
API Interface for Analyzing the Correctness
of DML Queries

Michal Kvet, Andrea Meleková, Dmytro Demchenko
University of Zilina

Žilina, Slovakia
Michal.Kvet@uniza.sk, melekova2@stud.uniza.sk, demchenko@stud.uniza.sk

Abstract—Although automated assessment tools have seen
significant advancements in recent years, addressing the
complexities of analyzing and correcting Data Manipulation
Language commands remains a challenge. In educational
settings, particularly at institutions like the Faculty of Computer
Science and Management, University of Zilina, manual
assessment processes can be time-consuming and prone to errors.
In response to these challenges, this paper introduces a
sophisticated tool aimed at streamlining the analysis and
correction of DML commands within the EXAM system. This
tool not only automates the tedious aspects of assessment but also
offers functionalities such as API design, analysis of Oracle
database functions, and integration with existing examination
systems. By addressing these critical areas, the tool presents a
promising solution to enhance educational assessment practices,
ensuring accuracy, efficiency, and fairness in grading processes.

I. INTRODUCTION

In the realm of educational assessment and database
management, the efficient analysis and automation of Data
Manipulation Language (DML) commands stand as pillars of
utmost importance. This paper aims to contribute by proposing
the design and implementation of a robust tool tailored to
analyse DML command results and streamline the correction of
student solutions within the EXAM system at the Faculty of
Computer Science and Management, University of Zilina (FRI
UNIZA).

Existing public systems dedicated to automated control of
DML commands fall into three main categories: tools
comparing the data returned by individual commands, editors
comparing only the textual input, and complex libraries
primarily focused on parsing and evaluating these commands.
To provide a clearer overview, let's delve into each of these
categories.

One of these tools compare based on textual representation
of commands, exemplified by websites such as
onlinetextcompare, specialize in comparing textual inputs,
highlighting differences between two sets of data. They are
suitable for detecting typos or errors in larger files and
highlighting changes made to commands. However, they may
not offer significant advantages for more complex analyses.
Another type of technology involves software solutions that
compare the data returned by database. Examples include
Oracle SQL Developer or DbVisualizer [1]. These editors often
format commands according to SQL standards and highlight
discrepancies between them. While useful for identifying

syntactical errors or discrepancies, they may lack the depth
required for comprehensive analysis. Finally, there are libraries
like JSqlParser, which provide more advanced parsing
capabilities in programming languages like Java.

These libraries focus on parsing SQL commands into a
hierarchical structure and offer insights into their syntactic
correctness [2]. However, they may not support error correction
or command transformation, limiting their utility for
comprehensive DML command analysis. While these
technologies provide valuable insights into the processing of
DML commands, they often lack comprehensive functionality
for evaluation, correction, and transformation of these
commands. These technologies provide valuable insights but
often lack comprehensive functionality for evaluation,
correction, and transformation of these commands.

At FRI UNIZA, lecturers and educators face challenges in
assessing students' proficiency in database languages,
particularly within exercises demonstrating SQL language
syntax and query optimization. Manual scrutiny of each student
authored DML command becomes laborious, necessitating an
efficient alternative.

Our project addresses this challenge by developing an
application designed to compare distinct SQL statements,
yielding a percentage of equality between them. Instead of
executing students' statements directly, the application employs
a database connection to execute predefined, hardcoded SQL
commands that are deemed secure.

The proposed solution features an intricate Application
Programming Interface (API) designed to process both single
and dual commands, with a focus on analysing standard Oracle
Database Management System (DBMS) functions and
addressing errors within functions, keyword discrepancies, and
transformation intricacies associated with different connection
types.

Rigorous testing and meticulous analysis validate the
robustness, reliability, and efficacy of the developed solution,
ensuring seamless integration with the existing FRI testing
system and alignment with institutional objectives.

This paper aims to offer a comprehensive framework for
addressing the challenges in analysing and automating DML
command processing within educational settings. By
harnessing the power of database management systems and
leveraging cutting-edge automation technologies, the proposed

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 425 --

solution seeks to redefine educational assessment paradigms
and foster enhanced learning experiences.

II. EXISTING SOLUTIONS AND RELATED WORK ANALYSIS

A. DML Query Analysis in Literature

While there are existing tools and research efforts
addressing aspects of DML query analysis, it's important to
note that some of these solutions may not be publicly available
or widely documented. Additionally, certain tools might focus
solely on syntactical validation or textual comparison of
queries without delving into the logical structure or semantic
analysis.

