
Fast and Precise Convolutional Jaro and
Jaro-Winkler Similarity

Ondřej Rozinek
University of Pardubice

Pardubice, Czech Republic

ondrej.rozinek@gmail.com

Jan Mareš
University of Pardubice

Pardubice, Czech Republic

jan.mares@vscht.cz

Abstract—In the domain of character-based approximate
string matching, edit distances such as Levenshtein have re-
mained predominant despite their quadratic time complexity.
This reality has prompted the adoption of more efficient met-
rics like Jaro and Jaro-Winkler. However, these methods often
overlook the significance of character order within the matching
window, which can adversely affect accuracy.

For the first time, we introduce a novel class of character-
based approximate string matching algorithms that leverage
a convolutional kernel, surpassing the performance of existing
state-of-the-art unsupervised character-based approximate string
matching algorithms. This paper presents Convolutional Jaro
(ConvJ) and Convolutional Jaro-Winkler (ConvJW), innovative
similarity metrics designed to overcome these shortcomings.
ConvJ and ConvJW utilize a convolutional approach with Gaus-
sian weighting to effectively capture the positional proximity of
matching characters, resulting in a more precise similarity eval-
uation. This method not only achieves computational efficiency
comparable to that of Jaro and Jaro-Winkler but also surpasses
the state-of-the-art in terms of F1-score, demonstrating faster
execution times compared to the conventional Jaro and Jaro-
Winkler implementations across various datasets.

Our extensive experimental analysis highlights the exceptional
performance of ConvJ and ConvJW across a range of datasets.
Remarkably, ConvJ exhibits a 7x faster execution time than the
fast Jaro implementation and exceeds the state-of-the-art F1-
score by a significant margin of 10% more than Jaro. By setting
a new benchmark in unsupervised character-based approximate
string matching, our research shows the new way for future ex-
ploration and development in this field. The ConvJ and ConvJW
algorithms, characterized by their quasilinear time complexity
and improved accuracy, provide a solid foundation for the
advancement of string matching techniques. These developments
hold promise for a broad spectrum of applications in data mining,
bioinformatics, and related areas.

I. INTRODUCTION

Character-based similarity metrics represent critical tools in

various domains, including data mining, bioinformatics, and

natural language processing. Widely used methods such as

Jaro [1] and Jaro-Winkler [2]–[5] offer efficient similarity

evaluation, but they often neglect the significance of character

order within the matching window. This disregard can po-

tentially compromise accuracy, especially when dealing with

strings where specific sequence holds considerable importance.

In this paper, we propose two novel metrics, Convolutional

Jaro (ConvJ) and Convolutional Jaro-Winkler (ConvJW), that

effectively address this limitation. Both metrics leverage a

convolutional approach with a Gaussian weighting function to

effectively capture the positional proximity of matching char-

acters, leading to significantly enhanced accuracy compared

to existing methods in the category of unsupervised character

based approximate string matching.

The key contributions of this work comprise:

Improved accuracy: ConvJ and ConvJW achieve superior

accuracy as measured by F1-score, surpassing the state-of-

the-art in unsupervised character based approximate string

matching.

Computational efficiency: Both metrics maintain

computational efficiency comparable to Jaro and Jaro-

Winkler, making them suitable for practical applications.

Faster execution: ConvJ exhibits even faster execution times

compared to the standard Jaro implementation.

These characteristics render ConvJ and ConvJW ideal for

tasks requiring high-performance string similarity calculations.

They set the stage for continued investigation of convolutional

similarity measures across diverse fields.

Despite different modern techniques the leading technolog-

ical companies using Jaro and Jaro-Winkler in their products

and it belongs to the most impactful and most used similarity

function for task in deduplication and matching. We list some

large products where are such techniques implemented:

A. Commercial products

• Oracle Data Quality: A component of Oracle’s broader

data management suite that offers data cleansing, profil-

ing, and matching capabilities. It likely uses algorithms

similar to Jaro-Winkler for its matching and deduplication

processes to ensure high data quality across enterprise

systems [6].

• Talend Open Studio: This open-source data integration

platform includes the Jaro-Winkler similarity function

in its Data Profiling and Data Quality, which can be

used for data cleansing and matching. You can find the

documentation for the Data Profiling and Data Quality

solution here: [7].

• IBM InfoSphere This data integration platform includes

the Jaro-Winkler similarity function in its Transformer

stage, which can be used for data cleansing and matching.

You can find the documentation for the Transformer stage

here: [8].

