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Abstract—Understanding and predicting human behaviors ac-
curately are essential prerequisites for effective human-robot
interaction. Recently, there has been growing interest in multi-
sensor fusion for creating robust and dependable robotic plat-
forms, especially in outdoor settings. However, majority of
current computer vision models focus on a single modality, such
as LiDAR point cloud data or RGB images, and often capture
only one person in each scene. This limited approach significantly
restricts the effective use of all the available data in robotics. In
this study, we propose utilizing multi-sensor fusion to enhance
human action detection and motion prediction by incorporating
3D pose and motion information. This approach leverages robust
human motion tracking and action detection, addressing issues
like inaccurate human localization and matching ambiguity
commonly found in single-camera view RGB videos of outdoor
multi-person scenes. Our method demonstrates high performance
on the publicly available Human-M3 dataset, showcasing the
potential of applying multi-sensor multi-task models in real-world
robotics scenarios.

I. INTRODUCTION

Precisely comprehending the actions of individuals nearby

and forecasting their subsequent movements is pivotal in

robotics platforms for ensuring secure and effective inter-

actions between the robot and its environment. To attain

this objective, robotic systems must depend on their onboard

sensors to gather insightful cues such as human pose to

understand human intentions and motions [1], [2].

In recent years, there has been active and ongoing research

into 3D human pose estimation algorithms, which utilize either

multi-view RGB images [3], [4] or LiDAR point clouds [5] as

inputs to predict the 3D human body pose. 3D pose estimation

plays a crucial role in various applications, including action

recognition [6], human motion prediction [7], augmented real-

ity [8], and robot navigation [9]. However, achieving accurate

3D human pose estimation faces challenges, especially in

communities focused on single-sensor inputs, due to several

factors. These include individuals often appearing small in

images due to their distance from the sensors, leading to

difficulties in pose estimation, and frequent occlusions by

other individuals or objects, making discernment challenging.

Additionally, LiDAR point clouds contain less semantic infor-

mation, posing challenges in directly recognizing human poses

in outdoor environments [10], [11].

To address this issue, the proposed solution involves the

integration of multiple sensors to represent 3D poses and mo-

tions for both human action detection and motion prediction.

Each sensor contributes unique and complementary signals;

for instance, cameras capture detailed semantic information,

whereas LiDARs offer precise spatial data. Consequently, the

fusion of multiple sensors is vital for gaining a comprehensive

understanding of human behaviors and accurately forecasting

their future movements.

To summarize, the contributions of our paper are:

• We develop a multi-sensor fusion model tailored for

detecting human actions and predicting short-term human

motion;

• Our model leverages 3D human pose and motion repre-

sentation to enhance the accuracy of both human action

detection and motion prediction;

• Our model is capable of handling scenarios involving

multiple individuals in outdoor environments and demon-

strates strong performance on the publicly available Hu-

man M-3 dataset [10] to highlight the significance and

effectiveness of incorporating such multi-modal inputs.

II. RELATED WORKS

A. Multi-Sensor Fusion Model

In the domain of computer vision, there has been a notable

surge in interest in multi-sensor fusion. The present method-

ologies can be generally classified into two categories: fusion

techniques at the proposal level, fusion techniques at the point

level. In proposal-level fusion, exemplified by MV3D [12], ob-

ject proposals are initially formulated in 3D and then projected

onto images to extract region of interest (ROI) features. While

proposal-level fusion methods [13], [14] are primarily focused

on objects, point-level fusion methods [15], [16] generally

superimpose image semantic information onto LiDAR point

cloud features, enhancing the point cloud inputs and feature

representation. Therefore, these methods are characterized by

their dual emphasis on both object and geometric features.

Among these techniques, FocalSparseCNN [17] operates at

the LiDAR input level, augmenting the data, while DeepFusion

[18] operates at the feature level. BEVFusion [19] integrates

LiDAR and multi-view RGB images within a shared bird-

eye view environment, extracting information from shared

geometric and semantic data. Meanwhile, MMVP [10] adopts

a voxel-based strategy for multi-modal fusion. Our proposed
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Fig. 1. The overall framework of the proposed multi-sensor fusion to detect human action and predict short-term human motion

model draws inspiration from BEVFusion and MMVP, con-

ducting multi-sensor point-level fusion and extracting human

pose and movement within a shared 3D space using a voxel-

based approach.

B. Skeleton-based Human Action Detection

The groundbreaking research underscores the intrinsic re-

lationship between human action detection and pose estima-

tion [20], [21]. Previous studies have predominantly utilized

LSTM [22] and GCN [23], [24] to capture the spatio-temporal

correlation among human joints. Recently, PoseConv3D [25]

introduces the idea of stacked 2D keypoint heatmaps, resulting

in enhanced outcomes. Alongside traditional supervised action

recognition tasks, attention has shifted towards addressing the

challenging one-shot and zero-shot human behavior detec-

tion problem [26]. For example, [27] utilizes TCN on one-

shot detection within therapy scenarios while SL-DML [28]

employs deep metric learning on multi-modal input signals.