In academic or industry settings, proprietary solutions or
internal tools developed by organizations may exist to address
specific needs related to DML query analysis. However, these
tools might not be publicly disclosed due to proprietary
considerations or intellectual property rights.

Furthermore, some research efforts might compare only the
textual aspects or final results of queries without considering
the logical structure or semantic correctness. This narrow focus
may overlook crucial aspects of query analysis, such as
ensuring data integrity, compliance with business rules, or
optimization potential.

Thus, while existing tools and research efforts contribute to
the field of DML query analysis, the gaps highlighted in the
literature review may persist due to various factors, including
limited accessibility, narrow scope, or proprietary nature of the
solutions.

B. Existing Solutions

In developing our API for Analyzing the Correctness of
DML Queries, our journey began with a thorough exploration
of existing solutions aimed at tackling analogous challenges
encountered in educational assessment within the realm of
database systems. Our quest led us to encounter two
remarkable papers that significantly influenced our approach to
addressing this complex problem.

The first paper, authored by Charles Boisvert, Konstantinos
Domdouzis, and Joshua License, introduces a blended learning
approach to teaching Relational Database Systems. Central to
their module is TestSQL, a query tool designed to provide
students with automated feedback on SQL query exercises.
However, the authors opt not to employ TestSQL for student
assessment. Instead, assessment is conducted through a diverse
array of questions covering various aspects of the field.
Through a survey of student attitudes and assessment data
analysis, the effectiveness of this approach is evaluated. The
analysis reveals that students who utilize a broader range of
resources tend to achieve better results. Furthermore, the study
highlights that success in different sub-topics of the course is
not strongly correlated, indicating that students may excel in
certain areas while struggling in others. Notably, the paper
underscores the significance of indirect SQL questions as the
best predictor of success in other sub-topics, suggesting the
importance of broadening the assessment of SQL skills to

encompass various dimensions of relational database
knowledge [3].

In contrast, the second paper introduces the XDa-TA
system, authored by Amol Bhangdiya, Bikash Chandra, Biplab
Kar, Bharath Radhakrishnan, K. V. Maheshwara Reddy, Shetal
Shah, and S. Sudarshan. This system offers a solution for the
automated grading of SQL query assignments, addressing the
limitations of traditional assessment methods. By leveraging
the XData system, XDa-TA generates datasets specifically
tailored to uncover common errors in student queries. The
grading process involves comparing student query results with
those of correct queries against these meticulously crafted
datasets. Instructors and teaching assistants can utilize this tool
to streamline the grading process, providing immediate
feedback to students and potentially revolutionizing assessment
methodologies, particularly in Massive Open Online Courses
(MOOCs) [4].

The third paper, titled "Automated Grading of SQL
Queries," further explores automated grading methodologies
for SQL queries. Authored by Michael Martin and Mark
Nathan, this paper introduces a system designed to
automatically grade SQL queries based on various criteria,
including correctness, performance, and style. The system
utilizes a rule-based approach to evaluate student queries,
providing feedback on syntax errors, logical errors, and
performance issues. By automating the grading process,
instructors can save time and provide timely feedback to
students, enhancing the learning experience [5].

Lastly, the paper "Automatic, Configurable, and Partial
Assessment of Student SQL Queries with Joins and
Groupings," authored by Goran Đambić, Mario Fabijanić, and
Ana Lokas Ćošković, presents a fully automated assessment
model for SQL queries, particularly focusing on complex joins
and groupings. This system aims to provide partial assessment
capabilities, allowing for customizable grading rules to adapt to
institutional standards. By automating the assessment process,
teachers can reduce their workload, ensure consistency in
grading, and provide faster feedback to students. The system
compares favorably with manual assessments, even for
complex queries, demonstrating its potential for application in
higher education settings [6].

By examining the approaches, methodologies, strengths,
weaknesses, and contributions of each system alongside
insights from other recent studies or advancements, we aim to
identify emerging trends, challenges, and opportunities for
future research and development.

III. SOLUTION AREAS COVERED

A. Approach

Our system operates under the premise that users do not
require prior familiarity with database environments, SQL
syntax, or the Oracle Database Management System (DBMS).
Instead, it handles these complexities internally, providing a
user-friendly interface that abstracts away technical intricacies.
This approach ensures accessibility and ease of use for
educators and administrators involved in the grading process.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 426 --

Additionally, the system assumes a consistent logical
syntax in the database structure throughout the grading
process. While it can accommodate minor changes in table
structures or attribute names, significant alterations may pose
challenges to accurate query processing. Nevertheless, the
system is designed to adapt to evolving database structures
with minimal disruption to its functionality.