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 604 --

• Informatica Data Quality This data integration platform

includes the Jaro and Jaro-Winkler similarity functions in

its Data Quality transformation, which can be used for

data cleansing and matching. You can find the documen-

tation for the Data Quality transformation here: [9].

B. Open-source libraries

• Apache Lucene This open-source search engine library

includes the Jaro-Winkler similarity function in its Fuzzy-

Query class, which can be used for fuzzy search queries.

You can find the documentation for the FuzzyQuery class

here: [10].

This list is far from exhaustive; there are numerous other

commercial products and open-source libraries that utilize the

Jaro or Jaro-Winkler algorithms.

II. RELATED WORK

String similarity metrics play a crucial role in various

domains, including data mining, bioinformatics, and natural

language processing. Several established metrics exist, each

with its own strengths and weaknesses. Here, we discuss

relevant approaches and highlight how our proposed Convolu-

tional Jaro (ConvJ) and Convolutional Jaro-Winkler (ConvJW)

builds upon them. See Fig. 1.

Fig. 1. This figure delineates the taxonomy of character-based approxi-
mate string matching algorithms, categorizing them by their methodological
approach and operational characteristics. A newly introduced class, termed
’Convolution-Based’, as discussed in this article, highlights the main contri-
bution.

A. Established Edit Distance Measures

a) Levenshtein distance: This classic metric measures

the minimum number of edit operations (insertions, deletions,

substitutions) Required to transform one string into another

[11]. While efficient and widely used, its computational com-

plexity grows quadratically with string length, limiting its

scalability for large datasets [12].

b) Damerau-Levenshtein distance: An extension of Lev-

enshtein distance, it also considers transpositions as edit oper-

ations. This provides more flexibility but maintains quadratic

complexity [13].

c) Needleman-Wunsch algorithm: This global alignment

algorithm finds the optimal alignment between two strings,

offering high accuracy but being computationally expensive

for long strings [14].

d) Smith-Waterman algorithm: An improvement over the

Needleman-Wunsch algorithm for local sequence alignment,

the Smith-Waterman algorithm identifies the most similar

segment between two sequences. It is particularly useful in

bioinformatics for finding similar regions within genes or

proteins. The algorithm’s complexity remains quadratic, but

it often performs better in practice by focusing on the most

relevant segments of the sequences [15]. Recent advancements

have aimed at optimizing its performance through parallel

computing techniques and specialized hardware, such as GPUs

and FPGAs, to handle larger datasets more efficiently [16],

[17].

e) Longest Common Subsequence (LCS): The LCS prob-

lem involves finding the longest subsequence present in both

sequences without disturbing the order of characters. This

measure is crucial in diff utilities, version control systems,

and understanding the similarity between texts. Unlike the edit

distances, LCS focuses on similarity rather than the number

of edits. The complexity of the basic LCS algorithm is also

quadratic, but various optimizations and approximations have

been proposed to improve its scalability and efficiency [18],

[19].

B. Character-based Similarity Heuristics

a) Jaro similarity: This efficient metric focuses on

matching characters within a limited window around their

original positions. However, it does not consider the relative

order of characters within the window, potentially impacting

accuracy [1], [20].

b) Jaro-Winkler similarity: This variant of Jaro includes

a prefix bonus to prioritize matches at the beginning of strings,

improving performance for specific cases [2]. However, it

inherits the limitations of Jaro regarding positional information

[21].

C. Convolutional Approaches

Character-level convolutional neural networks (CNNs):

These have been explored for string similarity, achieving

high accuracy but often requiring large training datasets and

computational resources [22]–[24].

Word embeddings with cosine similarity: Embedding meth-

ods learn vector representations of words, and cosine similarity

measures the angle between them [25]. While effective for

semantic similarity, they might not capture precise character-

level differences relevant for our task [26].

Limitations of Existing Approaches: Edit distance measures

are generally computationally expensive for large datasets

[12]. Character-based metrics like Jaro and Jaro-Winkler ne-

glect the importance of character order within the match-

ing window. While CNNs offer high accuracy, they can be

resource-intensive [22], [25]. Word embeddings might not be

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 605 --

optimal for capturing fine-grained character-level similarities

[26].

Addressing the Limitations: ConvJ addresses these limi-

tations by combining the efficient matching mechanism of

Jaro with a convolutional approach. It incorporates Gaussian

weighting to emphasize matches closer in position and lever-

ages convolutions to capture the overall similarity landscape

effectively. This results in a computationally efficient metric

that considers both character matches and their relative order,

leading to improved accuracy compared to existing methods.

