
On Gait-Based Identification of Persons During
Winter Conditions

Grigorij Rego, Yulia Vahroeva
Petrozavodsk State University

Petrozavodsk, Russia

regoGr@yandex.ru, vakhroeva@list.ru

Alexei Falev
Petrozavodsk State University

Petrozavodsk, Russia

alexey000035@gmail.com

Abstract—This paper investigates the effectiveness of gait-
based identification across different seasons which is especially
important for the northern territories. The study highlights
the uniqueness of gait patterns, influenced by anatomical and
physiological characteristics, and their potential for non-invasive
identification methods. It addresses the critical question of
whether a model trained on summer data can identify individuals
in winter, revealing difficulties due to seasonal changes affecting
gait patterns. The research employs a comprehensive dataset
collected using smartphones equipped with accelerometers and
gyroscopes, capturing various gait parameters across different
terrains and seasons. The paper explores data filtering techniques
and machine learning algorithms, including decision trees, k-
nearest neighbors, and random forests, to analyze gait data.
The results demonstrate the impact of seasonal variations on
model performance, underscoring the need for diverse training
datasets to enhance identification accuracy. The study’s findings
suggest that while gait identification holds promise for various
applications, its reliability is contingent on the inclusion of diverse
seasonal data in model training. The study contributes to the
understanding of the potential and limitations of gait analysis and
contributes to the development of digital assistants for tracking
human motor activity.

I. INTRODUCTION

Human identification is the process of determining an

individual’s identity [1]. Gait-based identification, a biometric

technology that identifies individuals by their walking patterns,

has emerged as a significant area of research in the field of

security and surveillance. This technology is predicated on

the principle that each person has a unique way of walking,

which can be captured and analyzed to identify them. Gait

identification technology is founded on a premise that an

individual’s walking pattern is unique and can be quantified

through various parameters such as stride length, speed, etc.

This uniqueness in gait patterns is attributed to a combination

of anatomical and physiological characteristics that vary from

one person to another. Research in biomechanics and human

movement science provides the theoretical basis for gait identi-

fication, offering insights into how and why gait patterns differ

among individuals.
The applications of gait identification are varied, ranging

from security and surveillance to health care. In security, gait

identification can be used for access control and monitoring

in sensitive areas, offering a non-invasive and hard-to-spoof

method of identification [2]. In surveillance, it provides a tool

for tracking individuals in crowded or public spaces without

the need for facial identification or other more intrusive bio-

metrics [3]. Additionally, in the healthcare sector, gait analysis

is employed to diagnose and monitor conditions that affect

mobility, such as Parkinson’s disease or orthopedic injuries,

by observing changes in gait patterns over time [4]. Gait can

also be analyzed to determine how healthy a person is living.

This can be done using a digital assistant [5].

The study of human gait is of paramount importance as it

serves as an important indicator of both cognitive and motor

stability. Gait analysis is essential to understand how well

a person can cope with stress and its potential effects on

overall quality of life. In a mobile health (mHealth) sensor

model [6], monitoring a person’s gait using a smartphone

allows for detailed and continuous assessment of their stability.

This approach offers a direct assessment of an individual’s

physical and cognitive health, thereby increasing the ability to

support the well-being of frail and elderly people.

One of the factors influencing gait is geographic. In the

northern territories, where seasonal changes significantly im-

pact environmental conditions, it is crucial to develop a gait

analysis model that is all-season and not limited to summer

performance. The distinctiveness of each season—ranging

from deep snow and ice in winter to muddy or uneven

terrains in spring and fall—poses unique challenges for gait

recognition technologies. These conditions can alter a person’s

walking pattern, making it imperative for the model to adapt

and accurately identify individuals across varied terrains and

weather conditions. An ability to function reliably throughout

the year, especially in extreme northern climates, is essential

for the practical application of gait recognition technology

in security, medical diagnostics, and assistive technologies,

ensuring consistent and accurate performance regardless of

seasonal changes. For example, it could be a digital assistant

with the help of which a person’s motor activity is monitored.

Even though there is a lot of research on this problem, no

one has asked the question: “Is it possible to identify a person

in winter using a model that was trained on summer data?”

This study shows that it is difficult to identify a person in

winter using a model trained on a dataset that contains data

collected in summer. The main contribution of this study is

to create an all-season gait classifier model that can identify

a person in both winter and summer.