Furthermore, the system assumes the correctness of input
queries provided by instructors. It relies on the accuracy of
these queries rather than student submissions, streamlining the
grading process and ensuring consistency in evaluation
standards across assessments.

One notable limitation of our system is its exclusive
support for Oracle DBMS. While it offers functionality
tailored to Oracle environments, it lacks compatibility with
other database platforms such as MySQL, PostgreSQL, or
SQL Server. As a result, users relying on these alternative
platforms may encounter compatibility issues or limitations in
accessing advanced features specific to their chosen database
systems.

Moreover, the system's automation capabilities are not
exhaustive, and certain transformations may be constrained.
For instance, while the system can handle basic
transformations and optimizations, it may not fully automate
more complex tasks. For instance, the system currently lacks
the capability to transform left and right joins into other join
types that yield identical results. Additionally, it does not
support the aggregation of multiple functions into a single
function, even when those functions produce the same result.
Future iterations of the system are envisioned to address these
constraints through enhanced automation and expanded
functionality."

B. Analysis of standard functions provided by Oracle DBS

1) Handling errors in functions: In the context of Oracle
DBS, errors in functions can often arise due to typographical
errors or misspellings. To mitigate this issue, an advanced
approach is employed, utilizing the Levenshtein distance
algorithm [7] . This algorithm serves to identify the closest
matching function to the input, enabling the system to
automatically correct potential typos. Additionally, to
streamline the management of functions, a structured approach
is adopted, with functions organized and stored in three
distinct JSON files. The first file contains a repository of the
most frequently used functions, derived from recent entries.
The second file encompasses functions that are not directly
retrievable from the database. Lastly, the third file consists of
functions that can be obtained via SELECT queries. Moreover,
to ensure the integrity of function parameters, a thorough
parameter check is conducted. This check verifies both the
correctness of parameter types and their order within the
function. In instances where parameters are found to be
correctly specified but in the wrong order, the system reorders
them to rectify the issue.

2) Transformation of functions with similar results: Within
the Oracle DBS environment, exist functions that yield

identical or similar results. For instance, functions like
TO_CHAR and EXTRACT may produce similar outcomes for
certain data transformations. To facilitate easier result
comparison and analysis, a systematic approach to function
transformation is implemented. Through code transformation
techniques, the system is capable of converting between such
similar functions seamlessly. This not only enhances the
efficiency of result analysis but also streamlines the process of
identifying optimal function usage within queries. Also, the
user can use the test application to add two such functions that
return the same result in a particular case, and then the
functions are mapped to each other and during the run of the
program they are converted into a single function if they
occur.

C. Addressing errors in keywords

Keywords play a fundamental role in defining the syntax
and structure of SQL queries. Common keywords such as
SELECT, FROM, and WHERE are integral components of
query construction. To ensure syntactic accuracy and logical
coherence in query formation, a robust mapping system for
keywords is established. This mapping system not only
identifies potential keyword errors using the Levenshtein
distance algorithm [7] but also considers the contextual
relationships between keywords. By mapping out the
permissible sequences of keywords, the system can effectively
identify and rectify errors in keyword usage, thereby
enhancing the overall robustness and accuracy of SQL queries.

D. Handling nested queries

1) Properly completing missing parentheses, quotation
marks and apostrophes: Proper syntax is imperative in SQL
query construction, particularly when dealing with nested
queries. One common challenge is ensuring the completeness
of parentheses, quotation marks, and apostrophes within
queries. To address this challenge, the system employs a two-
fold approach. Firstly, syntactic validation is performed using
the jsqlparser library, which verifies the correctness of query
syntax. Secondly, a logical algorithm is implemented to
identify and complete missing parentheses and quotation
marks. This algorithm leverages the inherent structure of SQL
queries, including the minimum and maximum parameter
counts associated with functions. By analyzing the query
structure, the system can insert missing parentheses and
quotation marks, ensuring syntactic integrity and query
correctness.

