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Abstract—Class imbalance poses a major challenge in different
classification tasks, which is a frequently occurring scenario in
many real-world applications. Data resampling is considered to
be the standard approach to address this issue. The goal of
the technique is to balance the class distribution by generating
new samples or eliminating samples from the data. A wide
variety of sampling techniques have been proposed over the
years to tackle this challenging problem. Sampling techniques
can also be incorporated into the ensemble learning framework
to obtain more generalized prediction performance. Balanced
Random Forest (BRF), RUSBoost, and SMOTE-Bagging are
some of the popular ensemble approaches used in imbalanced
learning. In this study, we propose a modification to the BRF
classifier to enhance the prediction performance. In the original
algorithm, the Random Undersampling (RUS) technique was
utilized to balance the bootstrap samples. However, randomly
eliminating too many samples from the data leads to significant
data loss, resulting in a major decline in performance. We
propose to alleviate the scenario by incorporating a novel hybrid
sampling approach to balance the uneven class distribution
in each bootstrap sub-sample. Our proposed hybrid sampling
technique, when incorporated into the framework of the Random
Forest classifier, termed as ’iBRF: improved Balanced Random
Forest classifier’, achieves better prediction performance than
other sampling techniques used in imbalanced classification tasks.
Experiments were carried out on 44 imbalanced datasets on
which the original BRF classifier produced an average MCC score
of 47.03% and an F1 score of 49.09%. Our proposed algorithm
outperformed the approach by producing a far better MCC score
of 53.04% and an F1 score of 55%. In addition, the algorithm
is compared with 14 other benchmarking sampling techniques.
Our proposed algorithm outperformed the other approaches by
a large margin signifying its superiority and potential to be an
effective sampling technique in imbalanced learning.

I. INTRODUCTION

Imbalanced data presents quite a hurdle in classification

tasks as the learning algorithms get biased towards the majority

class due to their accuracy-oriented design. They are trained to

minimize the overall number of misclassifications, irrespective

of the class. As a result, they perform well in predicting the

majority class instances but they fail to correctly identify the

instances belonging to the minority class as they are quite

underrepresented. However, the minority class samples are

usually more important and correctly predicting them is crucial

in many applications such as medical diagnosis, fault diagno-

sis, or fraud detection. Most real-world datasets are more or

less imbalanced. Especially in some critical applications, the

data can be severely skewed. Therefore, necessary steps must

be taken to address the class imbalance issue to develop a

reliable prediction framework [1].

Resampling the data to balance the uneven class distribution

prior to model training is an effective approach to deal with

the imbalanced classification problem. Different resampling

techniques have been proposed over the years which can be

broadly classified into two categories: oversampling and un-

dersampling [2]. Oversampling involves the generation of new

minority-class samples, whereas, in undersampling, majority-

class instances are removed from the data. Random over-

sampling (ROS) and random undersampling (RUS) are two

non-heuristic approaches in which the minority-class instances

are duplicated to increase the number of samples and the

majority-class instances are randomly eliminated to reduce

the number of samples, respectively. Many other heuristic

approaches have been developed to generate new synthetic

samples rather than merely duplicating them [3]. SMOTE

is one of the most popular oversampling techniques that

use interpolation among nearby minority class instances to

generate new samples [4]. The popularity and success of

the technique have led to the development of a variety of

modifications to the original algorithm [5]. Similarly, heuris-

tic undersampling approaches have also been developed to

strategically remove majority-class samples from the data,

rather than randomly [6]. Hybridization between oversampling

and undersampling approaches is also feasible and performs

quite well [7]. These sampling techniques can be further

incorporated into the ensemble learning framework to achieve

better generalization. Ensemble algorithms are comprised of

several weak learners, each trained on a different subset of

the data. The predictions made by different weak learners,

usually decision trees (DT), are aggregated to obtain a more

robust classifier. These ensemble algorithms have reduced bias

and variance and often provide better results than a single

DT or other classifiers. The Balanced Random Forest (BRF)

classifier is one such ensemble approach that uses RUS to

resample each bootstrap subset of the data before training the

DTs [8]. Other ensemble approaches use techniques such as

ROS and SMOTE, producing algorithms like Over-Bagging,

and SMOTE-Bagging, respectively. The sampling techniques

can also be utilized with the boosting framework. RUSBoost

and Over-Boost are examples of such approaches.