Our approach leverages pretrained motion representations and

adapts them to downstream tasks such as human action detec-

tion. The pretrain-finetune framework significantly enhances

inference performance in scenarios where proper annotation

is unavailable.

C. 3D Human Motion Prediction

With access to a few time steps of human motion, we

can anticipate the continuation of a person’s movement and

envision the intricate dynamics of one’s future motion. This

predictive capability enables us to react and strategize our own

actions, particularly beneficial in applications like collision

avoidance for robotics [29]. The study of 3D human motion

prediction has garnered considerable attention in recent years

[30], [31]. For instance, temporal convolution networks [32],

[33] have demonstrated promising outcomes in modeling

human motion. Although these approaches yield encouraging

results, most focus on fixing the pose center and overlook

the global body trajectory. Recent studies have begun to

address this by jointly predicting human pose and trajectory

in the world coordinate system [34], [35]. For example, [36]

proposes predicting human motion while considering the con-

straints of the 3D scene context. CAMP model [37] suggests

a two-stage pipeline: first forecasting future contact maps

based on past ones and the scene point cloud, then predicting

future human poses which rely on the projected contact maps.

Similarly, our work forecasts human motion by simultaneously

considering 3D poses movements. Furthermore, we extend our

predictions beyond individual humans to encompass multi-

human motion and interaction.

III. APPROACH

Fig. 1 shows the overall framework of our proposed multi-

sensor fusion. It consists of two encoders and two decoders

for multi-sensor fusion and multi-task processing. The two

encoders are the pose encoder and the motion encoder, while

the two decoders are task-specific decoders: one for human

action detection and another for human motion prediction.

Before passing the data to the encoders, dataset preprocessing

is required to feed the model input.
Initially, the point cloud data undergo voxelization and sam-

pling to generate a 3D occupancy map. Simultaneously, multi-
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Fig. 2. Architecture of the pose encoder for 3D human pose representation

view RGB images are used to extract 2D human poses through

the widely used human pose estimator, RTMPose [38]. These

extracted poses are then converted into 2D joint heatmaps,

which are subsequently transformed into 3D heatmaps via 2D-

3D projection. The resulting 3D occupancy map and 3D joint

heatmaps serve as inputs to the pose encoder.

A. Pose Encoder

Point cloud features and 3D joint heatmap are subsequently

fused together to form fused multi-modal features within the

shared 3D space. These fused features are then passed into

a 3D CNN for the purpose of 3D person proposals. Each

individual person proposal undergoes a local 3D CNN module,

and the outputs from these modules are combined through

concatenation to generate 3D pose encoded features, shown

in Fig 2.

B. Motion Encoder

As shown in Fig. 3, upon acquiring a predetermined

sequence length of 3D pose encoded features, the motion

encoder utilizes DSTformer to encode the aggregated fea-

tures for human motion modeling. DSTformer [26] is a

sequence-to-sequence model comprising two branches: one

for spatial (SMHSA) and the other for temporal Multi-

Head Self-Attention (TMHSA) and MLP. SMHSA captures

connections among different joints within a given timestep,

whereas TMHSA models the movement of a single joint.

By incorporating SMHSA and TMHSA, which respectively

capture intra-frame and inter-frame body joint interactions,

these fundamental building blocks are combined to fuse the

spatial and temporal information in the sequence.

C. Action Detection Decoder

The motion encoded features are projected onto multiple

2D heatmaps through 3D-2D projection. These processed 2D

heatmaps are then stacked and fused into a 3D CNN module

based on the ResNet 3D backbone to detect multi-person

actions within outdoor scenes, shown in Fig. 4. Compared to

other fully supervised action detection models, we adapt pre-

trained motion representations from the NTU-RGBD dataset

and fine-tune the human action detection task using the AVA

v2.2 [39] dataset. The pretrain-finetune framework signifi-

cantly improves inference performance in scenarios where

proper annotation is unavailable, such as in the Human-M3

dataset.