III. JARO SIMILARITY ALGORITHM

The Jaro similarity metric, introduced by Matthew A. Jaro,

serves as a measure for evaluating the similarity between two

strings, denoted as S1 and S2. This metric is particularly

useful in fields such as record linkage and spell checking,

quantifying the degree of similarity on a scale from 0 to 1,

where 0 indicates no similarity and 1 denotes an exact match.

Given strings S1 and S2, the Jaro similarity score,

sJ(S1, S2), is mathematically defined as follows:

sJ(S1, S2) =

{
0 if m = 0,
1
3

(
m
|S1| +

m
|S2| +

m−t
m

)
otherwise.

(1)

Here, |S1| and |S2| represent the lengths of strings S1 and

S2, respectively, m is the number of matching characters, and

t is the half number of transpositions. A matching character is

defined as one that is the same in both strings and is not farther

than
⌊
max(|S1|,|S2|)

2

⌋
− 1 positions away from its counterpart

in the other string. A transposition is considered when two

matching characters are in a different order in the two strings.

The computational complexity of the Jaro similarity Al-

gorithm 1 is O(|S1||S2|), where |S1| and |S2| are the

lengths of the two input strings. This efficiency makes it

highly suitable for real-time data processing and large-scale

data matching tasks. The Jaro similarity measure has found

extensive applications in various domains requiring accurate

string comparison, including database cleaning, information

retrieval, and natural language processing. It also serves as

the foundation for more sophisticated similarity metrics, such

as the Jaro-Winkler distance, which introduces adjustments for

common prefixes to increase precision in specific contexts.

Example 1. Jaro Similarity To demonstrate the Jaro sim-

ilarity, consider the strings S1 = ”MARTHA” and S2 =
”MARHTA”.

The matching characters are m = 6, as all characters in S1
match with those in S2, albeit in a slightly different order.

The half number of transpositions t (where a transposition is

a pair of matching characters in a different sequence between

S1 and S2) is calculated as 1, since two characters (’R’ and

’H’) are out of order.

Thus, the Jaro similarity score sJ can be calculated as

follows:

Algorithm 1 Jaro Similarity (implementation Rosetta [27])

Require: S1, S2 � Two input strings

Ensure: sJ(S1, S2) � Normalized similarity score between

0 and 1

1: if S1 = NULL or S2 = NULL then
2: return 0.0

3: end if
4: |S1| ← length of S1
5: |S2| ← length of S2
6: w ← max(|S1|, |S2|)/2− 1
7: Initialize s1Matches[1 . . . |S1|] to all false
8: Initialize s2Matches[1 . . . |S2|] to all false
9: m ← 0 � Number of matches

10: t ← 0 � Half the number of transpositions

11: for i = 0 to |S1| − 1 do
12: for j = max(0, i−w) to min(i+w+1, |S2|)− 1 do
13: if s2Matches[j] is true or S1[i] �= S2[j] then
14: continue
15: end if
16: s1Matches[i] ← true

17: s2Matches[j] ← true

18: m ← m+ 1
19: break
20: end for
21: end for
22: if m = 0 then
23: return 0.0

24: end if
25: k ← 0
26: for i = 0 to |S1| − 1 do
27: if s1Matches[i] then
28: while s2Matches[k] is false do
29: k ← k + 1
30: end while
31: if S1[i] �= S2[k] then
32: t ← t+ 1
33: end if
34: k ← k + 1
35: end if
36: end for
37: sJ(S1, S2) ← 1

3

(
m
|S1| +

m
|S2| +

m−t/2
m

)

38: return sJ(S1, S2)

sJ(S1, S2) =
1

3

(
m

|S1| +
m

|S2| +
m− t

m

)
(2)

=
1

3

(
6

6
+

6

6
+

6− 1

6

)
(3)

= 0.944 (4)

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 606 --

IV. JARO-WINKLER SIMILARITY ALGORITHM

The Jaro-Winkler similarity metric enhances the Jaro sim-

ilarity measure by giving more favorable scores to strings

that match from the beginning for a set prefix length. This

adjustment is particularly beneficial in applications where

common prefixes are an indication of similarity, such as name

matching in record linkage. The Algorithm 2 was developed

by William E. Winkler [2] to improve the accuracy of the Jaro

similarity metric in certain contexts.