Sampling techniques can effectively address the class im-

balance issue and improve prediction performance. However,

the success relies largely on how the data is resampled
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as well as other data intrinsic characteristics such as class

overlapping, presence of noisy samples, imbalance ratio (IR),

small disjuncts, etc [9]. Large overlapping between the classes

makes the prediction difficult for the learning algorithms, even

in small imbalanced scenarios. The difficulty increases with an

increase in the imbalance ratio. In highly imbalanced datasets,

classifiers sometimes identify the minority class samples as

noises and fail to classify them completely. Changing the

distribution of the data through resampling techniques can

mitigate the problem to different extents. Techniques like ROS

do not generate any new samples and therefore do not add any

new information for the model to learn. Although techniques

like SMOTE and its variants alleviate this issue, the synthetic

samples generated in the process do not always represent

the minority class [10]. This occurs due to overlapping class

regions and noisy samples around the decision boundary.

Undersampling techniques like RUS indiscriminately remove

majority-class samples from the data which can lead to the

loss of valuable information. Especially in highly imbalanced

scenarios, there is a major decline in performance even after

using the sampling techniques. This is because when the data

is highly skewed, too many samples need to be eliminated

from the majority class or too many samples need to be gen-

erated from a small number of minority-class samples, which

results in overfitting and loss of generalization. Hybridization

between oversampling and undersampling can alleviate the

situation to some extent as it creates a balance between the

number of samples to be generated or eliminated. However,

just merely merging techniques such as ROS and RUS, does

not solve the original issues associated with those approaches

as mentioned earlier. Merging sampling techniques like RUS

with the ensemble approaches can prove beneficial as they

reduce the impact of such a huge loss of data by using a

number of bootstrap subsets. However, each bootstrap subset

when undersampled, still suffers from loss of information,

resulting in the generation of poorly trained DTs. While an

ensemble of them might outperform a single DT, the overall

classification performance remains unsatisfactory.

To properly alleviate the problem associated with imbal-

anced data, the resampling technique not only needs to reduce

the imbalance but also minimize the overlapping between the

classes. It is difficult to achieve through a single sampling

approach singlehandedly. In that regard, we propose a novel

hybrid sampling approach and its subsequent integration with

the RF classifier to enhance the prediction performance. Here,

we focus on the shortcomings of the sampling approaches

and design a new hybrid framework that can overcome those

limitations. We first utilize the neighborhood cleaning (NC)

rule algorithm to remove noisy majority-class samples from

the overlapping regions in the data. This reduces the class

overlapping and clears the decision boundary of noisy samples.

Then we use the RUS approach to bring down the IR by

randomly eliminating some samples from the majority class.

Next, SMOTE is utilized to generate new synthetic samples to

increase the number of minority class instances and balance

the class distribution. These three approaches combined form

the hybrid sampling framework that we then integrate with the

Random Forest (RF) architecture to benefit from the power

of the ensemble and obtain better generalization. The RF

classifier generates bootstrap subsets of the original data by

randomly sampling with replacement. Each bootstrap subset is

resampled using this hybrid sampling technique independently,

allowing greater variation in the data. Individual DTs are

then trained on these balanced bootstrap subsets and the

predictions made by the models are aggregated, forming the

final algorithm, termed ’iBRF’.

