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Abstract—Blood cell (BC) classification holds significant im-
portance in medical diagnostics as it enables the identification
and differentiation of various types of BCs, which is crucial for
detecting specific infections, disorders, or conditions, and guid-
ing appropriate treatment decisions. Accurate BC classification
simplifies the evaluation of immune system performance and the
diagnosis of various ailments such as infections, leukemia, and
other hematological disorders. Deep learning algorithms perform
excellently in the automated identification and differentiation
of various types of BCs. One of the advanced deep learning
models, EfficientNet has shown remarkable performance with
limited datasets, another model Swin Transformer’s capability to
capture intricate patterns and features makes it more accurate,
albeit with limitations due to its large number of parameters.
However, medical image datasets are often limited, necessitating
a solution that balances accuracy and efficiency. To address this,
we propose a novel hybrid model, by combining the strengths
of these two models. We first fine-tuned the Swin Transformer
on a blood cell dataset comprising wihite blood cells, red blood
cells and platelets, achieving promising outcomes. Subsequently,
our hybrid model, EfficientSwin, outperformed the standalone
Swin Transformer, achieving an impressive 98.14% accuracy in
BCs classification. Furthermore, we compared our approach with
previous research on white blood cell datasets, showcasing the
superiority of EfficientSwin in accurately classifying blood cells.
We also employed saliency maps for a visual representation of
our classification results, further illustrating the efficacy of our
approach.

I. INTRODUCTION

Blood cell analysis constitutes a fundamental component

within the medical field, necessitating intricate systems, costly

chemical reagents, time-intensive protocols, and personnel

with specialized training for its execution. [1], [2] This type

of analysis is essential for diagnosing a wide range of dis-

eases, such as anemia, leukemia, malaria, various infections,

and blood cancers. According to Huang, Le-Tian, et al. [3],

variations in the profiles of peripheral blood cells, especially

changes in leukocytes, lymphocytes, neutrophils, and over-

all cell counts, have been linked to Alzheimer’s Disease.

Traditional methods of blood cell analysis rely heavily on

specialized expertise and substantial resources. [4]

CAD has become one of the major research subjects in

medical imaging and diagnostic radiology. [5]–[7] A variety

of automated methods have been developed for segmenting,

classifying, and detecting blood cell images within CAD

systems, tackling the inherent challenges of microscope image

analysis. These methods span across image and signal pro-

cessing, machine learning, and deep learning techniques. [8],

[9] Notably, deep learning semantic segmentation, a state-of-

the-art approach, has been utilized to segment red blood cells

(RBCs) and white blood cells (WBCs) in blood smear images,

[10] achieving an accuracy rate of 89.45%. However, certain

cells were not segmented properly due to overlapping. Con-

volutional Neural Network (CNN) models, a subset of deep

learning, have been applied for the automated diagnosis and

prognosis of blood cells. Despite their capacity to detect fine

details and patterns, thus aiding in the accurate identification

of anomalies and medical conditions, these models encounter

difficulties in feature extraction and pattern recognition when

processing microscopic blood cell images.

Yu, Kaixin, et al., [11] highlighted the effectiveness of the

Swin Transformer model in deep feature extraction, noting its

superiority in processing large datasets, which underpins its

capability in feature extraction. Conversely, as Yao, Wenjian,

et al., [12] point out in their review, Swin Transformer models

require combination with CNNs to yield accurate results when

working with small datasets, indicating the limitations of

relying solely on transformer models for feature extraction in

smaller datasets.

In addressing the challenges faced by medical imaging

classification models, we conducted a comparative analysis of

two distinct approaches: the Swin Transformer, which is based

on transformer architectures, and EfficientNet, which stems

from the Convolutional Neural Network (CNN) framework. In

the related work section, we discuss previous studies, detailing

their methodologies and findings on blood cell (BC) datasets.

The architecture of our proposed model is outlined in the

methodology section, where we also provide a step-by-step

explanation of our approach. We conducted a thorough com-

parison of our method’s results against those of previous stud-

ies and baseline models, offering a comprehensive overview

of the enhancements and benefits our method introduces.