The Jaro-Winkler similarity score, sJW(S1, S2), is calcu-

lated using the Jaro similarity score, sJ(S1, S2), with an

additional boost for common prefixes. The formula is given

by:

sJW(S1, S2) = sJ(S1, S2) + l · p · (1− sJ(S1, S2)), (5)

where l is the length of the common prefix up to a maximum

of 4 characters, p is a scaling factor for how much the score

is adjusted upwards for prefix similarity. A typical value for

p is 0.1.

The common prefix length l is defined as the number of

characters from the start of the strings that are identical, up

to a maximum of 4 characters. This means that the maximum

possible adjustment to the Jaro similarity score is 0.1×4×(1−
sJ(S1, S2)) = 0.4×(1−sJ(S1, S2)), which can significantly

influence the final similarity score for strings with common

prefixes.

Algorithm 2 Jaro-Winkler Similarity (implementation)

Require: S1, S2 � Two input strings

Ensure: sJW(S1, S2) � Normalized similarity score between

0 and 1

1: sJ ← Jaro Similarity(S1, S2)

2: l ← 0
3: for i = 0 to min(min(|S1|, |S2|), 4)− 1 do
4: if S1[i] = S2[i] then
5: l ← l + 1
6: else
7: break
8: end if
9: end for

10: p ← 0.1 � Scaling factor

11: sJW ← sJ + l · p · (1− sJ)
12: return sJW

The Jaro-Winkler similarity algorithm maintains the compu-

tational efficiency of the Jaro similarity, with an additional step

to calculate the prefix length. This makes it equally suitable

for real-time applications and large datasets where precise

string matching is crucial. The introduction of the prefix

scaling factor enhances the matching accuracy for strings with

common beginnings, making it especially useful in the fields

of data deduplication, record linkage, and information retrieval

where such characteristics are common.

Example 2. Jaro-Winkler Similarity To illustrate the Jaro-

Winkler similarity, we examine the strings S1 = ”DWAYNE”

and S2 = ”DUANE”.

First, calculate the Jaro similarity as above. Assuming m =
4 (matching characters excluding transpositions) and t = 1
(the ’W’ and ’U’ are transposed), the Jaro score is:

sJ(S1, S2) =
1

3

(
4

6
+

4

5
+

4− 1

4

)
≈ 0.822

The common prefix length l is 1 (for ’D’), and with p =
0.1 (the standard scaling factor), the Jaro-Winkler score sJW

becomes:

sJW(S1, S2) = sJ(S1, S2) + l · p · (1− sJ(S1, S2)) (6)

= 0.822 + 1 · 0.1 · (1− 0.822) (7)

= 0.822 + 0.018 (8)

= 0.840 (9)

This example illustrates how the Jaro-Winkler similarity

provides a slight increase over the Jaro similarity for strings

with a common prefix, emphasizing the importance of initial

characters in certain contexts.

V. CONVOLUTIONAL JARO (CONVJ) AND

CONVOLUTIONAL JARO-WINKLER (CONVJW)

A. Algorithm Overview

The ConvJ and ConvJW are innovative enhancements of the

traditional Jaro and Jaro-Winkler similarity algorithms, incor-

porating a convolutional approach with Gaussian weighting to

assess the similarity between two strings. This method extends

the original Jaro algorithm by applying a Gaussian-weighted

convolution operation, aiming to capture the positional prox-

imity of matching characters with greater detailed similarity

evaluation. See Algorithm 3 and Algorithm 4.

B. Gaussian Weighting

For any two positions i and j within strings S1 and S2,

respectively, the Gaussian weight is computed as:

G(i, j) = exp

(
−|i− j|2

2σ2

)
= exp

(
− d2

2σ2

)
, (10)

where σ represents the standard deviation of the Gaussian

kernel. This weighting function decreases the influence of

character matches as their positional distance increases, with

σ controlling the rate of this decrease.

