
Order in Desbordante: Techniques for Efficient
Implementation of Order Dependency Discovery

Algorithms

Yakov Kuzin, Dmitriy Shcheka, Michael Polyntsov, Kirill Stupakov, Mikhail Firsov, George Chernishev
Saint-Petersburg University

Saint-Petersburg, Russia

{yakov.s.kuzin, dmitriy.v.shcheka, polyntsov.m, kirill.v.stupakov, mikhail.a.firsov, chernishev}@gmail.com

Abstract—Science-intensive data profiling focuses on discov-
ery and validation of various patterns in datasets. This study
considers discovery of one such pattern — order dependency
(OD). Simply put, OD states that some list of columns is ordered
according to another one. It is of use for database query
optimization, data cleaning and deduplication, anomaly detection,
and much more.

Existing discovery methods have approached this problem
solely from the algorithmic standpoint, without focusing on the
implementation side. At the same time, this problem is very
computationally intensive, and therefore this part should not be
ignored, as it brings ODs closer to industrial use.

In this paper, we study two algorithms for OD discovery which
target different OD axiomatizations — FASTOD and ORDER.
We start by reimplementing these algorithms in C++ in order to
speed them up and lower their memory consumption. We then
analyze their bottlenecks and propose several techniques which
improve their performance even further.

To perform evaluation, we have implemented these algorithms
inside Desbordante — a science-intensive, high-performance, and
open-source data profiling tool developed in C++. Experiments
have demonstrated a performance improvement of up to 3x
obtained by reimplemented versions, and, with the application
of our techniques, up to 10x. Memory consumption has been
lowered by up to 2.9x.

I. INTRODUCTION

Currently, there exists a considerable scholarly interest in

the analysis of extensive datasets. These datasets often exhibit

various inconsistencies, including missing values, duplicates,

and many other anomalies [1].

Data profiling [2] is a research field that aims to detect

and characterize such inconsistencies in order to prepare them

for further use (e.g., data cleaning). Data profiling can be

divided into two kinds [3]: naive and science-intensive. The

former aims to extract simple dataset characteristics such

as number of rows and columns, number of nulls, mean

and variance, etc. The science-intensive kind concerns the

extraction of complex patterns represented by structures which

we will refer to as primitives. Examples of such patterns are

database dependencies (functional [4], inclusion [5]), associa-

tion rules [6], algebraic constraints [7], inferred semantic data

types [8], and others. These patterns are typically discovered

through employing various algorithms, which are usually very

costly, resulting in dataset size being a significant limiting

factor. Thus, the development of novel efficient algorithms

and improving the performance of existing ones are relevant

problems.

One such primitive is the order dependency (OD). Infor-

mally, an OD states that some column is ordered according

to another column. For example, an increase in salary in the

IT department payroll table might be directly correlated with

increases in programmer’s grade. According to reference [9],

ODs prove effective in improving data quality, as their vi-

olation may serve as an indicator of underlying data errors.

Furthermore, as discussed in [10], these dependencies can be

leveraged by different database query optimizers to fine-tune

query performance.

Desbordante (Spanish for boundless) [3] is a science-
intensive, high-performance, and open-source data profiling

tool implemented in C++. To the best of our knowledge,

Desbordante is currently the only profiler that possesses these

three qualities. It is capable of discovering and validating many

primitives, including functional dependencies (both exact

and approximate), conditional functional dependencies, metric

functional dependencies, and others. The full list can be found

on the web-site (https://github.com/Mstrutov/Desbordante/).

However, Desbordante currently lacks support for ODs, which

we aim to add.

ODs have been known since 80es [11], and therefore this

subject contains a vast body of work. In this paper we focus

on two recent types of OD, which are based on different

axiomatizations — list-based [12] and set-based [9]. Different

formalisms effectively lead to different primitives, each having

its own algorithm and resulting primitive instances (result set).

The list-based axiomatization offers the ORDER algorithm,

while the set-based one — FASTOD.

However, existing discovery approaches have considered

this problem from the algorithmic standpoint only, without

focusing on the implementation side. To evaluate their al-

gorithms, authors have developed research prototypes imple-

mented in Java. Firstly, our previous studies [13] demonstrated

that merely reimplementing these algorithms in C++ can

improve their run times up to 3.5 times and lower memory

consumption up to 2.5 times. Secondly, applying various code-

level optimizations [14] can improve run times even further, up

to 8 times. As the result, existing implementations are slower

than they could be. Since primitive discovery problem is very

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 413 --

computationally intensive, the engineering part should not be

ignored as it brings ODs closer to industrial use.

In this paper, we develop a technical approach to the

problem based on efficient implementations of algorithms for

OD discovery. We start by reimplementing these algorithms

in C++ in order to speed them up and lower their memory

consumption. Then we analyze their bottlenecks and propose

several techniques which improve their performance even

further.

Overall, the contribution of this paper is the following:

• A comprehensive study of two recent formalizations

of OD and a description of the algorithms for their

discovery — ORDER and FASTOD.

• Several novel techniques for efficient implementation of

both algorithms.

• Open-source C++ implementations of both the algorithms

and proposed techniques.

• Experimental evaluation of the proposed techniques and

discussion of the results.

This paper is organized as follows. In Section II we provide

definitions for both axiomatizations, after which we discuss

them with examples. Next, in Section III we present related

work concerning ODs. In Section IV we describe existing al-

gorithms and our improvements. Their evaluation is discussed

in Section V, and Section VI concludes the paper.

II. BACKGROUND

Currently, there exist two axiomatizations describing the

notion of order dependency. These axiomatizations define

different objects, which results in different algorithms for their

discovery. The first one treats left hand side and right hand

side of a dependency as lists, and the second one — as sets of

attributes. In order to understand the respective algorithms and

our modifications, it is necessary to grasp the basics of these

axiomatizations. Therefore, in this section we present essential

concepts and formal definitions, closely following [15] and [9]

while presenting descriptive examples.

A. Basic Definitions

Relations. R denotes a relation (schema) and r denotes a

specific relation instance (table). A, B and C denote single

attributes, s and t denote tuples, and tA denotes the value of

an attribute A in a tuple t .
Sets. X and Y denote sets of attributes. Let tX denote the

projection of tuple t on X . XY is a shorthand for X ∪Y . The

empty set is denoted as {}.
Lists. X, Y and Z denote lists of attributes. Empty list is

denoted as []. [A,B,C] denotes an explicit list. [A | T] denotes

a list with head A and tail T. Let XY be a concatenation of

lists X and Y. Set X denotes the set of elements in list X. Any

place a set is expected but a list appears, the list is cast to a

set; e.g., tX denotes tX . Let X′ denote some other permutation

of elements of list X.

Definition 2.1: Given a relational schema R and an instance

r over R with attribute sets X ,Y ⊂ R, we say that a functional

dependency (FD) X → Y holds iff for any s, t ∈ r, the

following is true: sX = tX ⇒ sY = tY .

Example 2.1: For instance, in Table I functional dependency

{“Shipment cost”} → {“Weight”} holds, since in all tuples

with equal values of attribute “Shipment cost” (t1 and t5), the

values of “Weight” are equal as well.

