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University of Žilina,
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Abstract—This research explores the optimization of convolu-
tional architectures for breast microcalcification classification and
investigates the transition from binary to three-class classifiers
with emphasis on the interpretation results of the Grad-CAM
method. The study begins by identifying ResNet101 as the
most suitable architecture, achieving competitive results across
various models. Subsequent experiments reveal the detrimental
impact of reducing image size from 674× 674 to the stan-
dard 224× 224 pixels, attributing decreased model accuracy
to the loss of crucial details in already small microcalcifications.
Building on these findings, the study introduces a three-class
classifier to address limitations observed in binary classification.
While the best binary classifier achieves 74,7% accuracy and an
MCC of 0,458, interpretation highlights intuitive decision-making
based on significant features, albeit with identified shortcomings
such as several non-intuitive classification and challenges posed
by artifacts and macrocalcifications. Transitioning to a three-
class model significantly improves interpretability and model
credibility, yielding a 91,7% accuracy and an MCC of 0,767.
However, this expansion uncovers new challenges, including
misclassification of vascular calcifications and issues with breast
implants, emphasizing the complexity of incorporating additional
classes.

I. INTRODUCTION

Breast cancer is the most common type of cancer among

women [1], emphasizing the importance of early detection and

treatment for better patient prognoses. To address this, many

countries have implemented mammography screening to detect

cancer before any symptoms appear. Common abnormalities

identifiable through mammography include masses, calcifi-

cations (macro- and micro-), architectural distortions, and

asymmetries. This study focuses on clusters of microcalcifi-

cations as mammography excels in their detection. Suspicious

clusters of microcalcifications often lead to the diagnosis of

ductal carcinoma in situ (DCIS), a pre-invasive type of breast

cancer that can progress to invasive cancer. DCIS accounts

for approximately 20-30% [2] of all breast cancer types, with

mammography diagnosing around 80-90% of DCIS cases [3].

Accurate diagnosis of microcalcifications is challenging due

to variations in shape, density, size, number, and distribution

(either diffuse or clustered). This complexity results in a

high number of false positives, with only 15-45% of cases

confirmed as malignant after tissue biopsy [4]. Each mam-

mography examination undergoes double reading, where two

radiologists must independently agree on the assessment.

Introducing artificial intelligence models could potentially

improve and expedite the diagnosis of suspicious abnormali-

ties. If highly accurate, these models could replace the second

radiologist in double reading. Currently, convolutional neural

networks (CNNs) are the most suitable models for image clas-

sification tasks. This study will utilize two large well-known

databases with images obtained through different technologies.

The main objective of the study is to compare binary

and three-class classifiers. The binary classifier aims to cor-

rectly classify clusters of microcalcifications into benign or

malignant classes, while the three-class classifier includes a

background class containing other findings and healthy tissue.

A significant focus will be on explaining the models using

the Grad-CAM interpretation method. Interpreting medical

models is essential as standalone black-box CNN models lack

credibility (we cannot determine the basis of their decisions).

II. MAMMOGRAPHY DATA

For experimental purposes, mammography images were

obtained from the Curated Breast Imaging Subset of the

Digital Database for Screening Mammography (CBIS-DDSM)

[5] and the Optimam database (OMI-DB) [6].

CBIS-DDSM is publicly available without the need for

registration. The images were obtained by digitizing mam-

mograms created using screen-film technology (indirect digital

mammography). The DICOM format was used for image data,

which is the current standard in medicine for storing and

working with visual data obtained from various modalities

(mammography, magnetic resonance, computed tomography,

etc.). The database provides distributions for training and

validation sets, which were applied in the study. In addition to

the calcifications (macrocalcifications and microcalcifications),

the database also includes mass findings. Binary segmentation

masks are used to describe the position and size of the

findings. An important aspect of the database is the presence of

pathological results associated with the findings (information

about malignancy or benignity).

OMI-DB is a newer and more comprehensive database. It

is available to groups affiliated with an organization (com-

mercial, non-profit, or academic) upon a submitted scientific

project evaluated by database experts. Access is subsequently

granted to only a subset of the database depending on an in-

dividual agreement. Data is collected from several institutions
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across the United Kingdom, however, they do not indicate

whether new cases have been collected since 2021. The images

come from direct digital mammography known as Full-Field

Digital Mammography in DICOM format. This is a newer

technology approved for screening, generally capable of cap-

turing smaller details in the breast more sharply. The database

contains individual as well as combinations of abnormalities

such as clusters of microcalcifications, masses, architectural

distortions, and focal asymmetries. Custom distributions were

created for training and validation data. Only findings con-

taining clusters of microcalcifications without combinations

with other abnormalities were used. The position and size

of the findings are marked using rectangular bounding boxes.