The boundary samples are usually the most difficult to

identify as they obscure the regions between two classes. This

also complicates the learning process. Since the minority-class

samples are usually more important and rarer, if the majority-

class samples in those overlapping regions are removed, it will

ease the identification of those rare instances. The NC algo-

rithm performs this exact task by clearing out these regions.

This also reduces the IR and simplifies the generation process

of new synthetic samples. SMOTE creates new samples in the

region in between two nearby minority class samples. Since

the NC algorithm has already eliminated noisy majority class

samples from those regions, it becomes easier for the classifier

to differentiate between the two classes. To avoid generating

too many synthetic samples which can lead to overfitting,

RUS is applied to randomly eliminate some samples from the

majority class to further reduce the IR. A balance between

the three approaches can provide a better sampling framework

than using those techniques independently. Next, this hybrid

framework is applied separately to each of the bootstrap

subsets to balance the class distribution. As RUS arbitrarily

removes samples from the data, some information might be

lost in the bootstrap subsets. However, since we use an

ensemble of ’n’ (n=100 used in this study) different bootstrap

subsets, some information may be lost in a few subsets, but

that information is present in other subsets. Thus, the effect

of information loss is minimized using the bagging process.

Both SMOTE and NC similarly benefit from this bootstrapping

step. This randomization introduces variations in the data and

helps the model achieve better generalization. This proposed

approach is tested on a wide range of imbalanced datasets and

compared with other benchmarking methods used in imbal-

anced learning. Our proposed approach performs significantly

better than other sampling techniques in terms of MCC, ROC-

AUC, G-mean as well as F1-score.

The rest of the article is structured as follows: Related

works have been discussed in section - II. In section - III, we

provide a detailed description of our proposed methodology.

We discuss our experimental setup in section - IV. In section -

V, we present the performance results and compare them with

other sampling approaches. The advantages of the proposed

strategy over alternative approaches are covered in section

VI. We conclude this article with section - VII by providing

a summarization of the work and discussing some future

research scopes.
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II. LITERATURE REVIEW

Over the years, many different techniques have been in-

troduced by researchers to address the class imbalance issue.

This includes different variations of the SMOTE approach [5],

the inclusion of evolutionary algorithms with the sampling

techniques [11], a fusion between sampling and cost-sensitive

learning [12], and hybridization among different sampling

approaches [13]. In [14], György Kovács presented the perfor-

mance of 85 SMOTE variants on a wide range of imbalanced

datasets. The author concluded that there was not a significant

difference in performance among these numerous variations.

While the popularity of the SMOTE approach led to the

creation of many extensions of the original algorithm, the

oversampling technique alone is usually not enough to obtain

desirable performance [10]. The idea of hybridization seems

more promising and several such approaches have been devel-

oped. For instance, in [15], Xu et al. proposed a hybridization

between M-SMOTE and ENN for medical imbalanced data

and used the MCC score to compare the performance among

different techniques. Other hybridization between different

approaches is also possible and requires further research. One

major issue with the sampling techniques is that they increase

the variance and the models suffer from loss of generalization

[16]. The use of ensemble learning is a plausible solution in

this regard and researchers have developed new approaches

to incorporate ensemble methodologies in class imbalance

problems. In [17], Dı́ez-Pastor et al. proposed an ensemble

approach termed ’Random Balance’ that randomly balances

different subsets of the ensemble using the SMOTE algorithm

to introduce more diversity. The authors later extended the

algorithm to adapt to multiclass imbalanced scenarios [13].

In [18], Ribeiro et al. introduced a multi-objective optimiza-

tion design to improve the performance of the ensemble

approaches. They tested the performance of the model on

a real-world anomaly detection problem and obtained better

results. In another study [19], Yang et al. proposed a hybrid en-

semble classifier that combines density-based undersampling

with cost-sensitive learning. The sampling techniques can be

utilized with both bagging and boosting frameworks. However,

just merely integrating the approaches with the ensemble tech-

niques does not improve the prediction performance, as can

be observed from the experimental results obtained from this

study. The sampling technique first must be able to produce

properly resampled data from which the separation between

the two classes becomes easier. Only then the ensemble will be

able to provide better generalization. In this regard, we propose

a novel hybrid sampling approach to effectively balance the

dataset before merging it with the ensemble framework. Our

proposed approach has been evaluated on 44 different imbal-

anced scenarios and has demonstrated superior performance

compared to other approaches, as evidenced by improvements

in MCC, ROC-AUC, and F1 scores.