TABLE I. A TABLE WITH SHIPMENT INFORMATION, ADAPTED
FROM [12]

tid Weight Distance Shipment cost Days

1 10 40 17 3
2 15 80 48 7
3 8 60 13 5
4 15 90 28 8
5 10 40 17 4
6 25 100 43 9
7 9 60 18 6

With FDs, however, it is impossible to capture relationships

among ordered attributes, such as timestamps or numbers,

which are quite common in business data. Therefore, the

concept of OD is introduced, generalizing FD by allowing

comparison operators other than =.

Definition 2.2: Let X be a list of attributes and θ ∈ {≤, <
,>,≥}. For two tuples r and s, X ∈ R we say that rX θ sX if

1) X = [], or
2) X = [A | T] ∧ rA θ sA, or
3) X = [A | T] ∧ rA = sA ∧ rT θ sT.

Unless otherwise specified, numbers are ordered numerically,

strings are ordered lexicographically and dates are ordered

chronologically.

Definition 2.3: The order dependency X
→θ Y, where θ ∈
{≤, <,>,≥}, is present in the instance r over the relation R
iff for any s, t ∈ r, the condition sX θ tX ⇒ sY θ tY holds. If

θ is omitted, it is implied that θ is <.

Essentially, the presence of OD X
→ Y means that, when

ordering the values by X, the resulting list would also be

ordered by Y.

Discovered order dependencies have many applications,

such as database query optimization, data cleaning and dedu-

plication, anomaly detection, and much more.

Example 2.2: In Table I we can see that the order depen-

dency [“Distance”, “Weight”]
→≤ [“Days”] holds. Ordering

by “Distance” and breaking ties by “Weight” (t1 ≤ t5 ≤ t3 ≤
t7 ≤ t2 ≤ t4 ≤ t6) is the same as ordering by “Days”. Also

note that although FD {“Weight”} → {“Shipment cost”}
holds, as seen in previous example, OD [“Weight”]
→≤
[“Shipment cost”] does not hold. We discuss reasons for this

in Section II-C.

B. List-based definitions

Definition 2.4: Two attribute lists X and Y are order com-
patible with respect to θ ∈ {≤, <,>,≥}, denoted as X ∼θ Y,

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 414 --

iff XY ↔θ YX (XY
→θ YX and YX
→θ XY). [] is order

compatible with any attribute list. ODs in the form of X ∼θ Y
are called order compatible dependencies (OCDs)

Example 2.3: In Table I OCD [“Distance”] ∼ [”Days”]
is valid: sorting by “Distance” and breaking ties by “Days”
is equivalent to sorting by “Days” and breaking ties by

“Distance”.

Definition 2.5: An attribute list X is minimal, iff for any

disjoint, contiguous sub-lists V and W in X, such that W
precedes (not necessarily directly) V, OD V
→ W does not

hold.

Definition 2.6: The order dependency X
→ Y is minimal,
iff

1) there is no prefix V of X, such that V
→ Y does not

hold, and
2) there is no prefix W of Y, such that X
→ W holds, and
3) X is minimal, and
4) Y is minimal.

C. Violations

ODs can be violated in two ways. We begin with the

following theorem and then explain how the two conditions

therein correspond to two possible sources of violations.

Detailed proofs can be found in the original paper [9].

Theorem 2.1: For every instance r of relation R and θ ∈
{≤, <,>,≥}, X
→θ Y ⇐⇒ X
→θ XY ∧ X ∼θ Y.

Definition 2.7: Tuples s and t form a split with respect to

a pair of attribute lists (X,Y), if sX = tX, but sY �= tY.

Definition 2.8: Tuples s and t form a merge with respect to

a pair of attribute lists (X,Y), if sX �= tX, but sY = tY.

A split among (X,Y) implies a merge among (Y,X) and

vice versa. Presence of split or merge implies X
→θ XY being

violated. Introducing both as separate concepts facilitates the

distinction between the two types of order dependencies: splits
invalidate only order dependencies under ≤ and ≥, and merges
invalidate only order dependencies under < and >.

Definition 2.9: Tuples s and t form a swap with respect to

pair of attribute lists (X,Y) and θ ∈ {≤, <,>,≥}, if sX θ tX,

but ¬(sY θ tY). Presence of a swap implies X ∼θ Y being

violated.

Example 2.4: Order dependency in Table I [“Weight”]
→≤
[“Shipment cost”] does not hold because of a split (t2, t4).
OD [“Days”]
→ [“Shipment cost”] does not hold because of

a swap (t1, t3).

Theorem 2.2: X
→< Y iff X
→≤ Y
This theorem unifies dependencies under operators < and≤.

One of the algorithms discussed in this paper, ORDER [12],

uses this fact by discovering only dependencies under strict

comparison operators.

D. Set-based definitions

In [9] a polynomial mapping from list-based representation

to a set-based canonical form of ODs is presented, allowing

the traversal of a much smaller set-containment lattice instead

of a list-containment lattice.

Definition 2.10: Let R be a relation schema, and r be its

instance. The equivalence class of tuple t ∈ r with respect to

a given set of attributes X is defined as the set ε(tX) = {s ∈
r | sX = tX }.

Definition 2.11: An attribute A is considered constant within

each equivalence class concerning the set of attributes X
(denoted as X : []→cst A) if there exists an order dependency

X′
→ X′A for any permutation X′ of elements in X .

Definition 2.12: Two attributes A and B are order compati-
ble within each equivalence class regarding the set of attributes

X (denoted as X : A ∼ B) if there exists a permutation X′,
such that X′A
→ X′B.

Definition 2.13: Dependencies of the form X : [] →cst A
and X : A ∼ B are referred to as canonical order dependen-

cies. X is called the context.

In [9] theorems are presented that show a way of mapping

list-based OD representations to equivalent set-based canonical

forms of ODs. Given a set of attributes X , for brevity, we state

∀j,Yj to mean ∀j ∈ {1, 2, . . . , |Y|},Yj .

Theorem 2.3: X
→ Y iff ∀i,X : [] →cst Yi and

∀i, j, {X1, . . . ,Xi−1,Y1, . . . ,Yj−1} : Xi ∼ Yj

Example 2.5: By theorem 2.3, an OD AB
→ CD can be

mapped into the following equivalent set of canonical ODs:

1) {A,B} : []→cst C,

2) {A,B} : []→cst D,

3) {} : A ∼ C,

4) {A} : B ∼ C,

5) {C} : A ∼ D,

6) {A,C} : B ∼ D.

Definition 2.14: A canonical OD X : [] →cst A is trivial,
if A ∈ X . A canonical OD X : A ∼ B is trivial if

1) A ∈ X , or
2) B ∈ X , or
3) A = B.

Definition 2.15: A canonical OD X : []→cst A is minimal
if it is not trivial and there is no context Y ⊂ X , such that

Y : [] →cst A holds. A canonical OD X : A ∼ B is minimal
if it is not trivial and

1) there is no context Y ⊂ X , such that Y : A ∼ B holds,

or

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 415 --

2) X : []→cst A, or
3) X : []→cst B.

Violations for set-based axiomatization are defined simi-

larly.

E. OD discovery algorithms

In this paper we consider the following OD discovery

algorithms:

1) ORDER [12], which operates with list-based order de-

pendencies,

2) FASTOD [9], which works with equivalent set-based
mapping of list-based dependencies.