2) Saving nested queries: Nested queries, which involve

the embedding of one query within another, are prevalent in
database operations. To manage nested queries efficiently, a
structured approach to query storage is adopted. Within the
system architecture, queries are organized and stored within a
designated java class known as STATEMENT. This class
incorporates parameters such as usedTables and functions,
allowing for comprehensive query representation.
Additionally, the STATEMENT class supports nested queries
within nested queries, enabling the system to accommodate
complex query structures seamlessly.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 427 --

E. Typos in names of tables and columns

Typos in table and column names was one of the topics our
colleague addressed. Typos in table and column names pose
challenges in SQL queries, impacting query accuracy. This
aspect of our system, developed by our colleague, utilizes the
Levenshtein distance algorithm to identify typos. By
calculating the similarity between words, potential typos can
be detected. This algorithm forms the cornerstone of our
approach, enabling the system to pinpoint discrepancies in
names effectively. [7]

Incorporating support information enhances the accuracy
of typo correction. For instance, when two columns within a
table have same distances from the word with the typo,
contextual clues can be pivotal. If a column appears in the
GROUP BY clause, it signifies its importance and correctness.
Leveraging this insight, our system ensures that the correct
column is also included in the SELECT part of the query. By
integrating contextual information from query structures, our
system provides more reliable typo corrections, optimizing
query execution and accuracy. [8]

F. Aliases

1) Aliases in the select section: This section introduces a
concept developed by our colleague, Bc. Lukáš Jancik,
focusing on aliases within the context of select section. The
concept is elaborated upon briefly here. When there's an alias
on a column name, we remove it to simplify comparing two
statements at the end. This change applies recursively, even
within nested queries, until we reach the primary query or
certain clauses like ORDER BY or WHERE. If both queries
within a nested structure use the same alias, the order by part
follows the most deeply nested query, similar to how SQL
Developer for Oracle handles it. This approach ensures that
comparing statements remains straightforward and consistent,
making it easier to analyse and understand any differences
between them. [8]

2) Aliases for tables: If aliases are used over the tables, we
simply append the alias before the column name (e.g.,
alias.column) to facilitate comparison later on. Additionally,
as part of this process, potential errors arising from the
absence of fully qualified attribute names can be identified.
This error occurs only when an attribute exists in multiple
tables and the column share the same name. It's a logical error,
and the database system interprets it as an ORA-00918 error ,
indicating that the column is ambiguously defined. This
situation arises specifically when a column exists in two or
more joined tables with identical column names. [9]

G. Transformations of different types of joins

1) Join using and join on: Joins are fundamental operations
in SQL for combining data from multiple tables. In Oracle
DBS, there are different types of joins, each with its own
syntax and usage conventions. One common transformation
involves converting "join using" syntax to "join on" syntax.
This transformation enhances query readability and flexibility
by providing a more versatile approach to specifying join
conditions. By standardizing join syntax across queries, the
system simplifies query maintenance and optimization.

2) In to Exists: Another transformation involves converting
"IN" statements to "EXISTS" statements where applicable.
This transformation is particularly beneficial for optimizing
query performance and clarity. Before executing this
transformation, the system verifies that the "IN" statement is
not part of a function and assesses its suitability for
transformation. Upon confirmation, the system executes the
transformation, thereby enhancing the efficiency and
readability of SQL queries.

When considering the transformation from "IN" to
"EXISTS," several factors come into play. The transformation
is feasible in scenarios where the subquery operates
independently and does not rely on data from the outer query
(non-correlated subquery). Additionally, the subquery should
not involve complex logic or aggregation functions that cannot
be easily incorporated into the transformed query.
Furthermore, performance implications, such as data volume
and query optimization, should be carefully evaluated to
ensure the transformation yields the desired performance
improvements. It's essential to conduct thorough testing and
analysis to validate the effectiveness of the transformation in
each specific scenario.

H. Comparing statements and evaluating them

The final component of this application, 'Comparing
Statements,' is a contribution from our colleague Bc. Lukáš
Jancik. This section offers a comparative analysis of
statements. Aligning the teacher's correct statement with the
potentially correct statements provided by the students is a
highly extensive task that demands a significant amount of
analytical work. The primary challenge lies in the myriad
ways students may attempt to express the correct response to a
given task through the composition of specific SQL
commands.

This section primarily focuses on constructing a set of
equivalent commands. The larger this set (the more
equivalents discovered), the greater the likelihood of
confirming the correctness of the compared student command,
even if it may differ significantly (yet still equate to the correct
response to the task).