C. Convolution Operation

The convolution operation aims to identify the optimal

character match between strings S1 and S2 within a predefined

sliding window, utilizing Gaussian weighting to balance prox-

imity and character accuracy. This procedure is encapsulated

by the calculation of Mw, representing the accumulated sum

of optimal match evaluations across all character positions in

S1:

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 607 --

Mw =

|S1|−1∑

i=0

max
j∈J(i)

{
G(i, j) · δS1[i],S2[j]

}
, (11)

where G(i, j) denotes the Gaussian weight function, empha-

sizing the impact of positional differences between characters

at indices i in S1 and j in S2. The Kronecker delta function,

δS1[i],S2[j], indicating an exact match between characters at

positions i and j:

δS1[i],S2[j] =

{
1 if S1[i] = S2[j],

0 otherwise.
(12)

The index set J(i) defines the matching range for a char-

acter at position i, determined by:

J(i) = {j : max(0, i− w) ≤ j ≤ min(|S2| − 1, i+ w)} ,
(13)

with w representing the half-window size, calculated based

on the desired coverage percentage and the standard deviation

(σ) of the Gaussian distribution. The calculation of w is

informed by the z-score (Z), which is derived from the desired

coverage percentage in a normal distribution. For a coverage

of 99.9%, the z-score is determined as follows

Z = Φ−1

(
99.9% + 1

2

)
, (14)

where Φ−1 denotes the inverse of the cumulative distribu-

tion function (CDF) for a standard normal distribution. Given

Z ≈ 3.29 for 99.9% coverage, w can be calculated by:

w = �3.29 · σ�, (15)

where �·� denotes the ceiling function, ensuring that w is

sufficiently large to include at least 99.9% of the normal dis-

tribution’s weight, thus maximizing the likelihood of capturing

the most relevant character matches within the window. This

selection of w ensures that the convolution operation robustly

accounts for both the precision of character matches and their

positional proximity.

D. Misalignment Calculation

The ConvJ and ConvJW metrics enhance string similarity

evaluation by incorporating a detailed assessment of character

misalignment between strings S1 and S2. This approach ex-

tends beyond simple transposition counts to offer a granular

examination of character positional deviations and their impact

on similarity perception.

Misalignment is assessed using an adjusted inverse Kro-

necker delta function, δ̄ij , to penalize positional discrepancies

more effectively:

δ̄ij = 1− δij , (16)

where δij is defined as:

δij =

{
1 if i = j,

0 otherwise,
(17)

Fig. 2. The graph illustrates the Gaussian kernel’s influence on convolution-
based string similarity, with a standard deviation (σ = 2), highlighting the
99.9% coverage area critical for the ConvJ and ConvJW algorithms. The
graph, marked with −w and w to denote the half-window size, emphasizes
the balance between character match precision and proximity.

indicating exact alignment of characters at index i in S1

with index j in S2, and 0 for misalignments. The complement,

δ̄ij , quantifies the degree of misalignment, which is then

weighted by the Gaussian function, G(i, j), to account for

the significance of positional differences:

Aw =
∑

(i,j)∈M

δ̄ij ·G(i, j), (18)

Here, Aw denotes the cumulative weighted sum of misalign-

ments across all character position pairs within the set M . This

measure not only identifies character matches but also captures

the complex spatial dynamics of string similarity, enhancing

the precision of the similarity score. The set M is defined

as the collection of all character position pairs (i, j) where

character i from string S1 is evaluated against character j
from string S2. Formally, M can be represented as:

M = {(i, j) : i ∈ S1, j ∈ S2, and |i− j| ≤ w} . (19)

The parameter σ in the Gaussian weighting function adjusts

the sensitivity to positional differences. A larger σ broadens

the Gaussian distribution, accommodating misalignments over

larger distances and thus penalizing distant mismatches less

severely. In contrast, a smaller σ emphasizes immediate prox-

imity, focusing the assessment on closely aligned character

pairs. This flexibility allows for the algorithm to be tailored to

different application needs, balancing precision with positional

variance tolerance.

This approach ensures that the ConvJ and ConvJW metrics

not only quantify character matches but also account for both

character presence and their orderly sequence.

E. Similarity Score

The ConvJ similarity score is computed

sConvJ =
1

3

(
Mw

|S1| +
Mw

|S2| +
Mw −Aw

Mw

)
, (20)

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 608 --

where Mw represents the sum of Gaussian-weighted matches

for characters in S1 against S2, and Aw accounts for the

weighted sum of misalignments between the two strings.