The rest of the paper is organized as follows. Section
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II analyzes related work on similar topics and shows the

insufficiency of the existing solution for human identification

in winter. Section III describes possible solutions to this

problem using smart human sensorics. Section IV describes

the collected dataset and the machine learning algorithms

used. Section V presents the experimental results. Section VI

discusses the usefulness of the findings as well as directions

for future work. In conclusion, the results of the study are

summed up.

II. RELATED WORK

Person identification by gait involves two main types: video-

based identification, which analyzes visual walking patterns,

and Inertial Measurement Unit (IMU)-based identification,

focusing on sensor-detected motion data. Video identifica-

tion technique capitalizes on the unique walking patterns of

individuals for identification and re-identification, offering a

discreet yet effective means of monitoring without requiring

direct interaction [7]. Researches include the GaitSet [8] and

GaitPart [9] models, which optimize the use of spatial and

temporal gait information for improved identification perfor-

mance.

Related researches in gait analysis predominantly focuses

on sensor-based methodologies, indicating a move toward

real-world applications outside of laboratory settings. Gait

detection accuracy was impressive across a variety of met-

rics including activity, event and deviation detection, using

accelerometers and gyroscopes to improve performance in

certain activities [10]. Beyond visual data, researchers have ex-

plored radar and Wi-Fi signals for gait identification, employ-

ing deep learning to efficiently extract and process distinctive

features from these inputs. These advancements underscore

the potential of gait analysis in a variety of applications, from

security enhancements to anomaly detection, driven by the

continuous refinement of algorithms and the integration of

diverse data sources [11].

In the same time gait identification faces unique challenges

across seasons, particularly when comparing summer and win-

ter conditions. This area, surprisingly understudied, presents

significant variations in gait due to environmental factors

and clothing differences [12]. In winter, heavy clothing and

adverse weather conditions can alter an individual’s natural

gait, making identification more difficult compared to summer,

where lighter clothing and favorable weather conditions allow

for more consistent and natural walking patterns. If these

factors are not taken into account in the northern territories,

then tools configured for gait analysis will not work for almost

half of the year. Understanding these seasonal impacts on gait

identification is crucial for improving biometric recognition

systems. In the researches listed above, there is no study of

the influence of the climatic factor on the identification of a

person by gait.

In this study, we test the hypothesis that climatic features

of northern territories at different times of the year affect

the identification of a person by gait. Consequently, models

trained to identify people on summer data will not be able

to effectively cope with this task in winter. From this we

conclude that for effective identification of a person by gait,

it is necessary that the training dataset contains data collected

in both winter and summer.

III. GAIT-BASED PERSONAL IDENTIFICATION IN SMART

HUMAN SENSORICS

Smart human sensorics refers to the advanced integration of

sensor technology and intelligent systems to monitor, analyze,

and interpret human physiological and behavioral data. This

field encompasses a wide range of applications, from health

monitoring and medical diagnostics to interactive computing

and human-machine interfaces. By leveraging sensors that can

detect various human parameters such as movement, vital

signs, and even emotional states, combined with intelligent

algorithms that process and make sense of this data, smart

human sensorics aims to enhance our understanding of human

health, behavior, and interactions with technology [13].

In the context of health and wellness, smart sensorics can

involve wearable devices that track physical activity, monitor

heart rate, or assess sleep patterns, providing insights into

an individual’s health status and alerting them to potential

issues before they become serious. In more advanced ap-

plications, such as in smart homes or assistive technologies,

these sensorics can help adapt the environment to the needs of

individuals, improving their quality of life and independence.

The integration of artificial intelligence (AI) and machine

learning further enhances the capabilities of smart human

sensorics, enabling predictive analytics, personalized feedback,

and adaptive responses to the unique patterns and needs of

individuals [14].

Smart human sensorics and personal identification by gait

are interconnected in the realm of advanced biometric sys-

tems. Gait analysis, as a form of smart human sensorics,

leverages sophisticated sensors and intelligent algorithms to

capture and interpret the unique patterns of an individual’s

walk. This process involves analyzing the complex movements

and biomechanical characteristics that are distinct to each

person [15]. Such an analysis is especially important for

northern territories in winter, when, due to the factors listed

above, a person’s gait changes significantly. For example,

knowing a person’s gait patterns in different seasons of the

year, we can separate situations where the gait has changed

due to a seasonal factor from a situation where the gait has

changed due to a progressive illness and the person needs to be

sent to the doctor. Applications that implement such functions

can be called digital assistants. Also, knowing what time of

year the gait data refers to, one can draw conclusions about

the sufficiency of a person’s motor activity. For example, in

winter, when it’s cold, people move less actively and this is

not associated with poorer health, but depends specifically on

the weather and climate.