Some statements may vary in their expression but remain
logically equivalent. For instance, a student's statement might
utilize aliases over the tables, whereas the teacher's statement
does not use any aliases. Another scenario arises when
conditions are expressed in reverse order, such as
name='PETER'' and ''PETER'=name. Similarly, in the case of
joining two tables using 'join on', the tables in the join can be
swapped, reflecting the same principle of logical equivalence
through different implementations. [8]

I. Referencing system tables

System tables in Oracle DBS serve as repositories for vital
metadata and configuration information essential for effective
database management. To optimize access to this critical data,
a structured approach to referencing system tables is
meticulously adopted. These system tables, housing invaluable
details crucial for database operations, are serialized and

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 428 --

meticulously stored in JSON files. This serialization process
facilitates efficient data retrieval and storage, ensuring
seamless access to system table information.

Updates to system table data are seamlessly integrated into
the system, with automatic triggers activated whenever new
data is introduced into the database. This ensures that the
system maintains synchronized references to system tables,
thus upholding the integrity and consistency of database
operations.

Moreover, system tables play a pivotal role beyond mere
metadata storage; they are also instrumental in retrieving
information about various functions utilized within the Oracle
DBS environment. By leveraging data from user tables,
system tables provide comprehensive insights into the usage
and performance of functions, enabling informed decision-
making and optimization strategies.

J. API

The API serves as a pivotal component for analyzing the
correctness of DML queries within the Oracle DBS
environment, particularly in conjunction with the EXAM
system at FRI, UNIZA. Connected to the EXAM system,
where students write their tests, the API receives the results
from these tests. It then undertakes transformations, error
analysis, and performance evaluations on these results,
returning scores, logs, and statistics to the users.

Built on the Spring Boot framework, the API offers a
streamlined approach to query analysis, providing
standardized endpoints and response formats for efficient and
secure interactions. Leveraging advanced algorithms and
query validation techniques, it assesses the syntactical and
semantic accuracy of submitted queries, identifying errors or
inconsistencies.

Furthermore, the API provides valuable insights into
query execution and error analysis, enabling users to refine
their query writing skills and optimize database operations
effectively. By integrating with the EXAM system, it offers a
seamless experience for students, instructors, and
administrators, ensuring the integrity and accuracy of database
interactions within the educational context at Faculty of
Management Science and Informatics, UNIZA.

K. Run-time life cycle

The sequence diagram outlines the interaction flow
between a Testing Application, an API, and a Database. The
process initiates with the Testing Application triggering
actions like adding functions, starting developer mode, and
processing data. Subsequently, the API responds with actions
like changing configuration files for grading and sending files.

The main flow begins with sending request from Testing
application to API to process one or two SQL statements. If it
is the initial run of the application, then the tables and
functions are retrieved from database and saved into JSON
files. Following the initial steps, the subsequent phase involves
a process characterized by the execution of numerous
functions and transformations within the API. Upon

completion of this phase, the API furnishes the Testing
application with the transformed SQL statement, accompanied
by logging information and a score.

The Testing Application also interacts with the API
by initiating developer mode and retrieving data such as tables
and functions. API then proceeds to save this information.
Following these requests, the Database processes the incoming
data and responds accordingly.

Overall, the sequence diagram illustrates a cohesive
flow of actions between the Testing Application, API, and
Database, showcasing the interactions involved in the testing
process.

Fig. 1. Sequence Diagram for whole solution

L. Testing application

The testing application operates in conjunction with the
API, providing a crucial platform for displaying transformed
queries and facilitating comparison.

Through the testing application, users can submit SQL
queries, including those generated by students, to be processed
by the API. The application offers a user-friendly interface for
inputting queries and initiating the transformation process.

A key feature of the testing application is its ability to
display transformed queries generated by the API. Users can
observe these transformed queries in real-time, gaining

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 429 --

insights into the impact of transformation techniques on query
structure and syntax.

Furthermore, the testing application enables users to
compare original and transformed queries side by side,
allowing for thorough analysis of the transformation process.
This comparison functionality provides users with valuable
information to assess the effectiveness of transformation
techniques and identify potential optimizations.

Additionally, the testing application offers comprehensive
logging and error analysis capabilities. Users can review
detailed logs of query transformations and any encountered
errors, aiding in the refinement of transformation strategies
and ensuring the reliability of the Oracle DBS environment.

In summary, the testing application serves as a valuable
tool for displaying transformed queries and facilitating
comparison, empowering users to evaluate the efficacy of
transformation techniques within the Oracle DBS
environment.