Algorithm 3 Convolutional Jaro Similarity with Gaussian

Precomputation (ConvJ)

Require: S1, S2 � Two input strings

Require: σ � Standard deviation for Gaussian weighting

Ensure: sConvJ � Normalized similarity score [0,1]

1: w ← �3.29 · σ�
2: G ← PrecomputeGaussian(w, σ)
3: function PRECOMPUTEGAUSSIAN(w, σ)

4: Initialize a 1D array G[0 . . . w]
5: for d = 0 to w do
6: G[d] ← exp

(
− d2

2σ2

)

7: end for
8: return G
9: end function

10: Mw ← 0 � Sum of weights for matches

11: Aw ← 0 � Sum of weights for misalignments

12: for i = 0 to |S1| − 1 do
13: M(i) ← 0
14: for j = max(0, i−w) to min(|S2|, i+w+1)− 1 do
15: if S1[i] = S2[j] then
16: weight ← G[|i− j|]
17: M(i) ← max(M(i), weight)
18: if weight = 1.0 then
19: break � Early termination

20: end if
21: end if
22: end for
23: Mw ← Mw +M(i)
24: if M(i) > 0 and S1[i] �= S2[j] then
25: Aw ← Aw +M(i)
26: end if
27: end for
28: sConvJ ← 1

3

(
Mw

|S1| +
Mw

|S2| +
Mw−Aw

Mw

)

29: return sConvJ

F. Computational Complexity and Applications

The time complexity of both the Jaro and Jaro-Winkler

similarity algorithms is O(|S1||S2|), where |S1| and |S2|
denote the lengths of the two strings being compared. This

complexity arises from the requirement to potentially compare

each character in one string to every character in the other

string within a certain matching window, scaling with the

product of the lengths of the two strings.

The memory complexity for these algorithms is O(|S1| +
|S2|). This is due to the need to store intermediate match

information, such as matched characters, for each string. This

storage is necessary to calculate the final similarity score,

including handling transpositions for the Jaro algorithm and

prefix similarity adjustments in the Jaro-Winkler extension.

These complexities suggest that while Jaro and Jaro-Winkler

are relatively efficient for shorter strings, their performance

Algorithm 4 Convolutional Jaro-Winkler Similarity (ConvJW)

Require: S1, S2 � Two input strings

Require: σ � Standard deviation for Gaussian weighting

Require: p = 0.1 � Prefix scaling factor

Ensure: sConvJW � Normalized ConvJW similarity score

between 0 and 1

1: sConvJ ← ConvJ(S1, S2, σ)

2: l ← 0
3: for i = 0 to min(min(|S1|, |S2|), 4)− 1 do
4: if S1[i] = S2[i] then
5: l ← l + 1
6: else
7: break
8: end if
9: end for

10: p ← 0.1 � Scaling factor

11: sConvJW ← sJ + l · p · (1− sJ)
12: return sConvJW

may degrade for longer strings due to the quadratic nature of

their time complexity. Despite this, they are popular for many

practical applications involving string similarity and approxi-

mate matching due to their simplicity and effectiveness.

The ConvJ algorithm introduces more efficient computa-

tional approach to approximate string similarity, characterized

by a quasilinear time complexity with respect to the length of

one string and the fixed window size. Specifically, the time

complexity is denoted as O(|S1|w), where |S1| is the length

of the first string and w is the fixed window size utilized

in the similarity calculation. This efficiency is achieved by

limiting comparisons to a fixed window around each character,

significantly reducing the number of operations compared to

traditional quadratic approaches.

Memory complexity for ConvJ is primarily influenced by

the storage of precomputed Gaussian weights and intermediate

calculations. Given the fixed window size w, the memory

requirement is O(w), accounting for the Gaussian weight

array and temporary variables used during computation. This

compact memory footprint makes ConvJ particularly suitable

for applications with stringent memory constraints.

Example 3. Convolutional Jaro Similarity (ConvJ) Con-

sider the strings S1 = ”MARTHA” and S2 = ”MARHTA”

for calculating Convolutional Jaro similarity with σ = 2 and

w = 7.

Given the matching window determined by w = 7, all

characters are within this range due to the strings’ lengths.

The Gaussian weight for each character position difference

(distance d) is calculated using G(i, j) = exp
(
− d2

2σ2

)
, with

σ = 2.

For simplicity, assume the Gaussian weights for matching

characters (ignoring character order) result in a sum of weights

Mw = 5.8 (a hypothetical value for illustrative purposes, re-

flecting the sum of Gaussian weights for matched characters).

Assuming no transpositions for a direct match scenario, the

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 609 --

ConvJ score is computed as:

sConvJ(S1, S2) =
1

3

(
Mw

|S1| +
Mw

|S2| +
Mw

Mw

)
(21)

=
1

3

(
5.8

6
+

5.8

6
+ 1

)
(22)

≈ 0.967 (23)

This score is slightly adjusted due to the convolutional

matching process, illustrating the nuanced similarity assess-

ment provided by ConvJ.