III. METHODOLOGY

In this study, we present a novel ensemble sampling frame-

work to effectively address the class imbalance problem and

Fig. 1. iBRF: improved Balanced Random Forest classifier

improve prediction performance. The outline of the proposed

approach is illustrated in Fig. 1. The imbalanced data is first

divided into ’n’ bootstrap subsets. Since there is usually a

limited number of minority-class samples available in the

data, all these samples are taken in each bootstrap subset. In-

stances from the majority class are then randomly added with

replacements to create the subsets. Each of these bootstrap

subsets of the data is then balanced using the proposed hybrid

sampling algorithm (illustrated in Fig. 2). An overview of the

approaches used in developing the framework, as well as its

implementation details, are presented below.

A. Neighbourhood Cleaning Rule (NC)

In the NC algorithm, for every sample in the training set,

its k-nearest neighbors are located (k=3). Using these nearest

neighbors, the original sample is classified. Now, if the original

sample belongs to the majority class and is misclassified by

its nearest neighbors – then that sample is removed from

the training set. On the other hand, if the original sample

belongs to the minority class and is misclassified by its nearest

neighbors – then the nearest neighbors that belong to the

majority class are removed from the training set. This way,

the majority-class samples that can be considered noisy are

identified and eliminated. This further reduces the overlapping

between the positive and negative samples as well.

B. Synthetic Minority Oversampling Technique (SMOTE)

In the SMOTE algorithm, to generate samples, first, a

minority class sample is selected randomly from the training

set. Then its k-nearest neighbors (k=5 was utilized in this

study) are located. Among these neighbors, one neighbor is

randomly chosen and used to synthesize a new sample using

interpolation. The difference between the feature vectors of the

two samples is calculated and multiplied by a random number

between 0 and 1. This leads to the selection of a random point

along the line between the features, which is the new synthetic
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Fig. 2. The hybrid sampling process

sample. The number of samples to be generated through this

process can be controlled and predefined.

C. Random Undersampling (RUS)

RUS is a simple non-heuristic undersampling technique.

It randomly eliminates majority-class samples from the data

without any consideration. This can lead to information loss

and significantly derail the performance of the majority class.

The method is solely aimed at reducing the imbalance ratio of

the data. We include the approach in our framework for the

same purpose - to reduce the IR, but only to a small extent

to avoid losing too much information. As the approach is

later merged with the bagging framework, the effect of any

loss of information in one bootstrap subset is surmounted

by other subsets in the data. Besides lowering the IR and

subsequently reducing the number of samples to be generated

by SMOTE, this also inserts some randomness in the process

which ultimately benefits training by allowing it to achieve

better generalization.

D. Implementation Detail

The proposed iBRF algorithm was implemented using

Scikit-learn and imbalanced-learn libraries. The implementa-

tion steps of the algorithm are as follows:

i. The data is first split into training and validation folds

using a 5-fold stratified cross-validation strategy.

ii. ’n’ number of bootstrap subsets is then generated from

the training data including all minority class samples.