The set of dependencies produced by FASTOD is proven

to be complete [9]. ORDER, however, uses excessively ag-

gressive pruning rules, which leads to the resulting set of

dependencies being incomplete in the following ways:

1) The algorithm skips dependencies in the form of X
→
XY,

2) if X
→ Y is invalidated by a swap, then XA
→ YB is not

considered, leading to ODs in the form of XA
→ XAYB
being missed,

3) if XA
→ YB is invalidated by a split, then XA ∼ YB is

not considered, which maps to set-based canonical OD

XY : A ∼ B.

FASTOD also has a more concise way of representing

constants, producing only one set-based canonical OD {} :
[] →cst B for each constant, while ORDER produces ODs

[A]
→ [B] for all attributes A and all constants B.

The fact that ORDER yields incomplete results, however,

does not mean that it should not be used for dependency

mining. ORDER’s aggressive pruning rules allow it to perform

better, especially on large datasets, while still being able to

give out potentially useful dependencies.

III. RELATED WORK

According to [15], order dependencies had first been pro-

posed in [11]. Since then, a lot of dependency types differ-

ing from the initial ones had been discovered. Furthermore,

alternative axiomatizations of initial concepts has been pro-

posed: some were characterized by lists of attributes, while

others — by sets. Pointwise Order Dependencies (PODs) and

Lexicographical Order Dependencies (LODs) are examples of

dependency classes with different axiomatizations. PODs —

set-based dependencies — were presented by Seymour Gins-

burg and Richard Hull [11] in the context of databases.

LODs — list-based dependencies and a more useful alternative

to PODs due to their applications in query optimization, were

studied in [16]. Jaroslaw Szlichta et al. [15] presented the set

of list-based inference rules which defines this class. Based

on [15], inference problem was investigated both in theory

and in practice [10], which led to the proof of its co-NP-

completeness.

Various papers had proposed different mappings that con-

nect those axiomatizations. A paper [10] presents an example

of a mapping from LOD to PODs, which indicates that PODs

generalize LODs. This generalization is strict, since LODs

themselves don’t in turn generalize PODs. Authors of [17]

propose a polynomial mapping of list-based OD into an equiv-

alent set-based canonical OD, which allows their algorithm

to efficiently search for order dependencies. A paper [18]

claims that PODs strictly generalize canonical ODs, which,

combined with the previously mentioned mappings signifies

that PODs represent a class of dependencies that is quite

generic in nature. An even broader class of dependencies

would be Denial Constraints (DCs), which could be found

in [1], [19]. PODs are a subset of DCs (LODs, by extension,

can also be classified as DCs, since they are a special case of

PODs).

Order dependencies can also be generalized via Bidirec-

tional Order Dependencies (BODs), which were analyzed

in [17], [20]–[22]. They allow users to specify the order of

sorting for both sides of an OD [10]. Papers [17] and [20]

had delved into mining those dependencies, while works [22]

and [21] had dealt with distributed search. This generalization

is primarily useful due to emulating order-by clauses in SQL,

which allows for an efficient optimization of such queries [20].

There have also been quite a number of papers researching

less generalized dependencies. One example of such depen-

dencies would be Functional Dependencies (FDs), explored

in [4], [23]. According to [12], FDs are a special case of order

dependencies. Furthermore, authors of the paper claim that

their algorithm ORDER can be used to mine FDs, altough

not very efficiently. Better performance can be achieved by

algorithms such as FastFD [24] and Tane [25] due to them

being designed specifically for mining FDs.

Order Compatibility Dependencies (OCDs), researched

in [17], [26], are a more specific form of OD. This fact has

been put to great use in the work [27] of Cristian Consonni

et al. They used the idea of separating ODs into FDs and

OCDs to propose a new approach to OD discovery. However,

according to the paper [20], this pruning technique can lead

to an incomplete set of dependencies being found.

To the best of out knowledge, there exist only two

algorithms of exact order dependency discovery. Philipp

Langer and Felix Naumann proposed the algorithm OR-

DER [12], which uses list-based inference rules to traverse

list-containment lattice with worst-case time complexity of

O(|R|!). Jaroslaw Szlichta et al. [9] presented algorithm

FASTOD and the set-based inference rules, allowing for

faster traversal of set-containment lattice, rather than list-

containment one. FASTOD, an improvement of ORDER, is

based on a polynomial mapping to a canonical forms of

ODs with worst-case time complexity of O(2|R|). They prove

the completeness of their approach and provide scenarios in

which ORDER yields incomplete results. Cristian Consonni et

al. [27] have made an attempt to improve the existing theory

related to set-based ODs, proposing a new algorithm called

OCDDISCOVER and showing that it has a significant speedup

over FASTOD. Their claims have later been proven to be

incorrect [28].

The two major algorithms (FASTOD and ORDER) al-

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 416 --

low its users to find exact order dependencies adhering to

their modern definitions. Implementing these algorithms in

an efficient manner and adding a new primitive would allow

Desbordante to add yet another concept to its toolkit. On top

of that, these algorithms rely on two different axiomatizations,

which inspired us to research the differences arising from the

distinction in their definitions.

IV. ALGORITHMS

A. The General Scheme of Both Algorithms

FASTOD and ORDER are both lattice-based algorithms for

dependency discovery. They initiate the search with either an

attribute set or a list (depending on axiomatization) consisting

of a single element, and progressively move to larger sets

or lists through the lattice, traversing levels one by one.

Dependency candidates obtained at a given level are checked

for minimality based on the previous levels. Dependencies that

pass that check — as well as an additional candidate verifica-

tion check — are added to the resulting set of dependencies.

Thus, both FASTOD and ORDER employ a dependency

search strategy from small to large. This approach enables the

identification of minimal dependencies and efficiently reduces

the search space. Partitions may be utilized for a more efficient

dependency detection, enabling candidate verification checks

in linear time.

Throughout the algorithms’ execution, the following stages

are repeated, as detailed in the article [9]: dependency search,

pruning of the current level, and computation of the next level.

This process can be described by the following blocks:

1) The first level includes all attributes from the original

relation. In the initial iteration, this is the current level.

2) While the current level is not empty, steps 3-5 are

executed.

3) All dependencies on the current level are identified.

4) The search space for dependencies is reduced by pruning

the current level.

5) The next level is computed and becomes the current one.

In the following sections, we will describe some of the

implementation details that are important for our proposed

optimizations. We will also describe details that give a better

understanding of the algorithms’ approaches to dependency

search, with emphasis on pruning in particular.

B. ORDER description

Algorithm ORDER discovers all minimal n-ary lexicograph-
ical order dependencies under the operator “<” (and by

Theorem 2.2, all dependencies under “≤”).

First, the algorithm determines the columns that can be

sorted. These columns are sorted so that sorted partitions can

be created according to them, which the algorithm will then

work with, without having to access the source data anymore.

Let’s say we sorted some attribute A. SortedPartition(A)

would then contain equivalence classes that retain the infor-

mation regarding their indexes prior to sorting. If the values

are equal, then their indexes would wind up in the same

equivalence class. Sorted partitions are used during validation

and allow it to be performed in linear time. It is possible to get

sorted partitions for any list of attributes by calculating sev-

eral products of sorted partitions for single attributes. Sorted

partition production is a hash-join-like procedure, which you

can learn more about in [12].