Histopathology results from tissue biopsy are included.

In our previous study [7] we studied cross-database trans-

ferrability of the CNN models and we concluded that the

combination of these databases, with images acquired through

different technologies, not only improved accuracy of the CNN

models but also enhanced the interpretation results of the

models.

A. Data preprocessing

For the main study, two datasets consisting of patches

extracted from mammograms were created from the databases.

The first dataset focused on binary classification of patches

containing clusters of microcalcifications into malignant or

benign classes. The second dataset included a third class

(serving as background), consisting of healthy tissue, tissue

containing masses, and tissue containing macrocalcifications.

Fig. 1. Size distribution of calcification findings, not higher than 674x674
pixels, in the CBIS-DDSM.

The patches had a size of 674×674 pixels, with larger size

findings not being used. For smaller sizes findings (Fig. 1 and

2), the surrounding area from the mammogram was added to

keep the size of a patch 674×674. When possible, the findings

were centered within the patch frame. For findings located at

the edges of the mammogram, the patch frame was shifted

towards the center. Before patch extraction, the mammograms

were normalized to values ranging from 0 to 1. Models trained

on patches can later be transformed and fine-tuned to classify

the entire image, for example, using the end-to-end approach

published in [8].

Fig. 2. Size distribution of calcification findings, not higher than 674x674
pixels, in the OMI-DB.

The CBIS-DDSM database contained several masks with

varying sizes compared to the corresponding mammogram.

Such masks were scaled to match the size of the mammogram.

Approximately 30 subsequent adjustments were made in the

dataset. If a mammogram contained multiple masks close to

each other, they were unified. Minor shifts were made on some

masks if the segmentation was adjacent to a finding. Some

findings were removed if no calcifications could be localized

using the mask.

The OMI-DB database contained several inverted images (a

black background is expected from the mammogram; however,

radiologists sometimes use inverted images for better visibility

of certain observed abnormalities), which were corrected using

inversion. Images with unexpected gray backgrounds associ-

ated with poor image quality and sharpness were discovered

and retained in the dataset.

The purpose of the third class was to exclude any clusters of

suspicious microcalcifications. Patches of healthy tissue were

sourced from the OMI-DB database, representing patients with

no malignant or benign histopathological records across all

examinations. One patch was generated from each image,

with at least 70% of the patch covering breast tissue. Patches

with mass findings (malignant and benign) were sourced from

both databases (with the same filter applied as with micro-

calcifications, focusing solely on mass findings without any

combination with other abnormalities). Subsequently, 14,007

patches were manually checked, removing those containing

clusters of microcalcifications. Patches with individual micro-

calcifications (which did not form a cluster) were retained. Ad-

ditionally, macrocalcifications from the CBIS-DDSM database

were added to the class (OMI-DB did not contain such

findings), as they are benign abnormalities that are relatively

easy to classify correctly.

After data preprocessing, the first dataset comprised 3350

samples (2691 training and 659 testing). The second dataset,

including the background class, contained an additional 12994

samples (total of 16344 – 13073 training and 3271 testing),

with a more detailed data distribution as shown in Table II-A.
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TABLE I DISTRIBUTION OF TRAINING AND VALIDATION DATA IN THE

CREATED DATASETS OF CBIS-DDSM AND OMI-DB DATABASES

Train Test
CBIS-DDSM OMI-DB CBIS-DDSM OMI-DB

Benign 603 457 138 116
Malign 309 1322 73 332

Background 1280 9102 337 2275
Sum 2192 10881 548 2723

III. PRELIMINARY EXPERIMENTS

Two preliminary experiments were initially conducted, and

the insights gained from these experiments were utilized in

the main experiment. The first experiment focused on testing

various architectures of convolutional neural networks, while

the second experiment aimed to reduce the size of input

patches. For these experiments, the binary dataset was used

with a slight modification, including macrocalcifications in the

benign class.

A. Convolutional Architectures

The architecture of a neural network is among the most

crucial elements of the model. Along with the correct setting

of the learning rate and high-quality training data, it can signif-

icantly influence the overall accuracy of the model. Currently,

several research groups are engaged in the development of

convolutional architectures, with their performance commonly

evaluated on the ImageNet dataset. The most frequently used

version is ImageNet-1k, containing a total of 1000 output

classes (different categories such as animals, objects, plants,

etc.).