In the context of personal identification, gait analysis of-

fers a non-invasive, difficult-to-mask method of recognizing

individuals based on their walking patterns. This is partic-

ularly useful in security and surveillance, where unobtrusive
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monitoring is required. Integrating smart human sensorics into

gait analysis enhances the system’s accuracy and adaptability.

By utilizing advanced sensors, such as accelerometers, gyro-

scopes, and pressure sensors, combined with AI-driven data

analysis, these systems can accurately capture and analyze

gait patterns in real-time. They can adapt to various conditions,

such as different walking speeds or changes in terrain, making

the identification process more robust and reliable.

Furthermore, as smart sensor technology evolves, it can be

integrated into wearable devices, enabling continuous and real-

time gait analysis [16]. This can have applications beyond

security, including health monitoring, where changes in gait

can indicate health issues, and in smart environments, where

individuals can be identified and their preferences or needs can

be anticipated and addressed automatically. Thus, the fusion of

smart human sensorics and gait analysis represents a dynamic

and evolving field with a wide array of applications in security,

health, and personalized technology interactions.

Incorporating the all-seasons aspect into the context of gait-

based personal identification within smart human sensorics

emphasizes the necessity for these systems to be versatile

and effective regardless of seasonal changes. This is partic-

ularly crucial in regions experiencing significant variations in

weather and environmental conditions throughout the year,

which can influence an individual’s gait. For instance, the way

a person walks on a snowy winter day differs markedly from

their summer stroll, due to factors like footwear, clothing, and

the walking surface.

An all-seasons smart human sensorics system must, there-

fore, have the capability to adapt and maintain high accuracy in

personal identification by analyzing gait across diverse condi-

tions. This involves utilizing advanced sensors and algorithms

that can discern and adjust to the subtle changes in gait

patterns induced by different seasons. Such a system ensures

consistent performance whether it’s tracking an individual

across a slippery, ice-covered pathway in winter or a dry, sandy

beach in summer.

Moreover, this all-season functionality enhances the sys-

tem’s applications in various fields, from security, where

individuals need to be identified reliably regardless of weather,

to healthcare, where monitoring gait changes can provide

insights into an individual’s physical well-being throughout the

year. In essence, integrating all-season adaptability into smart

human sensorics for gait identification broadens the scope and

utility of this technology, making it a robust tool for personal

identification and monitoring in any environmental condition.

This study provides a model of human identification that takes

into account the seasonality factor.

IV. DATASET AND MACHINE LEARNING ALGORITHMS

A. Hypotheses

1) A person identification model trained on summer data,

which identifies a person with high accuracy (≥ 90%)

in the summer, will identify a person with low accuracy

(≤ 50%) in winter.

2) A model trained on winter data will identify a person

by gait on winter data with high accuracy (≥ 90%).

3) A model trained on combined data (the dataset contains

both summer and winter data) will identify a person with

high accuracy both in summer and winter.

To test these hypotheses, it was necessary to collect data on

the gait of people in different seasons of the year. The process

of collecting data and testing hypotheses is described in detail

below.

B. Sensors

During the experiments, 7 smartphones were placed on

subject’s body, each of which was equipped with an ac-

celerometer and a gyroscope. The diagram of the location

of smartphones on body of a subject is shown in Fig. 1.

During the experiment, the following data was collected (all

characteristics were collected along three coordinate axes):

• Angular acceleration (ax, ay, az)

• Linear acceleration (gFx, gFy, gFz)

• Angular velocity (wx,wy,wz)

Fig. 1. Scheme of attaching smartphones on body of a subject

The data from the sensors mentioned above were collected

using the Physics Toolbox Sensor Suite application, which is

available on the App Store and Google Play. This application

leverages the smartphone’s internal sensors to gather, display,

record, and export data files in .csv format. It also provides

options to customize the data collection frequency. The brands

and models of the phones used for conducting the experiment
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are listed below. Devices on which the data was recorded

comprise 7 phones:

1) Samsung Galaxy S5 - 2 units.

2) Samsung Galaxy S3 Gt19300 - 1 unit.

3) Xiaomi Redmi Note 8 - 1 unit.