Next, the algorithm works with a lattice. All lists (permu-

tations) of attributes of length i can be found at the i-th level

of the lattice. Those permutations supply the algorithm with

various candidates, dividing these lists into right and left parts.

The algorithm starts from the first level and makes its way

down the lattice, increasing value of i. Since the algorithm

considers lists instead of sets of attributes, there can be a lot

of candidates, so an aggressive candidate pruning is applied.

The pruning rules allow the algorithm to immediately estab-

lish the validity of a candidate, depending on the candidates

that had already been verified. The rules are as follows:

1) X �
→< Y⇒ XV �
→< Y;

2) X
→< Y valid ⇒ X
→< YW valid;

3) X �
→< Y ⇒ XV �
→< YW, where X �
→< Y is an

invalidation by swap.

4) X
→< Y is valid ⇒ XV
→< YW is valid, if X contains

only unique values.

The attribute lists X,Y,V,W do not overlap, and only V,W
can be empty.

C. FASTOD description

FASTOD is an algorithm for efficient discovery of complete

and minimal set of set-based canonical ODs. While ORDER

traverses a lattice of all lists of attributes, FASTOD traverses a

lattice of all sets of attributes. The idea of the algorithm is to

utilize polynomial mapping of order dependencies to canonical

forms, which allows it to achieve greater performance: its

worst-case time complexity is O(2|R|).
Instead of regular partitions, FASTOD uses StrippedParti-

tions, in which equivalence classes with cardinality of 1 are

excluded. This sort of compression allows for additional effi-

ciency, but does not interfere with correctness of the algorithm.

After calculating the partitions for individual attributes, the

FASTOD evaluates partitions for subsequent levels, consisting

of several attributes, in linear time using the product of

partitions. So, partitions are not calculated from scratch, but

are instead derived from previous levels: ΠA∪B = ΠA ∗ ΠB.

This dramatically improves the performance of the algorithm.

FASTOD also employs a specific method for storing can-

didates. They are stored in C+
c (X) = {A ∈ R : ∀B ∈

X X\{A,B} : [] →cst B does not hold} and C+
s (X) =

{{A,B} ∈ X 2 : A �= B and ∀C ∈ X X\{A,B,C} :
A ∼ B does not hold, and ∀C ∈ X X\{A,B,C} : [] →cst

C does not hold }, where R denotes the original relation.

This approach prevents candidate sets from growing in size

during algorithm’s execution. Another benefit of using this

representation lies in simplicity of pruning: a set of attributes

X is deleted from a level (for all levels above 1) if both sets

C+
c (X) and C+

s (X) are empty.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 417 --

D. ORDER and FASTOD baselines

Both baselines are established by reimplementing the cor-

responding Java algorithm in C++. These adaptations involve

minimal changes, addressing the absence of certain Java

language features and specific data structures. Furthermore,

both C++ implementations incorporate all data types supported

by Desbordante, whereas the original FASTOD algorithm was

tailored exclusively to integer columns. The C++ implemen-

tations abstain from utilizing specialized third-party libraries,

such as libraries designed for specific memory management

(allocators). Instead, they employ data structures from the stan-

dard library and incorporate Boost (https://www.boost.org).

E. FASTOD optimizations

Internally, the algorithm employs a specialized data struc-

ture called stripped partition (further referred as “partition”),

which stores information about the partitioning of the dataset

into equivalence classes. The FASTOD algorithm relies on

numerous computationally intensive operations involving these

partitions (represented by StrippedPartition class in the code).

Through the analysis of real datasets, it has been observed

that a considerable portion of them contains columns pre-

dominantly composed of blocks of identical values. Some

datasets are mainly comprised of such columns. Consequently,

a decision was made to optimize the internal representation of

partitions.

The standard approach involves storing the indices of all

values within each equivalence class. However, this approach

proves to be wasteful when encountering a large number of

consecutive values falling into the same equivalence class. This

results in excessive memory usage and the need for repeated

copying of a substantial amount of data. For instance, consider

the attribute I = (1, . . . , 1, 3, 1, . . . , 1) and the equivalence

class representation for the value of 1. In this case, it would

appear as follows: [1] = (0, 1, . . . , N,N + 2, N + 3, . . . ,M),
where N is the index of the 1 located before 3, and M is the

index of the last 1.

The first optimization involves storing data not as a list of

values, but as a list of ranges instead. Revisiting the same

attribute I , the equivalence class representation for 1 would

now be: [1] = (0–N, (N + 2)–M). In this case, it is evident

that memory is used much more efficiently, and less data needs

to be copied. We call such approach a range-based partition
representation (represented by RangeBasedStrippedPartition

class in the code).

However, such representation would be inefficient for at-

tributes that do not have a sufficiently large sequences of

identical values. In such cases, many small or even degenerate

ranges would be observed, not only occupying a significant

amount of memory, but also slowing down partition opera-

tions.

The second optimization addresses this issue. It utilizes

knowledge accumulated during dataset preprocessing. At this

stage, values in each column are analyzed. If the proportion of

values forming ranges is greater than a constant of 0.001, the

corresponding attribute is flagged. The optimization involves

mindful selection of the representation for the initial partition.

If it is constructed based on an attribute flagged as having

a sufficiently large proportion of range-forming values, the

range-based partition representation is selected. Otherwise,

the algorithm uses the standard partition representation. This

achieves increased performance on attributes of a specific type

without sacrificing performance on other attributes.

Furthermore, it has been observed that the size of value

ranges does not increase as a result of partition operations;

it usually decreases gradually down to a degenerate range

containing a single value. Therefore, starting from a certain

point, the representation based on ranges begins to slow

down partition operations and expend unnecessary memory.

The third optimization addresses this issue by dynamically

switching the representation from range-based to the standard

version. During partition operations, the percentage of small

ranges (those with a size less than 40) relative to all ranges in

its new state is calculated. If this ratio exceeds a constant of

0.5, the partition representation is switched to a standard one.

This achieves the following effect: speed up during the initial

stages when dealing with a large portion of range-forming val-

ues, and, when the ranges exhaust themselves (mostly turning

into small ones) and start slowing down partition operations,

the representation is switched to the standard one, retaining

the performance characteristics of a baseline approach.

The new representation of partitions allows for performance

gains. In particular, this is achieved through a special algorithm

for computing range-based partition product. It uses the idea

of fast range intersections, which is the basis of partition

representation.

For each attribute, a list of “value-range” pairs is built,

where range means the range of indices in the attribute

followed by the corresponding value. By sorting this list by

the second element of the pair, we obtain a new list, which

we will call SI . If we sequentially expand the ranges of each

of its pairs, an ordered sequence of indices spanning from

zero to the number of table rows minus one is formed. Let’s

call this sequence SEQ. Next, for each such list we create a

correspondence table T for each element a in SEQ with an

index in SI . This index points to a pair whose range contains

a. This table, together with the ordering condition of the SI
list, will allow the algorithm to intersect an arbitrary range r
with a list SI of the corresponding attribute in a short time.