This comparative analysis, which includes an examination of

saliency maps from our proposed model, is elaborated upon

in the results section. Our study covers a total of eight types

of blood cells.

The development of a hybrid neural network model, com-

bining EfficientNet and Swin Transformer, marks a significant

advancement in predicting BC types, offering notable contri-

butions in several key areas: 1) Integration of Features: Our

research introduces a model that capitalizes on the strengths of

both Swin Transformer and EfficientNet for lesion diagnosis.

There are three major contribution of this study are 2) The
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synergy of the hybrid model markedly elevates prediction

accuracy over that of singular models, underscoring the benefit

of this combined approach. 3) The model’s efficacy and prac-

ticality in accurately identifying different BCs types were con-

firmed through extensive testing on publicly available datasets

and comparison with other leading deep learning models. 4)

The study employs saliency maps to visually interpret how the

model processes image classification, offering insights into its

decision-making process.

II. RELATED WORK

A. Dataset

In this study, we have used BloodMNIST dataset.

[13] It is also accessible through the GitHub

link https://github.com/MedMNIST/MedMNIST. The

BloodMNIST dataset, sometimes referred to as ”bloodmnist,”

is a set of medical images that show individual normal blood

cells. These images were obtained from individuals who

were free from infection, hematologic disorders, or oncologic

diseases, and had not undergone any pharmacologic

treatment at the time of blood collection. There are

total 17,092 images which are divided in 8 different

classes. These classes correspond to different types of

blood cells, including basophils, eosinophils, erythroblasts,

immature granulocytes (myelocytes, metamyelocytes, and

promyelocytes), lymphocytes, monocytes, neutrophils, and

platelets (Showing in Fig. 1).

Fig. 1. BloodMINST dataset distribution over eight different classes of the
human peripheral blood cell (HPBC) images. The images were randomly split
per class into 70% (training), 10% (validation), and 20% (testing).

The dataset is divided into three subsets for testing, valida-

tion, and training, with a ratio of 7:1:2. After center-cropping

the original images to 3×200×200 pixels and resizing them

to a final resolution of 3×28×28 pixels, the 3×360×363 pixel

images underwent preprocessing.

B. Literature review of blood cells classification

In order to address a major challenge in medical imaging,

the study presents [14] W-Net as inventive CNN-based ar-

chitecture created for the classification of white blood cells

(WBC). Its evaluation on a large-scale dataset with 6562

real WBC images showed that it performed exceptionally

well, with accuracy of 97%. In WBC classification, this

accuracy significantly outperforms the current convolutional

neural network (CNN) and recurrent neural network (RNN)

based models. Moreover, a noteworthy development is W-

Net’s flexibility in transfer learning scenarios, which permits

customization for particular tasks or integration with various

datasets. Using a Generative Adversarial Network to create

synthetic WBC images is another important contribution.

In this paper [15], they also introduce a new classification

method using CNNs and transfer learning. It solved a signif-

icant challenge in hematological diagnostics: the difficulty of

morphologically differentiating various normal and abnormal

blood cells. They used two CNN, VGG16 and Inceptionv3.

One uses the networks as feature extractors for a support vector

machine (SVM) classifier, while other fine-tunes networks

for end-to-end classification. The overall accuracy of the

classification model reached up to 96.2%. The paper’s main

contribution lies in its development of an end-to-end classifier

capable of discriminating between eight cell types, trained on

a substantial dataset sourced from clinical practice.