The remaining portion is filled with samples from the

majority class with replacements. Consequently, the

bootstrap subsets are different from one another.

iii. The NC algorithm is applied to each bootstrap subset

separately. The resultant resampled subsets have com-

paratively lower IR (different in different subsets) than

the original data as some samples are removed in the

process (depending on the data, usually around 10-20%

of samples are eliminated).

iv. The number of samples removed by the NC rule is

usually limited. Consequently, a large number of mi-

nority class samples will need to be generated by the

SMOTE approach to balance the class distribution. To

avoid that, the RUS approach is applied to randomly

eliminate around 20% majority-class samples from the

data to lower the IR.

v. The SMOTE algorithm is then used to produce new

minority class samples to balance each bootstrap subset.

vi. The percentage of samples to be generated or removed

using the SMOTE and RUS approaches, respectively,

can be considered as a hyperparameter and tuned for

better results. In this study, however, we did not perform

any hyperparameter tuning.

vii. Each bootstrap subset passes through steps iii, iv, and v,

producing a balanced class distribution.

viii. Next, DTs are trained on these bootstrap subsets. The

training and aggregation process follows the RF archi-

tecture of the scikit-learn library.

ix. The final prediction is made by the ensemble model on

the validation set. The process is repeated for the other

folds and the average of the prediction performance is

calculated and reported here.

IV. EXPERIMENTAL SETUP

To evaluate the performance of the proposed approach,

it has been tested on 44 different imbalanced datasets. The

datasets were collected from different sources including the

KEEL and UCI repositories [20]. All the datasets are binary

classification data with different degrees of imbalance (IR

varied from 1.79 to 129.41). A detailed list of the datasets

along with their respective IR is provided in the supplementary

files. The performance of the iBRF classifier was compared

with 14 other popular techniques used in imbalanced learning.

Some of the datasets on which the models are tested have

a large class imbalance with only a handful of minority

class samples available. Therefore, a 5-fold stratified cross-

validation approach was undertaken for validation. Data re-

sampling was performed only on the training folds to avoid any

data leakage. The RF and SVM classifiers were utilized as the

base learning algorithm for other sampling approaches. The

default parameter values from the scikit-learn and imblearn

libraries were utilized in obtaining the results.

Eight different metrics were calculated during experimenta-

tion - MCC, ROC-AUC, F1-score, G-mean, sensitivity, speci-

ficity, precision, and accuracy. We mainly considered the

MCC, ROC-AUC, G-mean, and F1-score for comparing the

performance among different techniques. These are some of

the most widely used metrics of classification performance.

One needs to be careful while choosing a performance metric

when the data is imbalanced. Accuracy is clearly not suitable

as it gets biased towards the majority class. Both sensitivity

and specificity only show the one-sided performance of the mi-

nority and majority class, respectively. This makes composite
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metrics more suitable to evaluate performance in imbalanced

scenarios. G-mean, which is the geometric mean of sensitivity

and specificity, is a widely used measurement when the class

distribution is skewed. While it reflects both the sensitivity and

specificity measures, it does not show the trade-off between

them. A similar scenario occurs in the case of the F1-score,

which is the harmonic mean of sensitivity and precision. None

of these techniques, however, take into account the actual

number of misclassifications made by the model, except the

MCC score. This metric considers all four confusion matrix

parameters - the number of true positive, true negative, false

positive, and false negative, to provide the score. As a result,

the MCC score is only high when the classifier performs well

in all cases, making it one of the most robust measures of

classification performance.

V. RESULTS

In this section, the performance measures obtained from

the iBRF algorithm have been presented. We compare our

proposed approach with 14 popular sampling techniques used

in imbalanced learning. The average performance obtained

from the 44 imbalanced datasets is reported in this manuscript

(Table 1). Performance measures obtained from each dataset

are provided in a separate supplementary file due to space

constraints. Table 1 presents the results from the RF algorithm

as the base learning classifier. Results from the SVM classifier

are similar and provided in a separate supplementary file.