4) Xiaomi Note 10 Pro - 1 unit.

5) iPhone 13 - 1 unit.

6) iPhone 14 - 1 unit.

C. Dataset collection

The experiments consisted of two stages (asphalt pavement,

dirt road), the total distance included 1200 steps. At each stage

of the experiments, the following actions were carried out.

• A subject begins to move at the starting point.

• A subject walks 100 steps in a straight line.

• A subject performs a 180 degree turn.

• A subject walks 100 steps in a straight line.

Factors influencing gait that were taken into account are 
described in Table I. Weather conditions during data collection 
are described in Table II. The temperature difference between 
summer and winter conditions was more than 20◦C. Also, 
summer data collection was carried out only in natural light, 
while winter data collection was carried out in both natural 
and artificial l ight. In addition, summer data collection took 2 
hours less than winter data. This is due to the fact that during 
winter data collection there was more time spent putting on 
smartphones. The experimenters also periodically needed to 
warm up indoor.

TABLE I. FACTORS 
AFFECTING GAIT

Factor Description
Season As part of this study, measurements were taken in

September and December 2023
Cloth The clothing that subjects wore during the experi-

ments was described, but it was not included in the
training and testing samples. This is planned to be
done in the future

Walking
pace

Subjects walked the distance at three paces: fast,
normal and slow

Lighting Subjects walked on the asphalt surface in natural
light. Subjects walked on the ground surface in
September in natural light, and in December in
artificial light

Type
of road
surface

In September, subjects walked on asphalt and dirt
roads. In December, subjects walked through snow
on a dirt surface. There was also snow cover on the
asphalt surface, but in some places there was icy
conditions

Subjects covered this distance 6 times in each season: 3

times on asphalt, 3 times on a dirt road. The need to walk the

distance 3 times was caused by the variability of the walking

pace. The first time subjects walked quickly, the second time

as usual, the third time slowly.

To study the differences in gait taking into account the

climatic features of the northern territories, it was necessary to

collect a dataset with data on gait in summer and winter. The

experiments involved 10 subjects aged from 18 to 28 years,

TABLE II. WEATHER 
CONDITIONS

Season Factor Value

Summer

Date September 23
Start time 9:00
End time 16:00
Sunrise 06:28
Sunset 18:41
Humidity 64.4%
Temperature 17.9◦C

Winter

Date December 1
Start time 09:00
End time 18:00
Sunrise 09:33
Sunset 15:30
Humidity 87%
Temperature −5.1◦C

including 7 men and 3 women. Information about each subject 
is presented in Table III.

TABLE III. INFORMATION ABOUT 
SUBJECTS

№ Sex Weight (kg) Height (cm) Age
1 Female 63 170 20
2 Male 86 183 20
3 Male 83 185 21
4 Female 64 168 20
5 Male 96 193 21
6 Male 89 178 28
7 Male 57 180 21
8 Male 75 170 20
9 Male 80 184 21

10 Female 66 168 18

D. Data filtering

After the dataset was collected, a crucial step in preprocess-

ing involved the application of data filtering to enhance the

quality of the data for subsequent analysis. Data filtering is a

process used to remove noise and irrelevant information from

data, making it more suitable for analysis. In this phase, three

primary filters were employed: the median filter, the moving

average (MA) filter, and the low-pass Butterworth filter [17].

Each of these filters works on different principles to smooth

data and reduce noise. These filters were chosen because they

are fast and easy to implement.

The essence of the median filter lies in its ability to replace

each data point in the dataset with the median of neighboring

points. This non-linear filter is particularly effective in remov-

ing ”salt and pepper” noise without significantly blurring the

edges of the data. It works by sliding a window over the data,

calculating the median value within the window, and then

replacing the central value with this median. This approach

is highly effective in preserving significant data features while

eliminating outliers.

The MA filter, a type of linear filter, smooths data by

replacing each data point with the average of neighboring

data points. A size of the window over which the average

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 573 ----------------------------------------------------------------------------



is computed can be adjusted based on the desired level of

smoothing. This filter is adept at reducing random noise and

is often used to reveal underlying trends in the data. However,

it tends to blur sharp edges, which may not be desirable in all

applications.

The low-pass filter is designed to allow only the low-

frequency components of the signal to pass through while

attenuating components with frequencies higher than a certain

cutoff frequency. This filter is instrumental in removing high-

frequency noise and is widely used in signal processing and

time series analysis. The essence of the low-pass filter is its

ability to preserve the overall shape and trends of the data

while eliminating fine-scale fluctuations.