Example 4. Convolutional Jaro-Winkler Similarity (Con-
vJW) For the strings S1 = ”DWAYNE” and S2 =
”DUANE”, using σ = 2 and w = 7, and considering the

ConvJW approach:

First, calculate the ConvJ similarity as above. For this ex-

ample, let’s assume a hypothetical sum of Gaussian-weighted

matches Mw = 4.5 (for illustrative purposes), with a common

prefix length l = 1 (’D’), and a prefix scaling factor p = 0.1.

The ConvJW similarity incorporates both the ConvJ score

and an adjustment for the common prefix. Assuming the ConvJ

score is approximately 0.822 (for continuity with the Jaro

example):

sConvJW (S1, S2) (24)

= sConvJ(S1, S2) + l · p · (1− sConvJ(S1, S2)) (25)

= 0.822 + 1 · 0.1 · (1− 0.822) (26)

= 0.822 + 0.018 = 0.840 (27)

This score demonstrates the slight boost provided by the

Jaro-Winkler adjustment in the convolutional context, high-

lighting the initial character similarity’s importance.

These examples illustrate how ConvJ and ConvJW assess

string similarity, taking into account both the convolutional

matching strategy and the significance of starting characters,

especially when applying Gaussian weighting with specific σ
and w parameters.

VI. IMPLEMENTATION DETAILS

As a reference implementation of the Jaro similarity for

our experiments, we utilized the Rosetta Code implementation

[27] (see Algorithm 1) in the C# programming language. In

our implementation, we have made several enhancements to

improve execution time.

Our proposed ConvJ, detailed in Algorithm 3, introduces

several optimizations over the standard Jaro similarity calcu-

lation, leading to significant improvements in computational

efficiency, accuracy and execution speed. Key enhancements

include:

1) Elimination of Match Tracking Arrays: Unlike the

original Jaro algorithm, which utilizes boolean arrays

to track character matches between strings (lines 7-8

of Algorithm 1), ConvJ foregoes this approach. This

optimization reduces memory overhead and eliminates

the need for multiple array access operations, thereby

enhancing runtime performance.

2) Integrated Match and Miasalignment Calculation:
ConvJ computes character matches and misalignments

simultaneously within a single iteration through each

string. This integration contrasts with the Jaro method’s

sequential process, which separately identifies matches

and then calculates transpositions, thus reducing the

overall computational steps required. Through the loop

in lines 24-27 of Algorithm 3, for each character in S1,

we seek matches in S2 within the window w, optimizing

both match detection and misalignment evaluation.

3) Precomputed Gaussian Weights: The algorithm lever-

ages a precomputed vector of 1D Gaussian weights

based on the relative character positions within a prede-

fined window size. This precalculation avoids repetitive

weight computations during runtime, leading to a more

efficient execution. We precompute these values based

on the window size w and standard deviation σ (lines

1-3 and the PrecomputeGaussian function in lines 4-9

of Algorithm 3).

4) Localized Comparison with Gaussian Weighting: By

applying Gaussian weights to character comparisons,

ConvJ emphasizes closer character matches over distant

ones. This approach not only aligns with the intuitive

understanding of string similarity but also minimizes

unnecessary computations for characters outside the

maximum window size, further speeding up the algo-

rithm.

5) Early Termination on Perfect Character Match:
If a perfect match (character equality with maximum

Gaussian weight) is discovered, our algorithm terminates

the inner loop early (line 20 of Algorithm 3), sidestep-

ping unnecessary comparisons. This optimization proves

particularly efficacious for strings with high similarity,

curtailing the average computation time.

These improvements collectively contribute to a more per-

formant execution of the ConvJ similarity measurement, mak-

ing it particularly suitable for applications requiring high-

throughput processing of string comparisons.

VII. EXPERIMENTS

A. Overview

We evaluated the effectiveness of our novel algorithms,

ConvJ and ConvJW, on a suite of datasets, segmented into

two categories: Dataset A and Dataset B. Datasets A, which

are enumerated in Table I, span various entities characterized

by single attributes, as adapted from Cohen (2003) [21]. For

Dataset B [28], outlined in Table II, we specifically focused

on the first attribute, namely the name and title, for our

experiments. These datasets include complex records from the

Abt-Buy, Amazon-Google Products and DBLP-ACM sources,

which are designed for benchmarking entity resolution tasks.