The advantage of architectures trained on the ImageNet

dataset is the possibility of using transfer learning. In transfer

learning, the model’s weights can be transferred (instead

of freshly initialized weights) and fine-tuned on a different

domain. These transferred weights facilitate faster training

because the model does not have to learn common features

from scratch. In addition to faster training, potentially better

results can also be achieved.

The experiment will explore several older and newer well-

known architectures such as VGG, Inception-V3, ResNet,

DenseNet, and EfficientNet.

1) Description of the architectures:
• Year 2014 – VGG (Visual Geometry Group) [9]: One of

the first deeper architectures (the deepest version being

19 layers), introduced the idea of reducing the number

of trainable parameters by using multiple 3x3 filters

(kernels). For example, a 5x5 filter (25 parameters) can

be replaced by two 3x3 filters (18 parameters), while the

output feature map will have the same size. A major

advantage of this architecture is its simplicity; it does

not use any advanced methods and is therefore suitable

for implementing various techniques (e.g., interpretation

methods).

• Year 2016 – Inception-V3 [10]: Successor to the

GoogLeNet architecture (Inception-V1). The main idea is

to use Inception modules, which contain different-sized

filters next to each other in a single layer (in parallel).

It also uses 1x1 filters to reduce the number of feature

maps.

• Year 2016 – ResNet (Residual Network) [11]: Created a

breakthrough by introducing skip connections, allowing

the creation of very deep networks (the deepest version

being 152 layers) at the cost of increased model com-

plexity. It consists of residual blocks, and the principle

involves sending the identity (via skip connection) to a

lower layer. The introduction of skip connections helped

address the vanishing/exploding gradient problem [12].

• Year 2017 - DenseNet (Densely Connected Convolutional

Network) [13]: Introduced dense connectivity, where each

layer receives the identity from all preceding layers in

a single dense block (in the ResNet architecture, the

identity was only sent to the nearest lower layer).

• Year 2019 – EfficientNet [14]: Previous architectures

typically expanded in only one way (e.g., in depth). This

architecture introduced the compound scaling method,

which simultaneously adjusts the width, depth, and reso-

lution of the model using a compound coefficient.

In addition to the year of creation, the architectures are also

ranked according to their success on the ImageNet dataset.

Generally, newer architectures achieve better results compared

to older ones, partly due to inspiration gained from the

methods of their predecessors.

2) Exploration of a suitable architecture: Most architec-

tures consist of multiple versions (usually identified by a

number), differing in the number of trainable parameters.

Implementations provided in the PyTorch [15] framework

were used for architectures and their pretrained weights. The

following learning rate values were tested: 1e-2, 1e-3, 1e-4,

1e-5, 1e-6, 1e-7 using the Adam optimizer. Early stopping was

also applied. All versions that could fit into the GPU memory

(RTX 4080 16GB) with a mini-batch size of 8 were tested.

• VGG: all versions (11, 13, 16, 19) + versions with batch

normalization

• Inception-V3: only one version

• ResNet: all versions (18, 34, 50, 101, 152)

• DenseNet: only version 121

• EfficientNet: versions B0 to B2

TABLE II TOP 10 MODELS - ALL

ARCHITECTURES

Model LR Val. Acc. Train Acc.
ResNet101 1e-6 77,2% 81,3%

DenseNet-121 1e-6 76,5% 85,5%
DenseNet-121 1e-5 76,3% 83,1%

EfficientNet-B1 1e-5 75,9% 78,7%
ResNet50 1e-6 75,9% 79,9%

ResNet152 1e-6 75,7% 90,9%
VGG-16-BN 1e-6 75,7% 83,4%
VGG-19-BN 1e-6 75,7% 81,5%

VGG-13 1e-6 75,6% 83,4%
VGG-19-BN 1e-5 75,6% 83,7%
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The top 10 models are displayed in Table II. Unexpect-

edly, architectures performed very comparably, with the best

architecture being ResNet101 with an accuracy of 77,2%. It

is worth noting that due to the small amount of data, the

resulting accuracy may vary between two identical runs by

approximately +-1,5%. It was found that the most suitable

learning rate across architectures was 1e-6. All architectures

except Inception-V3 made it to the top 10, with Inception-

V3 achieving 12th position with an accuracy of 75,4% and a

learning rate of 1e-4.