E. Machine learning algorithms

The first method we used was a decision tree (DT). The DT

method is a popular machine learning algorithm that models

decisions and their possible consequences, including chance

event outcomes, resource costs, and utility. It is a predictive

modeling tool that divides a dataset into smaller subsets while

at the same time an associated DT is incrementally developed,

enabling both classification and regression tasks by mapping

observations about an item to conclusions about the item’s

target value. In the referenced study [18], the instrumentation

comprises shoe-mounted pressure sensors, knee-position en-

coders, and gyroscopes affixed to the thigh and calf. These

devices are employed to quantify the foot’s contact force, as

well as the angular position and velocity of the knee joint.

Subsequently, the C4.5 DT algorithm is utilized to delineate

five distinct sub-phases of the walking gait, based on an

integrated analysis of the data acquired from these sensors.

The second method we used was the nearest neighbors

method. The k-nearest neighbors (k-NN) method is a sim-

ple, yet powerful, algorithm used in machine learning for

classification and regression tasks, which operates by finding

the ”k” closest data points in the feature space to a given

input point and making predictions based on the majority

vote (for classification) or average (for regression) of these

neighbors. Its effectiveness is heavily influenced by the choice

of ”k” and the distance metric used to measure closeness

between points. The study [19] explores enhancing behavioral

biometrics accuracy, specifically in human gait identification,

through ensemble classifiers leveraging k-nearest neighbor

algorithms. By analyzing ground reaction forces segmented

into gait cycle sub-phases, the method, tested on over 3500 gait

cycles from 200 individuals, achieved a correct classification

rate exceeding 97.37%.

The third method we used was random forest (RF) method.

The RF method is an ensemble learning technique used for

classification, regression, and other tasks, which operates by

constructing a multitude of DT’s at training time and out-

putting the class that is the mode of the classes (classification)

or mean prediction (regression) of the individual trees. This

approach offers advantages in terms of accuracy, ability to deal

with large data sets with higher dimensionality, and provides

measures of feature importance, making it robust against

overfitting when compared to single DT. In the study [20]

on gait identification for enhancing security in public spaces,

the authors employ DT, RF, and k-NN classifiers. Specifically,

using public CASIA-A dataset, the RF classifier achieves

an 84.26% accuracy, highlighting its effectiveness in pattern

identification within the unique context of human gait analysis.

V. RESULTS OF HUMAN IDENTIFICATION BY GAIT

The methodology for data selection employed for model

training was executed through three distinct strategies:

1) Summer data. Initially, the model was trained utilizing

80% of the dataset derived from files comprising sensor

readings recorded during the summer season. Subse-

quent testing was conducted on two fronts: first, on the

remaining 20% of the summer dataset not utilized in

the training phase, and second, on the entirety (100%)

of the dataset containing sensor readings acquired in the

winter season.

2) Winter Data. In this approach, the model underwent

training with 80% of the data extracted from the file en-

capsulating sensor readings collected during the winter

period. The testing phase was conducted on the residual

20% of the winter dataset that was excluded from the

training process.

3) Combined data. The model was trained on 80% of

the combined datasets, which included sensor readings

from both the summer and winter seasons. The testing

phase was distinctly organized into three parts: firstly,

testing was performed on 20% of the combined datasets

not included in the training set. This was followed by

separate testing on 20% of the data collected in the

summer and not utilized in the training phase, and

finally, testing on 20% of the data collected in the winter

and excluded from the training set.

These methodologies were designed to evaluate the model’s

performance under varying training conditions and to assess

its generalizability across different seasonal datasets. The

performance of decision trees and k-NN algorithms trained on

data collected in different seasons was evaluated to understand

their effectiveness in generalizing across seasons. Tables IV to

XII summarize the results obtained from these experiments,

highlighting the impact of seasonal variability and the choice

of filtering method on model performance. In the ”filter”

column, filter parameters are indicated in parentheses. For the

median filter, this is the window size equal to the number of

dimensions. For a MA, this is the time window within which

measurements are averaged. For example, a window of 1

second means that the filter window size is equal to the number

of measurements in one second. This is necessary to take into

account that the frequency of data collection from different

sensors may be different. For the Butterworth filter, the order

and sampling frequency (fs parameter) were specified. The

operating diagram of the proposed method is shown in Fig. 2.

