession of aggregation 

Fig. 5. SQL SELECT statement with GROUP BY part showing simple 
columns in this part 

Fig. 6. More complex statement with complex GROUP BY expression, which 
is moreover nested as parameter in SELECT item 

Both Fig. 5 and Fig. 6 depict SQL statements with no errors. 
Let us firstly analyse the command in figure number 5. There 
are 2 columns in GROUP BY section – “name” and 
“surname”. There are 5 items in SELECT part. First item is a 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 281 ----------------------------------------------------------------------------



complex expression, where occurs “name” two times and 
“surname” occurs one time and both columns are nested more 
or less deeply in the tree which is represented by this 
expression (see section Description of application). In case of 
the first SELECT item, the application behaves like it takes 
whole the expression and looks for it in GROUP BY section, 
where it does not occur. Then, the application proceeds with 
children, which are represented by parameters of the “concat” 
function and so on, until expression are being found in the 
GROUP BY section. 

In Fig. 6 there is a SQL statement, which operates with data of 
persons – its names and surnames. The grouping is being done 
under binary condition – whether sum of lengths of name and 
surname is greater or equal to 15, or whether the sum is less 
than 15. Therefore, there is only one GROUP BY item, which 
is complex expression. Moreover, this complex expression is 
nested in functions in SELECT item. There can be seen 
additional SELECT items, one of which lists number of 
occurrences of records for both sets, other items are aggregate 
functions, which gives minimal and maximal lengths for both 
name and surname. 

In Fig. 7, SELECT items have different order and partly 
different naming of aliases than in SELECT items in fig. 8. 
When looking at WHERE condition in both statements, the 
conditions are logically the same, but the inner expressions 
have reversed their operands and relational operators are the 
opposite ones. Such situation is also in the HAVING part. We 
can see more complex situation in GROUP BY part, where 3 
items are located – ordering ascending by “surname” column, 
which represents surname of a person, then again ascending by 
“_name” column, which represents name of a person, and then 
descending by “identification_number” column, which refer to 
a personal ID. These two SQL statements are evaluated by the 
application as same. 

D. Comparison of two statements 

Fig. 7: SQL statement which is treated as testing answer 

Fig. 8: SQL statement which is treated as right answer to testing task 

VI. CONCLUSION

This paper intends to uncover complex process of evaluation 
of SQL statements in Oracle dialect. It was shown that third-
party (non-Oracle) parsing tool can be used to process SQL 
statements given as plain texts. The software application, 
which was described, tends to automatically evaluate SQL 
statements is sense of their error-free states – both syntax and 
runtime errors are checked. This application cover only some 
extent of whole complexity of SQL statements’ comparison 
and evaluation. Nevertheless, it substitutes human manual 
evaluation in some extent. The chosen development 
environment and tools allow to continue in implementation of 
other features. This paper also intends to describe more 
specifically some concrete SQL statements and their 
evaluation to better demonstrate the process of evaluation by 
the application. 
As was mentioned, the application does not cover whole 
complexity of equivalents when comparing two statements. 
Therefore, many areas can be resolved by the current 
application in the future. Especially logical expressions have 
high variability. Also, variability on level of whole statement 
should be more investigated. One such example is 
transformation of SELECT statement with DISTINCT key 
word, to statement which lacks this key word but the whole 
statement has been modified in sense that GROUP BY part is 
added here. No doubt, there are much more such 
transformations on level of whole statement. 

ACKNOWLEDGMENT 

It was supported by the Erasmus+ project: Project number: 
2022-1-SK01-KA220-HED-000089149, Project title: 
Including EVERyone in GREEN Data Analysis 
(EVERGREEN) funded by the European Union. Views and 
opinions expressed are however those of the author(s) only 
and do not necessarily reflect those of the European Union or 
the Slovak Academic Association for International 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 282 ----------------------------------------------------------------------------



Cooperation (SAAIC). Neither the European Union nor 
SAAIC can be held responsible for them. 

This paper was also supported by the VEGA 1/0192/24 project 
- Developing and applying advanced techniques for efficient 
processing of large-scale data in the intelligent transport 
systems environment. 

REFERENCES 
[1] Oracle Database website, Oracle Database Documentation, Web: 

https://docs.oracle.com/en/database/oracle/oracle-database/. 
[2] Web portal of University of Zilina, Curriculum, Web: 

https://vzdelavanie.uniza.sk/vzdelavanie/plany.php. 
[3] Oracle Database website, Database 23c, Web: 

https://www.oracle.com/database/23c/#group-by-column-alias. 
[4] Stack Overflow website, Parser for Oracle SQL, Web: 

https://stackoverflow.com/questions/5735791/parser-for-oracle-sql. 
[5] SQL Parse, Analyzy, Transform, and Format All in One website, 

Homepage, Web: https://www.sqlparser.com/. 
[6] Stack Overflow website, Homepage, Web: 

https://stackoverflow.com/. 
[7] JSQLParser 4.8 documentation website, Homepage, Web: 

https://jsqlparser.github.io/JSqlParser/. 
[8] GitHub page of JSQLParser, Homepage, Web: 

https://github.com/JSQLParser/JSqlParser?tab=readme-ov-file. 
[9] IBM official website, What is Java?, Web: 

https://www.ibm.com/topics/java. 
[10] Oracle Database website, JDBC drivers, Web: 

https://www.oracle.com/database/technologies/appdev/jdbc.html. 
[11] Bealdung website, String Similarity Metrics, Web: 

https://www.baeldung.com/cs/string-similarity-edit-distance. 
[12] GitHub page of JSQLParser, Examples of SQL Validation, Web: 

https://github.com/JSQLParser/JSqlParser/wiki/Examples-of-SQL-
Validation 

[13] Karol Matiaško, Michal Kvet, and Marek Kvet, Databázové systémy 
– 1.diel. Žilina. EDIS-vydavateľské centrum ŽU, 2018. 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 283 ----------------------------------------------------------------------------