D. Motion Prediction Decoder

To forecast human motion while considering 3D pose move-

ments within a scene, we incorporate additional point cloud

data alongside the motion encoded features as inputs (see

Fig. 5). More specifically, the initial point cloud data within

the input sequence length are utilized as supplementary input

for the human motion prediction decoder. We employ Point-

Voxel CNN (PVCNN) [40] to encode the 3D scene using its

DCT feature vectors. PVCNN, specifically designed for pro-

cessing 3D point clouds, combines voxel-based convolutions

and point-based representations, resulting in a memory- and

computation-efficient structure for 3D data. In our approach,

PVCNN in the decoder is adapted to incorporate motion

encoded features as input to predict a residual of the DCT

coefficients. This process outputs the predicted short-term

movement path, representing global translation. Subsequently,

we expand the predictions to include local joint position

prediction using a motion prediction module. The motion pre-

diction module in this decoder utilizes a Transformer model,

derived from Multi-Range Transformers [31], taking the short

path prediction output into consideration. Each individual short

path prediction output feeds into the Local-range Transformer

Encoder, and the encoded motion features serve as the key and

value alongside the query person skeleton for the Transformer

Decoder. The resulting output comprises future short-term

motion prediction results. The model takes 16 frames as input

and predicts the next 32 frames.
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Fig. 3. Architecture of the motion encoder for human motion representation

Fig. 4. Architecture of the human action detection decoder

Fig. 5. Architecture of the human motion prediction decoder
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Fig. 6. Visualization result of our model for motion prediction task in point cloud data (basketball court and plaza scene). The green person label represents
the current time frame while the orange person label represents the predicted future movement.

Fig. 7. Visualization result of our model for action detection and motion prediction tasks on RGB data. The red person 2D keypoint label represents the
predicted future movement that is projected from 3D.

IV. EXPERIMENTS

A. Dataset

The dataset used for training and validating the proposed

model is the Human-M3 dataset. It is an outdoor scene

dataset that consists of both multi-view RGB videos and

corresponding point clouds. The dataset includes scenarios

with multiple persons and provides accurate keypoint labels

for each individual. It comprises three main outdoor scenes: a

basketball court, a plaza, and an intersection.

B. Implementation Details

In our experiments, both multi-view RGB video frames and

point cloud data are sampled with a sequence length of 16

during training and validation. The proposed model undergoes

two phases: one for the action detection task and another for

the motion prediction task. Despite this division in the training

process, the same NVIDIA Tesla V100 GPU is utilized for

both tasks’ training and validation. Key model configuration

settings, include a batch size of 4, an initial learning rate of

0.0001, the use of the Adam optimizer [41], and a weight

decay of 0.0001, which remain consistent across both training

phases to ensure uniform results with the identical model.

The training process for human motion prediction spans 50

epochs, while the training process for human action detection

completes in only 10 epochs due to the pretrained-finetune

framework.
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C. Results and Discussion

TABLE I. PERFORMANCE COMPARISON BETWEEN OUR MODEL AND 
SOTA METHODS IN TERMS OF ACTION DETECTION ON HUMAN-M3 

DATASET.

Model Accuracy
ST-GCN [23] 34.8

Shift-GCN [24] 35.2
Pose C3D [25] 39.8

Ours 46.9

TABLE II. PERFORMANCE COMPARISON BETWEEN OUR MODEL AND 
SOTA METHODS IN TERMS OF SHORT-TERM MOTION PREDICTION 

ON HUMAN-M3 DATASET.

Model Mean Path Error (mm) Mean Joint Error (mm)
LHMPSC [36] 255.9 130.3

CAMP [37] 245.6 124.1
Ours 237.2 115.4

Table I presents a performance comparison of our model

against state-of-the-art models regarding the human action

detection task on the Human-M3 dataset. The state-of-the-art

models take single-camera-view RGB videos as input, while

our model takes point cloud data and multi-view RGB videos

as input. The evaluation metric for this table is the accuracy of

human action recognition across frames. The results indicate

that our model outperforms the compared models in different

scenes, as multi-sensor fusion enhances the performance of

motion representation, thus improving human action detection

results. Additionally, our pretrained-finetune framework can

be easily adapted to new datasets without requiring additional

training.

Table II shows a performance comparison of our model

against state-of-the-art models concerning human motion pre-

diction on the Human-M3 dataset. This experiment focuses on

verifying the performance of the motion prediction decoder.

Hence, we adopt a similar input to the state-of-the-art models,

which consists of motion encoded features and point cloud

data. The evaluation metric is the Mean Per Joint Position

Error (MPJPE) [42], which can evaluate both the 3D path and

3D pose prediction. The results demonstrate that our model

is capable of achieving great performance in most scenarios

and can support multi-person motion predictions, which other

compared models are not able to do. Fig. 6 displays the

visualization results of the motion prediction on point cloud

data, while Fig. 7 visualizes the results of action detection

and motion prediction in RGB video frames. There is room

for further improvement in the proposed model, especially

in terms of complexity. One direction for improvement is to

further develop a uniform representation for both pose and

motion features.

V. CONCLUSION

In this paper, we propose a multi-sensor fusion framework

for detecting human actions and predicting short-term human

motion. This architecture focuses on learning 3D poses and

motion representation to enhance the performance of both

human action detection and motion prediction. It is specifically

designed for multiple individuals in outdoor environments

and demonstrates strong performance on the Human M-3

dataset. This highlights the significance and effectiveness of

incorporating such multi-modal inputs.
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