The results presented in tables IV, VII and X show the

results of testing hypothesis №1. Models trained on summer

data, when tested on winter data, produced an accuracy of no
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TABLE IV. RESULTS OF DECISION TREES TRAINED ON 80% OF THE DATA 
COLLECTED IN THE SUMMER

Filter Summer train Summer test Winter test
No filter 1.000 0.767 0.138
Median (3) 1.000 0.785 0.136
Median (5) 1.000 0.802 0.136
Median (7) 1.000 0.835 0.138
Median (11) 1.000 0.864 0.136
Median (17) 1.000 0.892 0.137
Median (21) 1.000 0.907 0.134
Median (25) 1.000 0.920 0.134
Median (51) 1.000 0.951 0.127

TABLE V. RESULTS OF DECISION TREES TRAINED ON 80% OF THE DATA 
COLLECTED DURING THE WINTER PERIOD

Filter Winter train Winter test
No filter 1.000 0.800
Median (3) 1.000 0.815
Median (5) 1.000 0.832
Median (7) 1.000 0.865
Median (11) 1.000 0.889
Median (17) 1.000 0.916
Median (21) 1.000 0.932
Median (25) 1.000 0.940
Median (51) 1.000 0.966

more than 20%. The results presented in Tables V, VIII and XI 
show the results of testing hypothesis №2. Models trained and 
tested on winter data, produced an accuracy ≥ 90%. The results 
presented in Tables VI, IX and XII show the results of testing 
hypothesis №3. Models trained on combined data most often 
had ≥ 90% accuracy on both summer and winter data. Thus, 
we can conclude that to create a model for identifying a person 
by gait, it is necessary to take into account the seasonality 
factor.

VI. DISCUSSION

For decision trees trained on summer data in table IV a

clear trend emerges where the application of median filters

improves the model’s test accuracy on summer data but has

a negligible or adverse effect on its generalization to winter

data. Specifically, while the summer test accuracy improves

significantly from 0.767 (no filter) to 0.951 (Median(51)),

the winter test accuracy decreases from 0.138 to 0.127. This

indicates that while filtering improves performance on data

similar to the training set, it may not aid in generalizing across

significantly different conditions.

A similar trend is observed with decision trees trained on 
winter data in table V, where winter test accuracy improves 
from 0.800 to 0.966 with increasing filter size. This reinforces 
the notion that models tend to perform better on test data that 
resembles their training data. With random forest trained on 
winter data in Table XI the test accuracy changes less 
with increasing filter size.

Combining summer and winter data for training in table

VI shows an improvement in generalization, as evidenced by

TABLE VI. RESULTS OF DECISION TREES TRAINED ON 80% 
COMBINED DATA

Filter Summer +
winter train

Summer +
winter test

Summer
test

Winter
test

No filter 1.000 0.765 0.752 0.778
Median (3) 1.000 0.785 0.773 0.797
Median (5) 1.000 0.806 0.794 0.818
Median (7) 1.000 0.845 0.832 0.857
Median (11) 1.000 0.874 0.863 0.885
Median (17) 1.000 0.903 0.893 0.913
Median (21) 1.000 0.920 0.910 0.929
Median (25) 1.000 0.931 0.923 0.940
Median (51) 1.000 0.960 0.954 0.966

TABLE VII. RESULTS OF THE K-NEAREST NEIGHBORS METHOD WHEN 
TRAINED ON 80% OF THE DATA COLLECTED IN THE SUMMER

Filter Summer train Summer test Winter test
No filter 1.000 0.906 0.140
Median (3) 1.000 0.913 0.140
Median (5) 1.000 0.921 0.139
Median (7) 1.000 0.937 0.139
Median (11) 1.000 0.946 0.141
Median (17) 1.000 0.953 0.139
Median (21) 1.000 0.959 0.137
Median (25) 1.000 0.965 0.133
Median (51) 1.000 0.978 0.132

the more balanced performance between summer and winter

test datasets. Notably, the application of a Median (51) filter

yields the highest test accuracies for both summer and winter

datasets, suggesting that a larger dataset encompassing diverse

conditions can enhance model robustness.

The k-NN method displays a similar pattern in 
Table VII to table IX). While the application of median 
filters con-sistently improves test accuracy on the summer 
dataset, the improvement is more pronounced in the 
combined dataset scenario in Table IX. For instance, using a 
Median (51) filter, the summer and winter test accuracies 
increase to 0.982 and 0.986, respectively, which are 
substantial improvements over the no-filter scenario.