B. Reducing the size of patches

Using such high size as 674 × 674 pixels for input im-

ages is not standard in convolutional neural networks. The

disadvantage is a significant slowdown in model training and

significantly greater GPU memory requirements. Our hypoth-

esis is that reducing already small microcalcifications could

result in the loss of essential details in the image, which would

affect the model’s accuracy. The most commonly used size is

224×224 pixels, which was typical for architectures pretrained

on the ImageNet dataset.

TABLE III VALIDATION ACCURACY COMPARISON OF PATCHES WITH
DIFFERENT SIZE

Size 674x674 Size 224x224
LR Avg. Acc. Best Acc. Avg. Acc. Best Acc.
1e-6 75,4% 76,0% -2,79% -3,03%
1e-5 74,9% 75,4% -2,00% -1,72%
1e-3 72,5% 72,8% -0,97% -0,82%
1e-4 72,3% 72,8% -0,28% -0,41%

For better statistical sampling, training was run three times

for the same hyperparameter settings. The ResNet50 architec-

ture was used. The results can be observed in Table III. For the

best learning rate of 1e-6, there was a decrease in accuracy on

downsized patches by up to 2,79%, with an average decrease

of 1,51% across different learning rates.

A similar experiment was conducted in the past, with the

difference being that only the CBIS-DDSM database was used.

In this case, there was an even more significant decrease in

accuracy on downsized patches, with an average decrease of

6,0% in accuracy across different learning rates. This more

pronounced decrease could be explained in two ways. First,

there was a smaller amount of training/testing data in the

dataset. Second, there was poorer image sharpness capturing

finer details due to the older screen-film technology.

It was confirmed that downsizing patches is not suitable as it

leads to the loss of crucial details. Other studies, such as [16],

also addressed the reasons for not downsizing mammography

images.

IV. COMPARISON OF BINARY AND THREE-CLASS

CLASSIFIER

The study for hyperparameter tuning leveraged insights

gained from previous experiments. The main goal of compar-

ing the binary and three-class classifiers is to determine the

limitations and advantages of each approach. Emphasis will

be placed on explaining the models using the interpretational

method Grad-CAM [17]. It will be necessary to confirm that

the models indeed make decisions based on important features,

in our case, confirming that the models decide on the benign

and malignant classes based on clusters of microcalcifications.

In the medical field, the use of these methods is necessary, as

the model itself functioning as a black box is not sufficiently

credible and transparent.

The decision to remove/relocate macrocalcifications to the

background class was driven by two ideas. Macrocalcifica-

tions are benign abnormalities that are very easy to visually

classify (for radiologists as well as models). Compared to

microcalcifications, they are too distinct (especially in size),

and therefore, it does not make sense to categorize them in

the same class. Their presence is unique to the CBIS-DDSM

database, as other databases do not consider this abnormality

significant. The second reason was identified when using the

Grad-CAM method on models from convolutional architecture

experiments. It was found that in the case of a malignant find-

ing, the presence of macrocalcifications could lead the model

to classify it as benign. This situation occurred in some patches

due to preprocessing, where a finding of smaller size than

674 × 674 pixels was supplemented with surrounding areas

that could contain macrocalcifications. Removing macrocalci-

fications from the benign class will lead to a partial decrease

in accuracy since macrocalcifications are easy to classify and

their presence in the test set increases accuracy. On the other

hand, the resulting accuracy will be more credible.

A. Binary Classification

Due to the unbalanced classes, the following weights were

used for loss computation:

• Benign class: 0,606

• Malignant class: 0,394

Fig. 3. Confusion matrix for the binary classification.

The best model achieved an accuracy of 74,7%, with an

average accuracy of 74,3% across three runs. As expected,
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there was a slight decrease in accuracy after removing macro-

calcifications (compared to experiments with architectures).

The confusion matrix of the best model is displayed in Fig.

3, with the following additional metrics: sensitivity – 0,820,

specificity – 0,630, MCC – 0,458.

Fig. 4. Correct prediction of benign cluster with correct Grad-CAM high-
lighting

Fig. 5. Correct prediction of malign cluster with correct Grad-CAM high-
lighting

Using Grad-CAM interpretation, it’s possible to highlight

areas on the input image that contributed most to the model’s

decision for a particular class. Examples of correct predictions

for both classes are shown in Fig. 4 and 5. In both cases, the

finding was correctly identified and placed in the correct class.