Fig. 2. Sample output in the test application

IV. TESTING AND ANALYSIS

A. Manual Testing

Manual testing is an essential and interactive process used to
assess the functionality, usability, and performance of the API.
Testers engage in exploratory testing, where they actively
interact with the interface, navigating through functionalities,
inputting diverse queries, and closely observing system
responses. This hands-on approach uncovers unexpected
behaviors, edge cases, and usability intricacies that may not be
captured by scripted test cases.

An integral part of manual testing involves evaluating the
interface's error handling mechanisms. Testers intentionally

trigger errors to observe the system's response, assessing the
effectiveness of error reporting, exception handling, and data
integrity preservation.

While manual testing may not encompass exhaustive
performance testing, testers monitor responsiveness and
efficiency under varying conditions. They analyse response
times, identify performance bottlenecks, and evaluate resource
utilization to assess scalability and efficacy.

In practical terms, manual testing entails exploring different
functionalities, sending diverse queries, and interacting with the
interface in various ways to uncover errors. For example, in
student queries, the interface may return partial transformations
with logs, indicating errors that would typically be detected by
SQL Developer or other Integrated Development Environments
(IDEs).

B. Analysis of test results

Following manual testing, a thorough analysis of test
results is conducted to identify areas for improvement and
optimization. This analysis includes evaluating changes such
as adjusting the loading order of JSON files or implementing
optimizations like breaking for loops.

For instance, altering the sequence in which JSON files are
loaded can significantly impact the interface's performance.
By prioritizing the loading of frequently used files, such as
those containing common functions, the interface can expedite
query execution and enhance overall efficiency.

Similarly, implementing optimizations like breaking for
loops can streamline processing and improve response times.
By identifying and addressing such opportunities for
enhancement, the interface can deliver a more seamless user
experience and optimize performance.

Overall, the analysis of test results serves as a valuable
feedback mechanism, driving continuous improvement
initiatives to refine the functionality, usability, and
performance of the API.

V. FUTURE WORK

In our commitment to ongoing enhancement, we are
focusing on extending the integration of our solution to
encompass popular Learning Management Systems (LMS).
This expansion will facilitate seamless access for students and
educators to view their scores and assessment outcomes
directly within their preferred LMS interface. By incorporating
this feature, we aim to optimize the educational process,
fostering a smoother learning experience for all stakeholders.

Moreover, enhancing support for multiple database
platforms is imperative for maximizing the versatility and
applicability of our solution. Although currently optimized for
Oracle Database Management System (DBMS), extending
compatibility to widely used platforms such as MySQL,
PostgreSQL, or SQL Server will significantly broaden its
reach. This endeavor entails adapting the system to seamlessly
accommodate the specific syntax, functions, and features of
different database systems. By ensuring compatibility across

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 430 --

various dialects, we aim to promote consistency and efficiency
in educational assessments across different database platforms.

Additionally, our focus on advancing automation
capabilities remains unwavering as we continue to evolve.
Specifically, in handling complex transformations and
optimizations, our aim is to further streamline the grading
process for educators. For instance, implementing additional
transformations for joins, such as left and right joins, will
enhance query performance and efficiency. Likewise,
consolidating multiple functions into a single function when
they produce identical results will simplify query structures
and improve readability. These advancements will enable
educators to allocate more time to teaching and guiding
students, rather than manually grading tasks.

In summary, our future extensions aim to make our
solution even more accessible, versatile, and efficient. By
expanding integration with LMS platforms, enhancing support
for multiple database platforms, and advancing automation
capabilities, we are committed to providing educators and
students with a comprehensive toolset that optimizes the
educational assessment process.

VI. CONCLUSION

This section presents the key findings from our efforts to
improve how we handle Data Manipulation Language (DML)
commands, especially in educational settings like the Faculty
of Management Science and Informatics, University of Zilina.
Rather than enumerating all the discussed points, the emphasis
will be placed on elucidating the principal insights and
progress made in automating and improving educational
assessments, especially when it comes to databases.

Dealing with DML commands can be tricky, especially
when it comes to grading students' work. Traditional grading
methods can be slow and prone to errors. In response, we've
developed a tool to streamline the analysis and correction of
DML commands within the EXAM system.

Our tool offers several features to make grading easier and
more accurate. For example, it can analyse Oracle database
functions, integrate smoothly with existing exam systems, and
handle various types of SQL commands.