This study [16] explores the sophisticated use of deep

learning for the fine-grained classification of leukocytes in

the medical domain. The intricacy of leukocyte classification

is too complex for conventional machine learning methods,

like SVM classifiers, especially when there are up to 40 cate-

gories to choose from. In order to overcome these difficulties,

the authors build a deep residual neural network (ResNet)

that robustly extracts salient features and emulates the cell

recognition method used by domain experts. After carefully

modifying its architecture in light of previous experience

with white blood cell tests, the network is trained on an

extensive dataset consisting of almost 100,000 labeled leuko-

cytes in 40 different categories. Combining training strategies

allows for improved generalization. The average accuracy on

test dataset was 76.84%. These outcomes mainly focus on

complexity and variability of leukocyte categories. Sharma et

al.’s paper [17] utilized CNN, including a bespoke five-layer

CNN known as “LeNet-5”, along with established models

like “VGGs”, “Inception V3”, and “Xception”, for classifying

white blood cells. They addressed the BCCD dataset, which

initial comprised only 349 images of low quality, spread

across four white blood cell categories: monocyte, lymphocyte,

neutrophil, and eosinophil. Utilizing various techniques for

data augmentation, they considerably expanded the dataset to

encompass more than 3000 photos for every category. After

that, groups for testing and training were created using this

improved dataset. Across all four types of white blood cells,

the average classification accuracy was a noteworthy 87%.

A methodology for the identification, localization, and clas-

sification of leukocytes has been proposed by Zhao et al.

[18]. They utilized databases from Cella vision and Jiashan

for the detection task, while the ALL-IDB database was em-

ployed for classification purposes. The workflow commenced

with the initial identification of white blood cells (WBCs)
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using morphological techniques, followed by the utilization

of color and granularity features for classification. To be

more precise, an SVM Classifier was used to differentiate

between the eosinophil and basophil classes. In contrast,

the remaining classes—neutrophils, lymphocytes, and mono-

cytes—were classified using a hybrid model that combined a

CNN (Convolutional Neural Network) and random forest. This

all-encompassing method produced an astounding accuracy

rate of 92.8%. Ma, Li, et al. [19] paper introduce an innovative

leukocyte classification architecture combining a Deep Con-

volutional Generative Adversarial Network (DC-GAN) with

ResNet that overcomes the drawbacks of conventinal WBC

categorization techniques that rely on cell segmentation and

feature extraction. Due to problems like insufficient data or

class imbalances in deep learning applications, traditional ap-

proaches frequently have poor accuracy because of inadequate

segmentation. The proposed DC-GAN improves uncertainty

estimation by producing synthetic images, which strengthens

the model’s capacity to handle out-of-distribution inputs. To

improve robustness and accelerate model convergence, transfer

learning is used. The ResNet’s modified loss function, an

advancement over the standard softmax loss, enables more

effective learning of WBC image characteristics, resulting in

a superior classification model with accuracy 91.7%.

Yang et al. [20] utilized an identical dataset partitioning

for both training and testing phases. Initially, they employed

ResNet-18 [21] on two distinct image resolutions: 28 x 28

and 224 x 224. Subsequently, ResNet-50 was applied to

the same resolutions [21]. In a parallel vein, Feurer et al.

[22] employed automated machine learning (Auto-sklearn) for

training and validation. Following this, Auto-keras by Haifeng

et al. [23] was employed on the identical dataset. Finally,

the authors introduced their proposed methodology, Google

AutoML, which yielded the highest accuracy.

III. METHODOLOGY

A. The architecture of the hybrid model with EfficinetNet and
Swin Transformer

In this study, we used PyTorch, torchvision, TIMM (Py-

Torch Image Models), along with other python libraries. To

ensure the reproducibility of our results, we implemented

deterministic behaviors by fixing the random seed and dis-

abling certain CUDA optimizations, which are necessary for

the consistent and faster outcomes across runs.

We initiated our process by defining the dataset and ex-

tracting label information, followed by preparing data trans-

formations. This involved resizing images to 224x224 pixels,

converting them into tensor format, and normalizing them for

optimal processing. Subsequently, we downloaded and loaded

the dataset’s training, validation, and test splits. For each

dataset split, we initialized DataLoaders with a batch size of

32, incorporating shuffling for the training set to ensure the

randomness of input data order.

Our approach included the definition of a custom hybrid

deep learning model that synergizes the capabilities of Swin

Transformer and EfficientNet models. Leveraging pre-trained

models on ImageNet, we omitted their final classification

layers and introduced a linear classifier to make predictions

based on the concatenated features from both models. The

architecture of our proposed model is illustrated in Fig. 2.