Instead of sequentially intersecting r with each range in SI (as

would be the case if we represented the attribute as an arbitrary

list of pairs), we first find two indices in constant time (these

indices point to the ranges that contain the beginning and the

end of r). Then we intersect r with ranges whose indices

lie between the two found indices (including the ends). In

this case, the ranges obtained as a result of intersection are

matched to the same values that correspond to the ranges in

SI . Combining the resulting “value-range” pairs will give us

a list that will be the desired result of the intersection of the

range r with SI .

It is also possible to intersect a list of ranges with SI . To

do this, you need to intersect each range of this list with SI

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 418 --

and combine the results.

Our partition representation involves storing a list of ranges

for each equivalence class. This way it can be easily mapped

to a list of “value-range” pairs by adding a corresponding

value for each range. The product of an existing partition with

another one, built by some attribute A, can be calculated by

intersecting this list with a list built by A, according to the

considerations described earlier.

To better understand the described principle, consider

the following example. Let us have an attribute A =
(5, 5, 6, 6, 5, 5, 8). The list of “value-range” pairs for it will

look like I = {(5, [0–1]); (5, [4–5]); (6, [2–3]); (8, [6–6])}.
Sorting it by the second element of the pair (that is, by ranges)

gives us SIA = {(5, [0–1]); (6, [2–3]); (5, [4–5]); (8, [6–6])}.
Next, we create a correspondence table: TA = {(0→ 0); (1→
0); (2 → 1); (3 → 1); (4 → 2); (5 → 2); (6 → 3)}. Suppose

that we have a partition ΠX and it’s range-based representation

{[0–1], [5–6], [2–4]}, where ranges [0–1], [5–6] form the first

equivalence class C1, and range [2–4] forms the second one,

C2. Lets say we want to calculate ΠX∪A = ΠX ∗ΠA, where ΠA
is a partition built for the attribute A. To do this, we need to

intersect each equivalence class from ΠX with the list formed

by the attribute A, that is, with SIA. As an example, consider

the intersection of the second equivalence class containing

only a single range d = [2–4] with SIA. We calculate the

indices of the ranges containing the beginning and the end

of d: TA[2] = 1, TA[4] = 2. In the list SIA, there are

two ranges between indices 1 and 2: [2–3] and [4–5]. We

intersect them with d, which gives us [2–4] ∩ [2–3] = [2–3],
[2–4]∩[4–5] = [4–4]. In this case, the resulting ranges matched

to the same values that corresponded to the ranges in SIA. So

M = C2 ∩ SIA = {(6, [2–3]); (5, [4–4])}. If the equivalence

class consisted of several ranges, we would intersect each of

them with SIA, and then combine the results into a single

list. Now we sort M by the first element of the pair and

extract equivalence classes from it. This gives us two equiva-

lence classes, the representation of which using indexes is as

follows: [4–4] and [2–3]. We exclude the equivalence classes

with cardinality of 1, so only [2–3] is added to the resulting

list. After performing similar operations with each equivalence

class from ΠX , we obtain the final list of equivalence classes,

which will be the result of the product of partitions.

A description of the algorithm in a more general form is

presented in the Algorithm 1.

F. ORDER optimizations

Unlike FASTOD, optimizations for ORDER are based on

using more efficient data structures and sorting algorithms

from the Boost library where it is most needed.

After studying the performance of the algorithm, we con-

cluded that in the vast majority of cases, the following opera-

tions take the most time: sorting attribute values when creating

sorted partitions, searching for elements of equivalence classes

during validity checks, and calculating the product of sorted

partitions.

Data: TA — correspondence table for attribute A,

ΠX — first partition, SIY — sorted

value-range representation of second partition

ΠA of A
Result: O — partition ΠX∪A

1 O ← ∅;
2 for C ∈ ΠX do
3 M ← ∅;
4 for [ds; de] ∈ C do
5 s← TA[ds];
6 e← TA[de];
7 R← SIA[s . . . e];
8 for (v, [rs; re]) ∈ R do
9 r ← [ds; de] ∩ [rs; re];

10 add (v, r) to M ;

11 end
12 end
13 sort M ;

14 E ← extract equivalence classes from M ;

15 exclude degenerate classes from E;

16 add each element from E to O
17 end
18 return O;

Algorithm 1: Range-based partition product

Sorting. Sorting of values occurs at the start of the algo-

rithm in order to obtain efficient data representation — sorted

partitions. As a result, the source data is not used on the next

steps of the algorithm.

This step is the primary target for optimization, since it will

result in performance gains on all datasets, unlike calculation

of the product of sorted partitions, which may not occur due

to dependencies not necessarily being found.

In addition to the sorts offered in the C++ standard library,

we have the opportunity to use Boost.Sort library, which

offers a set of different sorts, both parallel and serial. For

single-threaded execution, we select flat stable sort because

it offers decent performance and low memory consumption.

block indirect sort was chosen for multi-threaded execution,

for the same reasons. Replacing the sorting algorithm from the

standard C++ library can bring improvements in performance

and memory consumption.

Candidate validation. Validation is performed using a

pair of sorted partitions. Algorithm goes through pairs of

equivalence classes, in which identical elements are searched.

The most efficient structure for a large number of searches is

unordered set, which has several implementations. In addition

to the implementation from the C++ standard library, Boost

offers its own implementation: unordered flat set, which

has high performance as its main characteristic. Using un-

ordered flat set can theoretically increase the performance of

the algorithm.

Calculation of Sorted Partitions Product. Partition prod-

uct is calculated for datasets that have dependencies, and the

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 419 --

more dependencies there are in the dataset, the more often

that product occurs. Product is calculated using hash maps,

so using a more efficient unordered flat map from the Boost

instead of unordered map from the standard C++ library can

bring an increase in speed to datasets that contain a large

number of dependencies.

V. EXPERIMENTS AND DISCUSSION

A. General

To evaluate our techniques, we have developed our own

implementations of both algorithms — FASTOD and OR-

DER — and experimentally compared them with the existing

implementations written in Java. We present research questions

and report experimental results for each algorithm in the next

sections. Note that we do not compare FASTOD and ORDER

with each other, as it is meaningless since they are designed

to yield different results.

In our experiments, we have only considered run time of the

algorithm itself, as parsing and preprocessing differ in Des-

bordante and Java implementations, and therefore could skew

the final results. We leave the parsing and data preprocessing

stages for future investigations.

Each discussed experiment was repeated three times, and

the average of the results was calculated.

Experimental Setup. Experiments were performed using

the following hardware and software configuration. Hard-

ware: Intel® Core™ i7-11800H CPU @ 2.30GHz (8 cores),

16GB DDR4 3200MHz RAM, 512GB SSD SAMSUNG

MZVL2512HCJQ-00BL2. Software: Kubuntu 23.10, Kernel

6.5.0-14-generic (64-bit), gcc 13.2.0, openjdk 11.0.21 2023-

10-17, OpenJDK Runtime Environment (build 11.0.21+9-post-

Ubuntu-0ubuntu123.10), OpenJDK 64-Bit Server VM (build

11.0.21+9-post-Ubuntu-0ubuntu123.10, mixed mode, sharing).

B. FASTOD

Methodology. The Java implementation of the FASTOD

algorithm (https://github.com/leveretconey/cocoa/tree/master/

src/main/java/leveretconey/fastod), unlike its C++ counterpart,

is limited to datasets composed solely of integer values.