Similar behavior was observed for most correct predictions,

confirming that the model can make decisions based on

important areas in the tissue with microcalcifications. Areas

in the incorrect class can be disregarded due to their weak

contribution. The predicted class is an important indicator, as

its contribution to the area influenced the final classification

decision.

Fig. 6. Correct prediction of benign patch with incorrect Grad-CAM
high-lighting the surrounding area of a finding and not the finding itself

However, for some benign patches, there were cases where

the interpretation was not intuitive. An example is shown in

Fig. 6, where a correct benign prediction was made, but the

model did not base its decision on the area with microcalcifi-

cations but on the surrounding area. Conversely, the malignant

class managed to detect the correct cluster area.

Fig. 7. Incorrect prediction of malign patch in dependence on the black
background of the mammogram

Fig. 8. Incorrect prediction of malign patch in dependence on the small
artifact

Several limitations were discovered with incorrect predic-

tions. Fig. 7 illustrates a case where a malignant cluster

was identified, but the patch was placed in the wrong class

based on the black background of the mammogram without

abnormalities. Fig. 8 shows a black artifact that caused similar

behavior.

Fig. 9. Incorrect prediction of malign patch in dependence on the uninteresting
benign abnormality

Despite removing macrocalcifications from the binary set,

the problem of a random macrocalcification biasing the clas-

sification into the benign class was not completely eliminated

(Fig. 9).

Breast implants also caused classification problems because

their strong white color made it difficult for the model to

determine where to look. White color is associated with

abnormalities, and larger white areas may indicate the presence

of masses. Fig. 10 shows a case with very fine malignant

calcifications that the implant prevented from detecting.

The aforementioned incorrect predictions share one com-

mon characteristic: they were all mispredictions into the
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Fig. 10. Incorrect prediction of malign patch, the model failed to correctly
identify the correct area due to the breast implants present

benign class. From this, it can be concluded that the model

currently uses the benign class not only for predictions depen-

dent on microcalcification clusters but also for other factors.

This behavior was the main inspiration for creating the three-

class classifier.

Fig. 11. Incorrect prediction of benign patch, the correct region was found
only by the malignant class

The last expected type of incorrect predictions were patches

where a suspicious cluster was detected and placed in the

wrong class (Fig. 11). After consulting with specialists, it was

confirmed that most of these cases would indeed pose a signifi-

cant challenge for correct classification. In some cases, correct

visual classification may not even be possible, and a tissue

biopsy would have to be performed. This limitation could be

partially addressed by having a larger amount of quality data,

which is currently lacking from accessible sources.

B. Three-class classification

The goal of adding a third class was to help the model make

decisions about benign and malignant classes based solely

on clusters of microcalcifications. The benign class should

no longer function multifunctionally, as observed in binary

classification. Such behavior would significantly improve the

model’s credibility.

Similar to the previous case, different weights were used

for the classes:

• Benign class: 0,571

• Malignant class: 0,371

• Background class: 0,058

The prediction results on the validation set are displayed

in Fig. 12. The metric values were as follows: accuracy –

91,7%, macro-recall - 0,780, macro-precision - 0,754, MCC -

0,767. There was a slight decrease in accuracy for significant

Fig. 12. Confusion matrix for the three-class classification

malignant and benign predictions. The model achieved high

accuracy in deciding the background class.

Predictions of the benign class into the background, and

vice versa, cannot be considered entirely wrong. Most of these

interchangeable predictions contained isolated or small clus-

ters of microcalcifications (more typical for the CBIS-DDSM

database). Isolated calcifications are a common abnormality

found in almost every breast, and manually filtering them out

would be challenging, so they were left in the background

class. This fact was not taken into account in the metric

calculation.

The Grad-CAM method revealed a significant improvement

in interpretation results. The goal was achieved where the

model decides on both the benign and malignant classes based

on the same cluster, as observed in Fig. 13. Moreover, in

many cases, noise reduction was achieved, where the model

attributed significance even to areas without abnormalities.

Many issues from binary classification were addressed:

• Non-intuitive classification based on the surrounding area

visible in Fig. 6 for binary classification was eliminated

in three-class classification, see Fig. 14.

• The issue with black background affecting predictions

from Fig. 7 was diminished in Fig. 15.

• Small black artifact, depicted in Fig. 8, no longer pose

a problem, as evidenced by the improvements shown in

Fig. 16.

• The significance of uninteresting abnormalities was re-

duced as may be seen in Fig. 17 when compared with

binary classification in Fig. 9.