Training was conducted on a single V100 GPU, utilizing

CrossEntropyLoss for multi-class classification and Adam

optimizer with a learning rate of 0.001. To enhance training

efficiency, we implemented an early stopping mechanism, set

to trigger if the validation accuracy did not improve after five

epochs.

We commenced the training for a predetermined set of 35

epochs, during which we performed forward and backward

passes and updated the model weights accordingly. After

each epoch, we evaluated the model on the validation set to

monitor its performance, making decisions regarding early

stopping based on these evaluations. To visually track the

learning progress, we plotted the training loss and accuracies

(both training and validation) as functions of epoch number.

Upon completion of the training or upon triggering the early

stopping, we evaluated the best model on both the training

and test sets to derive the final performance metrics. The

training code of hybrid model available on GitHub link -

https://github.com/pateltanvi2992/EfficientSwin-A-Hybrid-

Model-for-Blood-Cell-Classification-with-saliency-maps-

visualization/tree/main.

B. Experiments and design

We conducted a set of examinations in our study to forge a

novel hybrid model that merges the strengths of transformer

models with the efficiency of CNN EfficientNet models. Our

initial step involved fine-tuning base models from both do-

mains to assess their standalone performance. We specifically

focused on the EfficientNet family for our CNNs, drawing

inspiration from recent studies [24]–[26] that highlight their

superior performance over other CNN architectures.

The EfficientNet-B0 model, in particular, has garnered at-

tention for its remarkable efficiency in learning from small

datasets. This efficiency stems from its ability to represent

learning effectively from limited data. Nonetheless, its perfor-

mance is somewhat contingent on the specific characteristics

of the dataset.

EfficientNet models are generally recognized for achieving

high accuracy with a comparatively low count of parame-

ters, which makes them exceptionally well-suited for small

datasets where the risk of overfitting is high. The reduced

parameter count in EfficientNet-B0 minimizes its propensity

to overfit, thereby enhancing its ability to generalize from a

constrained volume of training data. Despite its simplicity, the

EfficientNet-B0 may not as effectively capture the complexi-

ties inherent in larger datasets characterized by a broader and

more intricate distribution of data.

To make comparisons across different versions of Effi-

cientNet, namely B0, B1, B2, and B3, we also conducted

classification tests using models pre-trained on ImageNet. The

outcomes of these tests, detailed in the results section, shed
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Fig. 2. Framework structure of the EfficientSwin hybrid model. Utilize the features of Swin Transformer and EfficientNet models to accurately capture the
patterns, and combine features to connect the classification layer to classify blood cell types.

light on the performance variances among these EfficientNet

variants.

Moreover, referencing the study by Liu et al., ”Swin

Transformer: Hierarchical Vision Transformer using Shifted

Windows” [27], which demonstrates the Swin Transformer’s

superiority over the Vision Transformer (ViT) across various

image categorization benchmarks, we sought to delve deeper

into the Swin Transformer’s potential. Utilizing transfer learn-

ing, we trained the Swin Transformer on the same dataset

to further ascertain its capabilities. This comprehensive ap-

proach allowed us to explore the effectiveness of combining

transformer models with CNNs, particularly the EfficientNet

models, in achieving enhanced model performance.

C. Methodology to compare the performance of the base
model classifier with proposed model classifier

Following the training of the base models, we proceeded

to evaluate their performance by comparing the confusion

matrices. To achieve this, we employed McNemar’s Test,

which allowed us to construct a contingency table based on

the outcomes represented in both matrices. The test is defined

by the formula,

X2 =
(b− c)2

(b+ c)

Where b denotes the count of the instances classified as

false positives in the first matrix and as true negatives in the

second matrix, while c represents the count of false negatives

in the first matrix and true positives in the second matrix. The

resulting X2 statistic follows a chi-square distribution with

one degree of freedom, which can then be used to assess

the statistical significance of the difference in performance

between the two classifiers.