We also looked at existing tools and methods for grading
DML commands. While they're helpful, they often fall short in
providing a complete solution. Our tool aims to fill those gaps
and provide a more comprehensive way to assess students'
work.

Close collaboration was established with educators and
stakeholders affiliated with the Faculty of Management and
Informatics at UNIZA for the development of this solution. It's
designed to make grading faster and more efficient, especially
for tasks like evaluating SQL syntax and query optimization.

Future research perspectives could focus on addressing
several key areas that remain unresolved and warrant attention
in the immediate future. One crucial direction is the
integration of this system into, ensuring seamless connectivity
and utilization of its capabilities within academic settings.
Additionally, there's a need for more comprehensive testing on

real-world datasets to validate the efficacy and robustness of
the system under diverse conditions. Although several short-
term goals have been accomplished, as delineated in this
manuscript, additional short-term objectives may encompass
enhancing the efficiency, accuracy, and reliability of the
grading process for students. This could involve refining
aggregation functions, completing the program output for
teachers, and addressing similar tasks to enhance the overall
functionality and usability of the system. These endeavors will
contribute to enhancing the functionality and practical
applicability of the system, paving the way for more efficient
and effective educational practices.

Comparing statements represents the most extensive area
addressed in our work. Within this domain, there are abundant
opportunities for analytical work and unexplored possibilities.
This presents long-term potential and serves as fertile ground
for ongoing research and development efforts.

Our solution is inherently adaptable to accommodate
various SQL dialects, not only SQL Oracle. Whether catering
to MySQL, PostgreSQL, or other database platforms, its
architecture is primed for extension and integration. By
embracing a broader spectrum of dialects, we can enhance its
utility across diverse educational contexts and promote
inclusivity within database education.

Overall, our solution represents a significant step forward
in automating educational assessments, particularly in
database-related courses. Through the utilization of
contemporary technology and feedback garnered from
educators, endeavors are being made to enhance the learning
experience for both students and instructors.

ACKNOWLEDGMENT

This paper study was supported by the Erasmus+ project:

 Project number: 2022-1-SK01-KA220-HED-
000089149, Project title: Including EVERyone in
GREEN Data Analysis (EVERGREEN) funded by the
European Union. Views and opinions expressed are
however those of the author(s) only and do not
necessarily reflect those of the European Union or the
Slovak Academic Association for International
Cooperation (SAAIC). Neither the European Union nor
SAAIC can be held responsible for them.

REFERENCES
[1] DbVisualizer official website, Formatting SQL, Web:

https://confluence.dbvis.com/display/UG110/Formatting+SQL.
[2] JSQLParser official git, RDBMS agnostic SQL statement parser,

Web: https://github.com/JSQLParser/JSqlParser.
[3] Charles Boisvert, Konstantinos Domdouzis, Joshua License, "A

Comparative Analysis of Student SQL and Relational Database
Knowledge Using Automated Grading Tools," IEEE, [Online]. Web:
https://ieeexplore.ieee.org/document/8586684.

[4] Amol Bhangdiya, Bikash Chandra, Biplab Kar, Bharath
Radhakrishnan, K. V. Maheshwara Reddy, Shetal Shah, and S.
Sudarshan, "The XDa-TA system for automated grading of SQL

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 431 --

query assignments" IEEE, [Online]. Web:
https://ieeexplore.ieee.org/document/7113403.

[5] Bikash Chandra, Ananyo Banerjee, Udbhas Hazra, Mathew Joseph,
S. Sudarshan, " Automated Grading of SQL Queries" IEEE, [Online].
Web: https://ieeexplore.ieee.org/document/8731495.
Goran Đambić, Mario Fabijanić, Ana Lokas Ćošković, " Automatic,
Configurable and Partial Assessment of Student SQL Queries with
Joins and Groupings" IEEE, [Online].

Web: https://ieeexplore.ieee.org/document/9596680.
[6] B. Berger, M. S. Waterman, and Yun William Yu, “Levenshtein

Distance, Sequence Comparison and Biological Database Search”.,
IEEE Trans Inf Theory. 2021 Jun; 67(6): 3287–3294.

[7] Bc. L. Jancik, “Analytical Tool for ORACLE SQL Statements”,
unpublished.

[8] M. Kvet, K. Matiaško, Š. Toth, Practical sql for oracle cloud. Žilina:
EDIS-vydavateľstvo UNIZA, 2022.

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 432 --