Figure 3 presents a comparison of the MCC scores obtained

from the iBRF algorithm with 7 other different sampling

techniques which include 2 oversampling techniques (SMOTE

and ADASYN), 3 undersampling techniques (RUS, NC, and

CNN), and 2 hybrid sampling techniques (SMOTE-ENN and

SMOTE-Tomek). As can be observed from the figure, our

proposed approach outperforms all these techniques by a good

margin. The SMOTE, RUS, and NC algorithms when used

independently achieve an MCC score of 47.86%, 45.94%,

and 46.09%, respectively. However, when these algorithms

are merged together and integrated with the RF pipeline, the

resultant approach performs significantly better producing an

MCC score of 53.04%. This new approach also outperforms

other hybrid sampling techniques.

Figure 4 presents a comparison of the MCC scores ob-

tained from the iBRF algorithm with 7 other ensemble sam-

pling techniques used in imbalanced learning. This includes

Over-Bagging, SMOTE-Bagging, Balanced-Bagging, Over-

Boosting, RUSBoost, Easy Ensemble, and BRF. Among these

7 algorithms, the over-Boost approach provided the highest

MCC score of 47.58% and RUSBoost provided the lowest

score of 41.04%. The BRF classifier produced a score of

47.03%. Compared to these techniques, our proposed iBRF

classifier achieved an MCC score of 53.04%, which proves its

superiority.

In terms of other metrics such as ROC-AUC, our model

retains its top position as can be observed from Table 1. The

algorithm attains a ROC-AUC score of 0.8226. Compared to

this, the SMOTE approach attained a much lower ROC-AUC

score of 0.74. The score obtained from the NC rule is even

lower (0.72). Among the ensemble approaches, Over-Bagging

provided the lowest score of 0.69, while Over-Boosting pro-

vided a score of 0.76. The BRF classifier achieved the highest

ROC-AUC score of 0.81 among the ensemble approaches.

However, our proposed modification to the algorithm improved

its performance to 0.8226.

In terms of the F1-score, the iBRF classifier achieved a score

of 55%, which is a significant improvement over the BRF

classifier (49%). Other ensemble approaches produced even

poorer F1-score (47.72% from SMOTE-Bagging and 46.2%

from RUSBoost). Some of the datasets utilized in this study

have a large IR (more than 50). In such large imbalance cases,

obtaining a high F1 score or MCC score is extremely difficult,

even when the data has been resampled. However, compared

to the other approaches, our proposed algorithm fared better,

producing higher scores.

On the other hand, in terms of metrics such as sensitivity

or specificity, our model didn’t provide the best scores. The

highest sensitivity scores were achieved by the easy ensemble

algorithm, followed by RUS and BRF. This is due to the

fact that in methods like RUS or its ensemble counterparts,

majority class samples are reduced significantly to balance

with the minority class samples. While this makes it easier for

the correct identification of the positive instances, this comes

at the cost of a large number of misclassifications of negative

samples. This is apparent from the low specificity scores

obtained from these algorithms. The easy ensemble technique

produced the lowest specificity score, while the highest speci-

ficity was attained when no sampling was performed. This

is a trade-off and composite metrics such as the G-mean

score can provide a better picture. As can be observed from

Table 1, in terms of the G-mean score, our proposed approach

outperformed all the other techniques which indicates that

Fig. 3. Performance comparison of the proposed approach with other
sampling techniques
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Fig. 4. Performance comparison of the proposed approach with other
ensemble techniques

the model is able to provide the optimal trade-off between

sensitivity and specificity. However, as the G-mean score

does not directly take into consideration the actual number

of misclassifications, it can get slightly biased towards the

minority class performance (sensitivity). On that account, we

considered the MCC score for better comparison and there was

a 6% improvement in the MCC score with the iBRF approach

compared to the original BRF classifier. The improvement in

performance with our proposed approach in terms of all four

composite metrics signifies its edge over other benchmarked

techniques used in imbalanced classification problems.