The primary goal of analyzing confusion matrices through

this statistical method was to assess the performance of the

proposed model. This was done by leveraging the chi-square

distribution to calculate the p-value, which serves as a measure

of the difference between the models’ performances. Should

the p-value fall below a predetermined significance level (for

instance, 0.05), we would reject the null hypothesis, thereby

concluding that there exists a statistically significant difference

between the performance of the two models as evidenced by

their respective confusion matrices. This approach enables a

rigorous statistical comparison to determine the efficacy of the

proposed model relative to the base models.

IV. RESULTS

We conducted experiments across three distinct tasks. The

initial task focused on the classification of various blood

cell types—basophil, eosinophil, erythroblast, immune gran-

ulocytes, lymphocyte, monocyte, neutrophil, and platelet rep-

resenting a multi-category classification challenge. During this

task, we compared the performance of our hybrid model

against that of the baseline model. The second task involved

generating saliency maps with the classifier to visualize dif-

ferent classes of blood cells in microscopic images.

Furthermore, we undertook two comparative analyses. The

first analysis compared the accuracy of our proposed hy-

brid model against findings reported in literature review arti-

cles, which included evaluations of classification performance

across various blood cell datasets. The second analysis as-

sessed the performance of our proposed model using the same

dataset and identical data splitting criteria.
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A. Hybrid model and base model evaluation

We initially fine-tuned the Swin Transformer model and

evaluated its performance by calculating accuracy, precision,

recall, and F1-score for each blood cell class, followed by

computing the average for each metric. Similarly, we fine-

tuned EfficientNet-B0 and calculated its average metrics,

considering both as foundational models for our hybrid ap-

proach. Additionally, we have also apply fine-tunning process

to EfficientNet-B1, B2, B3 to compare their performance

outcomes. In Table I, we juxtaposed the average evaluation

metrics of these models against those of our hybrid model.

The comparison revealed that EfficientNet-B0 and B1 exhib-

ited strong performance, with EfficientNet-B0 achieving an

accuracy of 87.85% and EfficientNet-B1 slightly higher at

88.03%. The marginal difference of 0.18% between them,

coupled with EfficientNet-B0’s advantage of having fewer

parameters—which translates into reduced training time—led

us to select EfficientNet-B0 as the preferable base model for

our hybrid configuration.

TABLE I. COMPARISON OF THE AVERAGE ACCURACY, PRECISION, RECALL 
AND F1-SCORE WITH THE BASE MODELS WITH THE PROPOSED EFFICIENTSWIN 

MODEL. ALL THE MODEL USED SAME TRAINING DATASET AND VALIDATION 
DATASET. THE HIGHEST RESULTS HIGHLIGHT WITH BOLD TEXT.

Model Accuracy Precision Recall F1-score
Swin Transformer 87.97% 86% 87% 86%
EfficientNet-B0 87.85% 87% 86% 86%
EfficientNet-B1 88.03% 87% 86% 86%
EfficientNet-B2 85.86% 84% 83% 84%
EfficientNet-B3 80.26% 78% 77% 77%
Hybrid approach 98.13% 98.07% 97.99% 98.02%

To further explore the model’s performance in different class

outcomes and its efficacy in categorization, we also created a

confusion matrix on our proposed model performance (Fig.

3). In Fig. 4, shown the training accuracy, loss and validation

accuracy over each epoch till epoch 30. The highest validation

accuracy we received is 98.13%.

B. Comparative analysis of hybrid model vs. base models
using McNemr’s test

The evaluation of our proposed model against various base-

line models using McNemar’s test revealed significant findings

in classification accuracy. The test showed a statistically sig-

nificant improvement of our model over EfficientNet-B0, with

a p-value of 0.0063. However, comparisons with EfficientNet-

B1 and B2 did not yield statistically significant differences,

with p-values of 0.125 and 0.625, respectively, indicating

comparable performance levels. A notable exception was the

comparison with EfficientNet-B3, where our model demon-

strated a highly significant advantage, evidenced by a p-value

of 0.00117. Furthermore, our model also showed a statistically

significant improvement over the Swin Transformer model,

with a p-value of 0.0390 showed in Table II. These outcomes

underscore the superior performance and effectiveness of

our proposed model against selected versions of EfficientNet

Fig. 3. Confusion matrix is showing the comprehensive assessment of clas-
sification performance of each class. ’platelet’ and ’eosinophil’ outperforms
on other classes.