• Fig. 18 illustrates how breast implants no longer hinder

the localization of suspicious clusters, as it did in Fig.

10.

• Even in cases where the model made incorrect predic-

tions, as in Fig. 11, now it decided based on a suspicious

cluster/clusters in both classes visible in Fig. 19.

However, the three-class classification also revealed new

challenges. The model struggled with malignant findings (cat-
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Fig. 13. Correct prediction of malign cluster, both malignant and benign classes correctly located the suspicious cluster

Fig. 14. Improving the classifier, the model no longer makes decisions based
on the surroundings in the benign class

Fig. 15. The black area in the patch no longer influences the decision in the
benign class. The model, however, still made an incorrect prediction of the
malignant cluster into the benign class

egorized as background) in images with high fibroglandular

tissue density and images with poorer sharpness (or their

combination), where detecting calcifications was also very

challenging for the human eye. The significant advantage was

that the model managed to detect suspicious calcifications even

in such images, but the resulting prediction was incorrect.

Another limitation was revealed in incorrect predictions of

the background class into the malignant class. It turned out that

the model had difficulty correctly classifying a specific type

of calcifications found in vessels, known as vascular calcifica-

tions. These calcifications are straightforward for specialists to

classify, but their properties may resemble malignant clusters

(Fig. 20). Due to easy human classification, these findings are

not included in any databases as benign findings, as they do

not undergo biopsy. This limitation also highlights the situation

where models trained on these databases are biased toward

data containing suspicious clusters (as all findings underwent

biopsy – specialists were not convinced of their benign nature).

Therefore, models did not encounter clusters of calcifications

during training where radiologists are quite sure of the benign

Fig. 16. A small black artifact no longer affects the classification. The
malignant cluster has been classified as benign

Fig. 17. The benign abnormality was localized in the background class. A
correct prediction was made

nature of the finding. Using such findings in models could lead

to unexpected results.

It was also discovered that breast implants still pose prob-

lems (despite resolving the issue in Fig. 18), in cases where no

cluster of calcifications is present in the patch. Due to implants,

patches belonging to the background were classified as ma-

lignant predictions. Interpretation revealed that some clusters

were not successfully removed in manual preprocessing.

V. CONCLUSION

The first part of the work focused on finding the most suit-

able convolutional architecture. The architecture that achieved

the best results was ResNet101, although other architectures

showed very comparable results. It was also revealed that

across different architectures, the best results were achieved

with a learning rate of 1e-6.

The second part aimed to reduce the size of patches from

674 × 674 pixels to the standard size of 224 × 224 pixels.

Experiments demonstrated that reducing size led to a decrease

in model accuracy, which could be attributed to the loss of

significant details in already small microcalcifications.
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Fig. 18. The model was able to localize visually very challenging microcal-
cifications, the prediction was correct, and the implant no longer affected the
classification significantly

Fig. 19. Both classes correctly localized both clusters of microcalcifications.
The resulting prediction was unchanged

The final part utilized these findings and focused on compar-

ing binary and three-class classifiers. The best binary classifier

achieved an accuracy of 74,7% (MCC - 0,458). Interpretation

confirmed that the model indeed makes decisions based on

important features. However, limitations were also discovered,

where the model made non-intuitive decisions based on the

area around the finding, problems caused by breast implants,

and introducing the model into incorrect predictions based on

other abnormalities/artifacts. It was possible to define that the

benign class decides on benignity not only based on benign

clusters but also other features.

This led to the creation of a three-class classifier, which

managed to eliminate the described limitations and guide

the model to make decisions based on the same cluster of

microcalcifications for both malignant and benign classes.

The advantage of this model was that it correctly identi-

fied even hard-to-see calcifications, and interpretation demon-

strated noise reduction. The best model achieved an accuracy

of 91,7%, but the more appropriate metric this time was

MCC – 0,767 due to a large number of patches belonging

to the background. When comparing important predictions for

malignant and benign classes, a slight deterioration in results

was observed. However, adding a new class also revealed new

limitations. It was found that the model had difficulty with

vascular calcifications (included in the background class – as

they are not very interesting findings for radiologists), which

were incorrectly classified as malignant. Problems were also

caused by patches without abnormalities with breast implants.

Generally, the use of three classes significantly improved

interpretational results and thereby the credibility of the model.

However, creating a third class is not straightforward because

when creating patches from a random location in the breast,

Fig. 20. Example of vascular calcifications

it is possible to include unwanted abnormalities (in our case,

clusters of microcalcifications) in the patch.
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