VI. DISCUSSION

As can be observed from Table 1, the proposed new

algorithm is quite an improvement compared to the other

sampling approaches. The hybridization among the 3 sam-

pling techniques and the subsequent integration with the RF

framework, allows the model to attain better generalization and

achieve superior performance. Oversampling or undersampling

by itself is not enough to shift the bias from the majority

class in imbalanced scenarios. When only undersampling is

performed on the data, the performance in the minority class

(sensitivity) may improve significantly. However, this also

results in a major decline in performance in the majority class

(specificity). This is not desirable as many cases are incorrectly

predicted. The number of misclassifications, irrespective of the

class, is not captured by metrics such as G-mean. However,

the MCC metric penalizes any misclassifications and a higher

value is an indication of better classification performance on

all categories. Our proposed methodology achieved the highest

MCC score as well as the ROC-AUC score compared to other

state-of-the-art sampling techniques.

The hybrid sampling method establishes a balance between

both oversampling and undersampling, while also ensuring

that the samples that are generated are more representative

of the minority class and the majority of the samples that

are eliminated are noisy, borderline samples. The use of

the NC rule simplifies the decision boundary, reducing the

overlapping between positive and negative instances. Although

this approach improves the prediction performance to some

extent, the data remains imbalanced as it eliminates a limited

number of samples and some overlapping will still be present

in the data. The SMOTE algorithm is utilized to increase

the presence of minority class samples in the boundary and

overlapping regions. This is important to achieve a higher

sensitivity score. However, if the data is highly imbalanced,

too many samples will have to be generated to adequately

balance the data. Besides, SMOTE by itself does not decrease

overlapping between opposite classes but rather increases it.

These factors can lead to overfitting and reduced performance

as observed from the low ROC-AUC or G-mean scores.

Therefore, to obtain a more balanced prediction performance,

hybridization between the two techniques is a plausible solu-

tion. We also incorporated the RUS algorithm to further reduce

the IR and avoid generating too many samples. To obtain

better generalization and reduce the effect of information loss,

the process is merged with the bagging framework. Using

bootstrapping, a wide variety of subsets of the data is created,

each with a slightly different data distribution. All these

bootstrap subsets go through the hybrid sampling process,

allowing variations in the resultant data. Each DT is then

trained on a moderately different version of the data, resulting

in variation in the learning process. The RF architecture inserts

further randomization by allowing the trees to grow on a

different subset of the features. Finally, the predictions made

by individual DTs are aggregated, producing a more stable,

robust, and generalized prediction model.

VII. CONCLUSION

Sampling is a standard data preprocessing approach used

to balance the class distribution when the data is skewed. In

this study, we present a novel ensemble sampling approach

to improve prediction performance. The model is built on top

of the Random Forest architecture to benefit from the power

of the ensemble. Weak learners by themselves are susceptible

to bias and have high variance. By creating an ensemble of

weak learners, better generalization can be achieved. However,

the model remains susceptible to skewed class distribution and

gets biased towards the majority class. Creating an ensemble

does not solve the imbalance issue as each individual learner

is still trained on imbalanced data. To alleviate the scenario,

sampling techniques can be incorporated into the framework

to balance each bootstrap sub-sample of the data. The weak

learners will then be trained on a balanced subset of the data,

resulting in a better prediction framework. The success of

these approaches depends on how well the bootstrap subsets

are resampled. If the data after resampling still contains

large overlapping between positive and negative cases, the

performance of the classifier is not going to improve. The

BRF classifier uses random undersampling to balance the
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TABLE I. PERFORMANCE MEASURES OBTAINED FROM DIFFERENT APPROACHES (IN 
PERCENTAGE)