Comparatively, the k-NN method outperforms decision trees

in the winter test scenario when trained on summer data, sug-

gesting that k-NN may be more resilient to seasonal changes.

This could be attributed to the k-NN method’s reliance on local

data points, which may allow it to adapt better to variations

in the data.

The results indicate that both decision trees and k-NN

algorithms can benefit from preprocessing techniques such

as median filtering to improve performance on the test data.

However, the effectiveness of these filters appears to be context

dependent, highlighting the need for careful selection based

on specific characteristics of training and test data when

developing a human gait identification model.

The investigation into the performance of decision trees

and k-NN algorithms across different seasonal datasets has

underscored a critical aspect of machine learning model

development: the necessity of a diverse and comprehensive
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TABLE VIII. RESULTS OF THE K-NEAREST NEIGHBORS METHOD TRAINED 
ON 80% OF THE DATA COLLECTED IN WINTER

Filter Winter train Winter test
No filter 1.000 0.900
Median (3) 1.000 0.909
Median (5) 1.000 0.918
Median (7) 1.000 0.937
Median (11) 1.000 0.948
Median (17) 1.000 0.959
Median (21) 1.000 0.966
Median (25) 1.000 0.971
Median (51) 1.000 0.984

TABLE IX. RESULTS OF THE K-NEAREST NEIGHBORS METHOD TRAINED 
ON 80%COMBINED DATA

Filter Summer +
winter train

Summer +
winter test

Summer
test

Winter
test

No filter 1.000 0.907 0.907 0.898
Median (3) 1.000 0.912 0.915 0.909
Median (5) 1.000 0.922 0.924 0.920
Median (7) 1.000 0.940 0.941 0.939
Median (11) 1.000 0.951 0.950 0.951
Median (17) 1.000 0.960 0.958 0.962
Median (21) 1.000 0.966 0.964 0.969
Median (25) 1.000 0.972 0.970 0.974
Median (51) 1.000 0.984 0.982 0.986

training set. The experimental results clearly demonstrate that

models trained exclusively on data from a single season exhibit

significant limitations in their ability to generalize to data from

other seasons. This is particularly evident in the performance

disparity between summer and winter datasets.

The application of median filters showed that while prepro-

cessing can improve model accuracy on test data resembling

the training set, it does not necessarily aid in overcoming the

fundamental challenge of seasonal variability. However, a no-

table improvement in model generalization was observed when

both summer and winter data were included in the training set.

This approach enabled the models to achieve higher accuracy

across both seasonal test datasets, also highlighting the benefits

of a diversified training strategy.

Performance evaluation of a random forest model applied

to gait recognition data, emphasizing the impact of different

filtering techniques and the diversity of training data on model

effectiveness presented in Tables X and XII, showcase the

model’s accuracy across various scenarios, highlighting the

importance of both the choice of filter and the training dataset’s

composition.

Table X outlines the performance of a random forest trained

exclusively on data collected during the summer. The model

demonstrates perfect training accuracy across all filtering tech-

niques, indicating a strong fit to the training data. However,

the test accuracies reveal significant differences. The MA filter

with a 1-second window achieves the highest summer test

accuracy (0.979), suggesting that this filter effectively captures

relevant features for gait recognition in similar conditions. Yet,

TABLE X. RESULTS OF A RANDOM FOREST TRAINED ON 80% 
COLLECTED IN SUMMER

Filter Summer train Summer test Winter test
MA (1 sec) 1.000 0.979 0.133
Butterworth (order = 2, fs
= 100)

1.000 0.862 0.176

MA (0.5 sec) 1.000 0.973 0.142
Butterworth (order = 3, fs
= 100)

1.000 0.858 0.170

MA (0.33 sec) 1.000 0.966 0.153
Butterworth (order = 2, fs
= 200)

1.000 0.900 0.169

TABLE XI. RESULTS OF A RANDOM FOREST TRAINED ON 80% 
COLLECTED IN WINTER

Filter Winter train Winter test
MA (1 second) 1.000 0.979
Butterworth (order = 2, fs
= 100)

1.000 0.862

MA (0.5 sec) 1.000 0.973
Butterworth (order = 3, fs
= 100)

1.000 0.858

MA (0.33 sec) 1.000 0.966
Butterworth (order = 2, fs
= 200)

1.000 0.900

the winter test accuracy for this setup is markedly low (0.133),

indicating poor generalization to different seasonal conditions.