Consequently, the original datasets were transformed to ad-

here to the specified format before running experiments. The

resulting datasets can be found in the corresponding repository

(https://github.com/Sched71/Desbordante-OD-Data).

For FASTOD we pose the following research questions:

RQ1 Is it possible to outperform existing implementation by

simply reimplementing OD discovery algorithm in C++?

RQ2 What improvement does the proposed range-based par-

tition representation offer on datasets with columns

containing ranges?

RQ3 What is the overhead of the proposed range-based par-

tition representation? It is true that using this represen-

tation does not compromise algorithm performance on

regular datasets?

RQ4 How well does the performance of the C++ implementa-

tions scale with the increase in the number of columns?

RQ5 What are the memory savings of both C++ implemen-

tations?

To answer these questions, we have designed the following

experiments for each RQ:

1) In the first experiment, we are comparing the vanilla

C++ implementation of the FASTOD algorithm with its

counterpart written in Java.

2) In the second experiment, we are comparing the base-

line C++ implementation with the one containing the

proposed technique — the range-based partition repre-

sentation.

3) In the third experiment, we are comparing the same

approaches as in the second experiment, but on datasets

containing little range data. Our goal is to demonstrate

that this optimization does not compromise performance

on typical datasets (i.e., those that contain little range

data).

4) In the fourth experiment, we study how well the C++

implementations scale with the number of columns in

the dataset.

5) The fifth experiment evaluates memory savings for both

C++ implementations compared to the Java implemen-

tation.

Evaluation. To conduct experiments, we used the datasets

shown in Table IV. It includes a description of the datasets,

as well as their short names, which we will use for brevity.

The overall results are shown in Table V. We grayed out rows

with special datasets containing columns with a large number

of ranges.
Experiment 1. In this experiment, we compare our baseline

implementation of the FASTOD algorithm with the Java

implementation. The results of the conducted experiments are

presented in Table V. The experiments unequivocally demon-

strated that the C++ implementation of the algorithm exhibits

higher performance compared to the Java implementation. We

outperform it by a factor of up to 8, with 4 being the average.
Experiment 2. Our second experiment demonstrates pos-

sible performance increase on special datasets that contain

numerous repeated values in the columns. The results are

presented in Table V, where we have highlighted in gray the

rows with special datasets. The experiments demonstrated that

the new partition representation can contribute to achieving a

speedup of 1.3x–1.8x.
Experiment 3. This experiment is similar to the first

one, except the comparison is now conducted between the

baseline and optimized versions of the C++ Desbordante

implementation of the algorithm. The results of the conducted

experiments are presented in Table V. As evident from the

results, not only did the algorithm’s runtime not increase on

typical datasets after the application of optimizations, but it

even showed a slight decrease. Thus, it can be concluded

that our optimizations not only do not deteriorate the original

implementation, but also enable significant improvements in

processing time on datasets of a specific nature.
Experiment 4. In this experiment, we studied the depen-

dence of the algorithm’s running time on the number of

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 420 --

columns in the corresponding dataset. We used typical dataset

A and special dataset D3 containing many columns with

ranges as our initial datasets. We excluded a certain number of

columns from each dataset, starting from the beginning of the

dataset, thereby obtaining a dataset with the required number

of columns.

The results of this experiment are demonstrated in Figures 1

and 2. They both show a clear superiority of our implemen-

tations compared to the Java version, as well as the speedup

due to a special representation of partitions, which is clearly

visible in Figure 1.

Y A T F

8 9 10 11 12 20 21 22 23 8 9 10 11 12 16 17 18 19 20

Number of columns

0.0

50.0

100.0

150.0

200.0

250.0

R
u

n
ti

m
e

(i
n

 s
ec

o
n

d
s)

Optimized

Baseline

Java

Java (Memory error)

Fig. 1. Scalability in number of columns, part 1 (FASTOD)

D3 D1 S3 P

10 11 12 13 14 11 12 13 14 15 16 17 18 19 20 14 15 16 17 18

Number of columns

0.0

100.0

200.0

300.0

400.0

500.0

R
u

n
ti

m
e

(i
n

 s
ec

o
n

d
s)

Optimized

Baseline

Java

Java (Memory error)

Fig. 2. Scalability in number of columns, part 2 (FASTOD)

Experiment 5. Our last experiment shows memory usage

of all FASTOD implementations. The testing involved datasets

G, A, S1, S2 and its results are presented in Figure 3.

We can observe a significant reduction in RAM consump-

tion by both of our implementations of the algorithm. Baseline

G A S2 S1
0

2

4

6

8

10

12

M
em

o
ry

u
sa

g
e

(i
n

g
ig

ab
y
te

s)

Optimized Baseline Java

Fig. 3. Memory usage (FASTOD)

C++ implementation outperforms Java implementations by

2.9–3.9 times and the optimized implementation outperforms

it by 2.4–2.9 times. It is also noticeable that the optimized

implementation consumes more memory than the baseline one.

This is a necessary price to pay for reducing execution time.

In addition, we found that the Java implementation con-

sumes too much memory. For example, its execution on D3 —

which includes 14 columns — ends with a memory error:

there is not enough RAM on the computer on which the

test was executed. This is demonstrated in Figure 1, where

semi-transparent bar represents the memory error. The same

situation is observed on some other datasets. We reflected this

in the Table V using the same notation. At the same time, our

implementations successfully tackle all these tasks.

C. ORDER

Methodology. For the ORDER algorithm, we pose the

following research questions:

RQ1 Is it possible to outperform existing implementation

by simply re-implementing OD discovery algorithm in

C++?

RQ2 Which of the proposed optimizations can improve per-

formance, and will their simultaneous application be

effective?

RQ3 Can an optimized C++ implementation provide memory

savings?

To answer these questions, we have designed the following

experiments for each RQ:

1) In the first experiment, we are comparing the vanilla

C++ implementation of the ORDER algorithm with its

counterpart written in Java.

2) In the second experiment, we consider the optimization

approaches both individually and simultaneously. We

also make a comparison with the base version of the

implementation.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 421 --

3) In the third experiment, we are comparing memory

usage of the optimized C++ implementation of the

ORDER algorithm and implementation from Metanome.

Evaluation. To conduct experiments, we used the datasets

shown in Table VII. It includes a description of the datasets,

as well as their short names, which we will use for brevity.

The overall results are shown in Table VIII. We had to select

other datasets since ORDER algorithm is much faster than

FASTOD. This results in sub second run times, which is

not suitable for experiments, as the overall run time is a

subject to measurement errors. Note that this does not mean

that FASTOD is useless — ORDER misses some of the

dependencies due to excessive pruning. On the other hand,

ORDER can be useful for quick profiling aimed at obtaining

a rough picture rather than striving for completeness of the set

of discovered dependencies.

Experiment 1. In this experiment, we compared the base

version of the C++ implementation with the Java implemen-

tation in Metanome.

The results of the conducted experiments are presented in

Table VIII in columns Java, Base and Impr (base).

Experiments have shown that the base implementation in

C++ is superior to the Java implementation in most cases. We

outperform it by a factor of up to 9, with 4 being the average.

Due to the presence of datasets on which Java has higher

performance, it became clear that additional optimizations

were necessary.