Methods MCC G-MEAN ROC Sensitivity Specificity Precision Accuracy F1-Score

No Sampling 44.047 51.476 69.416 41.688 97.144 58.864 92.891 45.247
SMOTE 47.869 64.136 74.225 54.580 93.870 53.198 91.276 51.656
ADASYN 47.496 63.394 73.758 53.948 93.567 51.841 90.948 50.390
RUS 45.937 78.625 80.514 81.843 79.185 41.580 79.456 48.569
NC 46.094 57.956 72.548 51.535 93.562 55.065 91.732 49.615
CNN 44.920 61.155 73.192 54.668 91.715 50.574 90.105 49.104
SMOTE-ENN 47.381 71.001 76.860 64.274 89.445 49.836 88.439 52.486
SMOTE-TOMEK 47.672 63.214 73.728 53.742 93.714 52.790 91.018 50.520
Over-Bagging 42.325 51.665 69.128 41.887 96.370 54.982 92.117 44.593
SMOTE-Bagging 44.463 56.839 71.123 46.885 95.361 53.819 91.757 47.720
Balanced-Bagging 45.823 75.662 78.169 71.092 85.245 44.184 83.909 49.237
Over-Boosting 47.590 69.911 76.193 62.021 90.366 49.660 88.606 51.650
RUSBoost 41.037 68.597 74.313 62.245 86.382 43.113 84.640 46.212
Easy Ensemble 44.325 78.674 80.425 82.604 78.246 39.554 78.687 47.105
BRF 47.031 79.244 81.044 81.776 80.312 42.065 80.514 49.095
iBRF (proposed) 53.042 79.923 82.260 78.931 85.589 48.709 85.880 55.002

subsets. Removing too many samples causes information loss,

which greatly degrades the prediction performance. The BRF

ensemble classifier mitigates this issue to some extent by using

a large number of weak learners. However, the model still

performs quite poorly when the IR is high which necessitates

the removal of a large number of samples to balance the

data. Models like SMOTE-Bagging or Over-Bagging, on the

other hand, use oversampling techniques like SMOTE or

ROS to generate new minority class samples to balance each

bootstrap subset of the data. While the model might work

well in low-imbalance scenarios, performance starts to drop in

larger imbalances as too many samples need to be generated

to balance the data, increasing overlapping and a loss of

generalization.

In our study, we propose a careful hybridization of three

different sampling techniques to properly balance the class

distribution. This hybrid sampling framework is then in-

tegrated into the RF architecture, producing the ensemble

algorithm ‘iBRF’. This proposed approach demonstrates a

substantial improvement over other contemporary sampling

techniques. This underscores the efficacy of the approach

and its potential to serve as an effective sampling method

in imbalanced classification tasks. In the future, we would

like to extend our work and incorporate the hybrid sampling

technique with the boosting framework. We would further

test its performance on multiclass imbalanced scenarios and

plan to explore other possible hybridizations to achieve better

prediction performance.

Repository for supplementary files:

https://github.com/newaz-aa/iBRF

REFERENCES

[1] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera, Learning from imbalanced data sets. Springer, 2018, vol. 10,
no. 2018.

[2] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and
G. Bing, “Learning from class-imbalanced data: Review of methods and
applications,” Expert systems with applications, vol. 73, pp. 220–239,
2017.

[3] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine learning with
oversampling and undersampling techniques: overview study and exper-
imental results,” in 2020 11th international conference on information
and communication systems (ICICS). IEEE, 2020, pp. 243–248.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[5] A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, “Smote for
learning from imbalanced data: progress and challenges, marking the
15-year anniversary,” Journal of artificial intelligence research, vol. 61,
pp. 863–905, 2018.

[6] D. Devi, S. K. Biswas, and B. Purkayastha, “A review on solution to
class imbalance problem: Undersampling approaches,” in 2020 interna-
tional conference on computational performance evaluation (ComPE).
IEEE, 2020, pp. 626–631.

[7] A. Newaz, S. Muhtadi, and F. S. Haq, “An intelligent decision support
system for the accurate diagnosis of cervical cancer,” Knowledge-Based
Systems, vol. 245, p. 108634, 2022.

[8] C. Chen, A. Liaw, L. Breiman et al., “Using random forest to learn
imbalanced data,” University of California, Berkeley, vol. 110, no. 1-12,
p. 24, 2004.
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