Butterworth filters, despite their sophisticated design for

signal processing, do not consistently outperform the simpler

MA filters. For instance, a Butterworth filter with an order of

3 and a sampling frequency of 100 Hz yields lower summer

test accuracy (0.862) and marginally improved winter test

accuracy (0.176) compared to the MA (1 sec) filter. This

pattern suggests that the complexity of the Butterworth filter

does not necessarily translate to better performance in this

context.

When the random forest is trained on a dataset combining

summer and winter data there is a notable improvement in

winter test accuracy across all filtering methods. This result

is shown in table XII. For example, the MA (1 sec) filter

maintains high accuracy in both summer and winter test

datasets (0.983 and 0.981, respectively), indicating enhanced

generalization capabilities when the model is exposed to

diverse training samples.

Interestingly, the Butterworth filter with an order of 2 and a

sampling frequency of 200 Hz shows significant improvement

in winter test accuracy (0.968) when trained on the combined

dataset compared to its performance on the summer-only

dataset. This also reinforces the notion that the diversity of

the training set plays a crucial role in the model’s ability to

generalize across different conditions.

The analysis of decision trees and k-NN algorithms trained

on seasonal gait data underscores a crucial insight into ma-

chine learning model development: the imperative of a diverse
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TABLE XII. RESULTS OF A RANDOM FOREST TRAINED ON 80% 
COMBINED DATA

Filter Summer +
winter train

Summer +
winter test

Summer
test

Winter
test

MA (1 sec) 1.000 0.979 0.983 0.981
Butterworth
(order = 2, fs
= 100)

1.000 0.848 0.888 0.868

MA (0.5 sec) 1.000 0.973 0.977 0.975
Butterworth
(order = 3, fs
= 100)

1.000 0.844 0.885 0.864

MA (0.3 sec) 1.000 0.892 0.923 0.908
Butterworth
(order = 2, fs
= 200)

1.000 0.965 0.970 0.968

Fig. 2. Scheme of operation of the method of identifying a person by gait

and comprehensive training dataset to enhance model gen-

eralizability across different conditions. While median filters

improve test accuracy on data similar to the training set, their

impact on generalization to distinct seasonal conditions is lim-

ited. Models trained solely on summer data struggle to adapt

to winter data, indicating a significant challenge in seasonal

variability. However, when models are trained on a combined

dataset of summer and winter data, there is a noticeable

improvement in their ability to generalize, as shown by more

balanced accuracies across seasonal test datasets. This finding

is pivotal, emphasizing that the inclusion of varied conditions

in the training set can significantly bolster a model’s robustness

and applicability across diverse environmental contexts.

The future of gait analysis is expected to include continuous

real-time monitoring and feedback mechanisms to improve

rehabilitation and promote quality of life through digital

assistant. Despite these advances, the practical implementation

of AI in gait analysis as an identification tool remains limited,

highlighting the need for further research. The results of this

study could become part of a digital assistant that will be used

to track a person’s physical activity.

VII. CONCLUSION

This study emphasizes the necessity of diverse training

datasets for enhancing the generalizability of machine learning

models in gait-based identification, demonstrating that models

trained on combined seasonal data show improved adaptability

to environmental variations, with k-NN, desicion trees and ran-

dom forest algorithms offering notable resilience to seasonal

changes. During the experiments, the following results were

obtained:

1) A person identification model trained on summer data,

which identifies a person with high accuracy (≥ 90%)

in the summer, will identify a person with low accuracy

(≤ 50%) in winter.

2) A model trained on winter data identified a person by

gait on winter data with high accuracy (≥ 90%).

3) A model trained on combined data (the dataset contains

both summer and winter data) will identify a person with

high accuracy (≥ 90%) both in summer and winter.

Although the present study was able to achieve an accuracy

of 98% in identifying a person in any season of the year, it

is not certain that if the sample were increased to a million

or more, the accuracy would remain at the same level. Future

research should focus on expanding the dataset (primarily due

to increasing the number of people in the sample) to cover

more nuanced seasonal variations and exploring advanced

preprocessing and modeling techniques to further refine the

model’s performance. Through these efforts, it is possible to

achieve a truly adaptable and reliable gait identification system

that remains effective regardless of the season.
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