Experiment 2. In this experiment, we compared the base

C++ implementation with implementations where the pro-

posed optimizations were applied. Optimizations were applied

both individually and simultaneously.

Overall, we have compared boost::unordered flat map

(flat map), boost::unordered flat set (flat set), and

boost::block indirect sort (sort) to their standard

counterparts — std::unordered map, std::unordered set,

and std::sort. The resulting ratio is presented in Table II.

The last column contains the results of three optimizations

combined.

TABLE II. C++ OPTIMIZED IMPROVEMENTS IN COMPARISON TO BASE
(ORDER)

Dataset flat map flat set sort Final

Diabetes 1.017x 4.954x 0.969x 6.253x
Pfw 1.019x 1.850x 1.015x 2.258x

Ditag 1.026x 1.267x 1.546x 2.189x
Credit 1.003x 1.128x 1.421x 1.727x
Epic 1.023x 1.480x 1.268x 2.128x

Modis 1.025x 1.592x 1.341x 2.550x
Bay 1.026x 1.360x 1.503x 2.785x

According to the results of the experiments, it can be

concluded that the use of unordered flat map did not bring

significant improvement, unlike the use of sort from Boost

and the use of unordered flat set. In addition, applying all

optimizations at the same time gives even bigger performance

boost than the product of the performance increases obtained

by testing individual optimizations.

Experiment 3. In the third experiment, we compared

memory usage of the optimized C++ implementation with the

Metanome version. The results of the conducted experiments

are presented in Table III.

TABLE III. METANOME VS DESBORDANTE MEMORY CONSUMPTION
(ORDER)

Dataset C++ (MB) Java (MB) Improvement

Diabetes 177.94 429.37 2.413x
Pfw 150.69 265.62 1.762x

Ditag 3715.66 5951.69 1.601x
Credit 5607.87 7333.7 1.307x
Epic 662.78 1309.7 1.976x

Modis 2614.75 6240.43 2.386x
Bay 5690.77 7345.08 1.290x

Experiments have shown that our implementation uses less

memory compared to the implementation from Metanome.

To be specific, we achieved memory savings of 1.3–2.4x,

depending on the dataset.

VI. CONCLUSION

In this paper, we have presented optimization techniques

for two state-of-the-art OD discovery algorithms (ORDER and

FASTOD), which allow us to add a new important primitive

to Desbordante. Our experiments show a significant increase

in algorithm performance (up to 10x), as well as a decrease

in memory consumption (up to 2.9x). Described optimizations

and the new representation of partitions can help optimize any

other algorithms with a similar structure of components, which

once again signifies the importance of our research.

Both C++ implementations will be of use for Desbordante’s

end-users, despite aiming at the same problem, namely discov-

ery of ODs. ORDER is significantly faster than FASTOD, but

misses some of the dependencies due to excessive pruning.

ORDER, on the other hand, can be useful for quick profiling

aimed at obtaining a rough picture rather than striving for com-

pleteness of the set of discovered dependencies. Finally, both

implementations — ORDER and FASTOD — are open-source

(https://github.com/Mstrutov/Desbordante/) and are merged

(PRs 294, 355) into the Desbordante.

ACKNOWLEDGMENT

We would like to thank Vladislav Makeev for his help with

the preparation of the paper.

REFERENCES

[1] X. Chu, I. F. Ilyas, and P. Papotti, “Holistic data cleaning: Putting
violations into context,” in ICDE’13, C. S. Jensen et al., Eds. IEEE
Computer Society, 2013, pp. 458–469.

[2] Z. Abedjan, L. Golab, F. Naumann, and T. Papenbrock, Data Profiling.
Morgan & Claypool Publishers, 2018.

[3] G. Chernishev et al., “Desbordante: from benchmarking suite
to high-performance science-intensive data profiler,” CoRR, vol.
abs/2301.05965, 2023.

[4] T. Papenbrock et al., “Functional dependency discovery: an experimental
evaluation of seven algorithms,” Proc. VLDB Endow., vol. 8, no. 10, p.
1082–1093, jun 2015.

[5] F. Dürsch et al., “Inclusion dependency discovery: An experimental
evaluation of thirteen algorithms,” in CIKM’19, 2019, p. 219–228.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 422 --

TABLE IV. DATASET DESCRIPTION
(FASTOD)

Dataset Short name Columns Rows Size (MB) #OD #FD #OCD

graduation dataset norm 15c.csv G 15 4424 0.14 333 1 332
Anonymize norm.csv A 23 38480 4.28 115400 7774 107626

PFW 2021 public norm.csv P 18 100000 7.51 1240 48 1192
Spotify Dataset V3 norm.csv S1 11 651936 35.96 1645 171 1474

diabetes binary norm.csv D3 14 67136 2.18 0 0 0
spotify-2023 norm.csv S2 20 953 0.06 198327 17915 180412

diabetes binary2 norm.csv D4 12 236378 6.99 0 0 0
Dataset norm.csv D1 15 175028 13.64 858 68 790

file.csv F 20 52955 7.08 3134 70 3064
DOSE V2 norm.csv D2 16 46797 5.18 5912 592 5320

merged data norm.csv M 4 11509051 276.06 0 0 0
Test norm.csv T 12 89786 3.17 326 12 314

openpowerlifting norm.csv O 13 386414 33.50 1079 19 1060
youtube norm.csv Y 12 161470 13.35 1752 96 1656

superstore norm.csv S3 20 51290 6.47 45916 2098 43818

TABLE V. OVERALL RESULTS
(FASTOD)

Dataset #Columns #RB-columns
Java Base Optimized

Impr (base) Impr (opt) Impr (total)
(seconds) (seconds) (seconds)

G 15 8 50.326 17.083 14.184 2.946x 1.204x 3.548x
A 23 3 135.004 49.309 40.137 2.738x 1.229x 3.364x
P 18 8 ME 294.900 160.967 ∞ 1.832x ∞
S1 11 2 724.101 93.216 71.644 7.768x 1.301x 10.107x
D3 14 11 ME 166.503 121.866 ∞ 1.366x ∞
S2 20 2 7.177 5.187 4.994 1.384x 1.039x 1.437x
D4 12 8 ME 189.312 142.254 ∞ 1.331x ∞
D1 15 3 478.885 69.236 47.129 6.917x 1.469x 10.161x
F 20 15 ME 143.485 84.933 ∞ 1.689x ∞

D2 16 2 23.348 7.176 6.676 3.254x 1.075x 3.497x
M 4 4 49.791 16.723 10.438 2.977x 1.602x 4.770x
T 12 6 158.503 50.214 45.864 3.157x 1.095x 3.456x
O 13 7 ME 264.255 182.810 ∞ 1.446x ∞
Y 12 5 129.516 26.755 20.810 4.841x 1.287x 6.224x
S3 20 10 453.583 110.795 75.537 4.094x 1.467x 6.005x

TABLE VI. OVERALL MEMORY USAGE RESULTS
(FASTOD)