Fig. 4. Training Loss, Training Accuracy, and Validation Accuracy of the
Model Over 30 Epochs. This figure illustrates the progression of training
loss, alongside the improvements in training and validation accuracy with each
successive epoch, highlighting the model’s learning dynamics and convergence
behavior up to epoch 30.

and the Swin Transformer, affirming its potential in relevant

applications.

TABLE II. THE EVALUATION OF OUR PROPOSED MODEL AGAINST 
INDIVIDUAL BASELINE MODELS WAS CONDUCTED USING MCNEMAR’S TEST 
TO IDENTIFY STATISTICALLY SIGNIFICANT DIFFERENCES IN THE VALUES OF 

THE CONFUSION MATRICES ON A CLASS-BY-CLASS BASIS.

Comparison McNemar’s test P-value
Proposed model vs. EfficientNet-B0 0.0063
Proposed model vs. EfficientNet-B1 0.125
Proposed model vs. EfficientNet-B2 0.625
Proposed model vs. EfficientNet-B3 0.00117
Proposed model vs. Swin Transformer 0.0390

C. Saliency maps

Saliency maps visually highlight the areas within an image

that are most influential in the model’s decision-making pro-

cess, which also known as Region of Interest (ROI). Which is
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showing in Fig. 5 and 6. Through the highlight ROI in various

labels.

Fig.
 
5.

 
Saliency

 
maps

 
overlaid

 
with

 
labels

Fig. 6. The overlapping saliency maps on images provide insights into the 
regions of interest crucial for accurate classification

D. Comparative evaluation of proposed method accuracy vs.
previous studies accuracy

V. DISCUSSION

In the literature review, we examined previous research

conducted on blood cell dataset classification using diverse

methodologies. In Table IV, we compared the findings of

these studies, including their respective methods and achieved

accuracies. Subsequently, we contrasted these results with

those obtained from our proposed hybrid model, which yielded

the highest accuracy of 98.13%. However, it’s worth noting

that the studies in Table IV utilized varying train-validation

splits and datasets. In Table III, we conducted a comparison

using the same blood cell dataset and splitting methodology

as previous research, achieving the highest accuracy even

when compared to the proposed method by Yang, Jiancheng,

et al. [20]. Moving backward to Table I, we compared the

results of the base models with those of our proposed model.

To ensure a robust comparison, we employed McNemar’s

test, revealing a significant difference between the confusion

matrices of EfficientNet-B0 and EfficientSwin, with a p-value

of 0.0063. Additionally, comparisons with other base models

yielded p-values of 0.125, 0.625, and 0.00117 for EfficientNet-

B1, EfficientNet-B12, and EfficientNet-B3, respectively, while

the comparison with the Swin Transformer model resulted in

a p-value of 0.0390. Furthermore, we calculated the speci-

ficity of each model, with values of 0.9823, 0.9827, 0.9795,

TABLE III. COMPARISON OF THE ACCURACY OF DIFFERENT DEEP 
LEARNING CNN ARCHITECTURE WHICH WAS LISTED IN THE LITERATURE 

REVIEW SECTION AND USED THE SAME BLOODMNIST DATASET. THE BEST 
ACCURACY VALUES ARE IN BOLD.

Reference Methods Resolution Accuracy
Yang,
Jiancheng,
et al. [20]

ResNet-18 [21] 28 95.8%

Yang,
Jiancheng,
et al. [20]

ResNet-18 [21] 224 96.3%

Yang,
Jiancheng,
et al. [20]

ResNet-50 [21] 28 95.6%

Yang,
Jiancheng,
et al. [20]

ResNet-50 [21] 224 95%

Yang,
Jiancheng,
et al. [20]

Auto-sklearn
[22]

224 87.8%

Yang,
Jiancheng,
et al. [20]

AutoKeras [23] 224 96.1%

Yang,
Jiancheng,
et al. [20]

Google
AutoML
Vision [20]

224 96.6%

Proposed hy-
brid model

Hybrid
approach

224 98.13%

0.9713, 0.9828, and 0.9973 for EfficientNet-B0, EfficientNet-

B1, EfficientNet-B2, EfficientNet-B3, Swin Transformer, and

the proposed model, respectively. Notably, our proposed model

achieved 100% accuracy for the ’platelet’ and ’eosinophil’

classes on the validation dataset.