Dataset Java (GB) Base (GB) Optimized (GB) Java vs Base Java vs Optimized

G 3.150 0.809 1.160 3.894x 2.716x
A 3.087 1.035 1.270 2.983x 2.431x
P ME 9.321 14.304 ∞ ∞
S1 11.919 3.478 4.504 3.427x 2.646x
D3 ME 8.296 14.124 ∞ ∞
S2 0.762 0.261 0.266 2.920x 2.865x
D4 ME 7.233 12.062 ∞ ∞
D1 6.878 2.374 3.556 2.897x 1.934x
F ME 6.031 8.941 ∞ ∞

D2 1.062 0.071 0.126 14.958x 8.423x
M 9.508 2.519 2.595 3.775x 3.664x
T 2.537 0.760 0.994 3.338x 2.552x
O ME 8.109 11.215 ∞ ∞
Y 3.168 0.839 1.248 3.776x 2.538x
S3 7.142 2.698 3.915 2.647x 1.824x

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 423 --

TABLE VII. DATASET
DESCRIPTION (ORDER)

Dataset Short name Columns Rows Size (MB) #OD

diabetes binary BRFSS2021.csv Diabetes 22 236379 17.0 0
PFW 2021 public.csv Pfw 22 100001 14.7 17

DITAG.csv Ditag 5 4339917 299.0 0
creditcard 2023.csv Credit 31 568631 324.8 0

EpicMeds.csv Epic 10 1281732 56.8 9
modis 2000-2019 Australia.csv Modis 15 5081220 410.4 7
bay wheels data wrangled.csv Bay 8 5022834 660.1 0

TABLE VIII. OVERALL
RESULTS (ORDER)

Dataset
Java Base Optimized

Impr (base) Impr (opt) Impr (total)
(seconds) (seconds) (seconds)

Diabetes 3.331 3.696 0.591 0.901x 6.253x 5.636x
Pfw 1.361 0.472 0.209 2.883x 2.258x 6.511x

Ditag 16.833 7.219 3.297 2.331x 2.189x 5.105x
Credit 32.585 5.279 3.056 6.172x 1.727x 10.662x
Epic 8.649 3.438 1.615 2.515x 2.128x 5.355x

Modis 88.069 9.339 3.661 9.430x 2.550x 24.055x
Bay 33.158 18.466 6.630 1.795x 2.785x 5.001x

[6] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer
Publishing Company, Incorporated, 2014.

[7] P. G. Brown and P. J. Hass, “Bhunt: Automatic discovery of fuzzy alge-
braic constraints in relational data,” in VLDB’03. VLDB Endowment,
2003, p. 668–679.

[8] M. Hulsebos et al., “Sherlock: A deep learning approach to semantic
data type detection,” in SIGKDD’19, 2019, p. 1500–1508.

[9] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava,
“Effective and complete discovery of order dependencies via set-based
axiomatization,” Proc. VLDB Endow., vol. 10, no. 7, pp. 721–732, 2017.
[Online]. Available: http://www.vldb.org/pvldb/vol10/p721-szlichta.pdf

[10] J. Szlichta, P. Godfrey, J. Gryz, and C. Zuzarte, “Expressiveness
and complexity of order dependencies,” Proc. VLDB Endow.,
vol. 6, no. 14, pp. 1858–1869, 2013. [Online]. Available: http:
//www.vldb.org/pvldb/vol6/p1858-szlichta.pdf

[11] S. Ginsburg and R. Hull, “Order dependency in the relational model,”
Theoretical Computer Science, vol. 26, no. 1, pp. 149–195, 1983.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0304397583900841

[12] P. Langer and F. Naumann, “Efficient order dependency detection,”
VLDB J., vol. 25, no. 2, pp. 223–241, 2016. [Online]. Available:
https://doi.org/10.1007/s00778-015-0412-3

[13] M. Strutovskiy, N. Bobrov, K. Smirnov, and G. Chernishev, “Des-
bordante: a framework for exploring limits of dependency discovery
algorithms,” in 2021 29th Conference of Open Innovations Association
(FRUCT), 2021, pp. 344–354.

[14] A. Smirnov, A. Chizhov, I. Shchuckin, N. Bobrov, and G. Chernishev,
“Fast discovery of inclusion dependencies with desbordante,” in 2023
33rd Conference of Open Innovations Association (FRUCT), 2023, pp.
264–275.

[15] J. Szlichta, P. Godfrey, and J. Gryz, “Fundamentals of order
dependencies,” Proc. VLDB Endow., vol. 5, no. 11, p. 1220–1231, jul
2012. [Online]. Available: https://doi.org/10.14778/2350229.2350241

[16] W. Ng, “An extension of the relational data model to incorporate ordered

[18] Z. Tan, A. Ran, S. Ma, and S. Qin, “Fast incremental discovery of
pointwise order dependencies,” Proc. VLDB Endow., vol. 13, no. 10,
p. 1669–1681, jun 2020. [Online]. Available: https://doi.org/10.14778/
3401960.3401965

domains,” ACM Trans. Database Syst., vol. 26, no. 3, p. 344–383, sep
2001. [Online]. Available: https://doi.org/10.1145/502030.502033

[17] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava,
“Effective and complete discovery of bidirectional order dependencies
via set-based axioms,” The VLDB Journal, vol. 27, no. 4, p.
573–591, aug 2018. [Online]. Available: https://doi.org/10.1007/
s00778-018-0510-0

[19] X. Chu, I. F. Ilyas, and P. Papotti, “Discovering denial constraints,” Proc.
VLDB Endow., vol. 6, no. 13, p. 1498–1509, aug 2013.

[20] Y. Jin, L. Zhu, and Z. Tan, “Efficient bidirectional order dependency
discovery,” in 2020 IEEE 36th International Conference on Data Engi-
neering (ICDE), 2020, pp. 61–72.

[21] H. Saxena, L. Golab, and I. F. Ilyas, “Distributed implementations of
dependency discovery algorithms,” Proc. VLDB Endow., vol. 12, no. 11,
p. 1624–1636, jul 2019.

[22] S. Schmidl and T. Papenbrock, “Efficient distributed discovery of
bidirectional order dependencies,” The VLDB Journal, vol. 31, no. 1,
p. 49–74, aug 2021.

[23] H. Yao and H. J. Hamilton, “Mining functional dependencies from data,”
Data Min. Knowl. Discov., vol. 16, no. 2, p. 197–219, apr 2008.

[24] C. Wyss, C. Giannella, and E. Robertson, “Fastfds: A heuristic-driven,
depth-first algorithm for mining functional dependencies from relation
instances extended abstract,” in DaWaK, Y. Kambayashi et al., Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 101–110.

[25] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, “Tane: An
efficient algorithm for discovering functional and approximate depen-
dencies,” The Computer Journal, vol. 42, no. 2, pp. 100–111, 1999.

[26] R. Karegar, M. Mirsafian, P. Godfrey, L. Golab, M. Kargar, D. Srivas-
tava, and J. Szlichta, “Discovering domain orders via order dependen-
cies,” in ICDE’22, 2022, pp. 1098–1110.

[27] C. Consonni et al., “Discovering order dependencies through order com-
patibility,” in EDBT’19, M. Herschel et al., Eds. OpenProceedings.org,
2019, pp. 409–420.

[28] P. Godfrey, L. Golab, M. Kargar, D. Srivastava, and J. Szlichta, “Errata
note: Discovering order dependencies through order compatibility,”
CoRR, vol. abs/1905.02010, 2019.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 424 --