The classification performance of the model across different

cell types varied, with F1-scores ranging from 95% to 100%.

Despite high F1-scores for most classes, the model exhibited

challenges in accurately categorizing Immature Granulocytes,

mislabeling a small number as Monocytes or Erythroblasts.

Notably, the model demonstrated robust performance in dis-

tinguishing Platelets and Monocytes, achieving accurate clas-

sifications for 328 Monocytes and 235 Platelets. In Fig. 5, 6 we

have used saliency maps as visualization tools to understand

model decision by highlighting the most relevant regions of

input data. We have found out that each class has a different

pattern.

Introduced by Vaswani et al. [29] in their seminal work

”Attention is All You Need,” transformers have since been

applied across various fields, showcasing their adaptability

and effectiveness in tackling complex classification tasks [30],

[31]. Meanwhile, the merits of EfficientNet models on smaller

datasets should not be overlooked, underscoring the distinct

advantages of various architectures based on dataset size.

In our initial experiments, we trained baseline models and

observed that EfficientNet-B0 outperformed its successors (B1,

B2, B3) in terms of accuracy. Subsequently, training the Swin

Transformer on the same dataset and split yielded accuracy

comparable to EfficientNet-B0. However, by integrating these
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TABLE IV. EVALUATION COMPARISON RESULTS FOR BLOOD CELL CLASSIFICATION VIA THE PROPOSED METHOD AGAINST THE LATEST DEEP LEARNING WORKS 
IN THE LITERATURE REVIEW SECTION. THE HIGHEST RESULTS HIGHLIGHT THROUGH THE BOLD TEXT.

Reference Data Methods Accuracy
Jung et. al. [14] Data privacy and generated

by GAN
W-Net and transfer learning 97%

Ma, Li, et al. [19] BCCD DCGAN and Transfer learning 91.7%
Acevedo et. al. [15] Private dataset CNN, VGG16 and Inceptionv3 96.2%
Qin et. al. [16] Private dataset ResNet, SVM 76.84%
Sharme et. al. [17] BloodMNIST “VGGs”, “Inception V3”, and “Xception” 87%
Zhao et al. [18] Cell vision, ALL-IDB, Ji-

ashan
CNN, SVM, and random forest 92.8%

Şengür, Abdulkadir, et al.
[28]

White Blood Cells (WBCs) Image processing (IP) and machine learn-
ing (ML)

85.7%

Proposed hybrid model BloodMNIST Hybrid Swin transformer and Efficient-
Net

98.13%

models into our proposed architecture, we achieved signifi-

cantly superior results.

This study also has certain limitations. The comparison

with baseline models primarily focuses on quantitative aspects,

overlooking qualitative factors such as interpretability and

computational efficiency. Furthermore, it does not delve into

hyperparameters or alternative model architectures beyond the

hybrid approach.

VI. CONCLUSION

The hybrid model, which combines features from the Effi-

cientNet and Swin Transformer designs, performs better than

the baseline models alone, according to the evaluation re-

sults. In particular, the hybrid model outperforms the baseline

models in certain classes in terms of accuracy, precision,

recall, and F1-score. This shows that a more robust and

efficient model is produced for the job at hand by utilizing

the qualities of both designs. Additionally, the comparison

of previous study and their results also support the higher

accuracy of this approach. Furthermore, statistical tests like

McNemar’s Test could be used to confirm the importance of

these enhancements and offer more in-depth understanding of

the models’ comparative performances. Through the saliency

maps we shows the different labels Region of Interest (ROI)

as well.
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