The datasets are part of a collection curated by the DBS

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 610 --

Uni Leipzig, aimed at facilitating research in the domain

of entity resolution by providing a diverse set of scenarios

where entities need to be matched across different data sources

despite discrepancies in their representations [29].

TABLE I. DATASET A USED IN EXPERIMENTS FROM ORIGINAL
SOURCES [21]

Name Number of strings Name Number of strings
Animal 5,709 Game 911
Bird Kunkel 336 Park 654
Bird Nybird 982 Restaurant 863
Bird Scott1 38 Ucd-people 90
Bird Scott2 719 Census 841
Business 2,139

TABLE II. DATASET B USED IN EXPERIMENTS FROM ORIGINAL
SOURCES

Dataset #Tuples #True matches #Attributes
Abt-Buy 1081-1092 1097 4

Amazon-GoogleProducts 1363-3226 1300 4
DBLP-ACM 2614-2294 2224 4

B. Evaluation Metrics

Our analysis leveraged the non-interpolated average pre-

cision, adopting methodologies from prior works [21], [26].

Precision and recall are defined as follows:

Precision =
c(i)

i
, (28)

Recall =
c(i)

m
, (29)

where c(i) represents the count of correct matches up to rank

i, and m denotes the total correct matches. The interpolated

precision at recall level r maximizes precision for all ranks

i satisfying c(i)/m ≥ r. Performance comparison among

similarity functions utilizes the maximum F1-score, calculated

by:

F1-score = 2× (Precision × Recall)

Precision + Recall
× 100%. (30)

Results are depicted in Tables I and II for Dataset A and B,

emphasizing the comparative analysis of current state-of-the-

art character-based similarity functions.

C. Experimental Results and Discussion

In our comprehensive analysis, the Convolutional Jaro

(ConvJ) and Convolutional Jaro-Winkler (ConvJW) metrics

were assessed across multiple datasets to evaluate their per-

formance in comparison with state-of-the-art character based

approximate string matching such as Jaro [1], Jaro-Winkler

[2], Levenshtein [11], Damerau-Levenshtein [13], Smith-

Waterman [15], and Needleman-Wunsch [14]. The evaluation

focused on the F1-score, a critical metric reflecting both

precision and recall, to provide a balanced view of each

algorithm’s accuracy and efficiency.

Superior F1-Score Performance: The results, particularly

highlighted in Tables III and IV, demonstrate the superior

performance of ConvJ and ConvJW algorithms. ConvJW, with

a σ setting of 2, achieved the highest F1-score of 86.32% on

Dataset A, surpassing the traditional Jaro-Winkler score of

81.45%. This improvement emphasizes the efficacy of inte-

grating a convolutional methodology and Gaussian weighting

to accurately capture the proximity of character positions with

improved precision. Similarly, on Dataset B, ConvJ with a σ
setting of 0.5 achieved an F1-score of 89.13%, outperforming

Jaro-Winkler’s 86.17%, further affirming the robustness of our

proposed metrics in varied dataset contexts.

Optimal Sigma (σ) Settings: The performance sensitivity

to the σ parameter was evident, where ConvJ and ConvJW’s

effectiveness varied with changes in σ. For instance, ConvJ’s

performance peaked at a σ value of 0.5 on Dataset B,

indicating the importance of tuning this parameter to balance

between emphasizing close character matches and accommo-

dating positional variances. This adaptability allows for fine-

tuning the algorithms to match the specific requirements of

different datasets, contributing significantly to their superior

performance (Fig. 3 and Fig. 4).

TABLE III. COMPARISON OF CHARACTER-BASED SIMILARITY FUNCTIONS
RANKED IN DESCENDING ORDER OF F1-SCORE FOR DATASET A

Similarity Function F1-score
ConvJW (σ = 2) 86.32 %
ConvJW (σ = 1) 86.12 %
ConvJW (σ = 0.5) 86.12 %
ConvJ (σ = 1) 84.99 %
ConvJ (σ = 2) 84.72 %
ConvJ (σ = 0.5) 84.54 %
Jaro-Winkler 81.45 %
Damerau-Levenshtein 76.86 %
Levenshtein 76.83 %
Needleman-Wunsch 76.25 %
Smith-Waterman 75.71 %
Jaro 75.29 %

Fig. 3. F1-score performance as a function of the σ parameter in the ConvJ
algorithm. The graph demonstrates the optimal σ value for maximizing the
F1-score, illustrating the algorithm’s sensitivity to this parameter for Dataset
A.

D. Performance Analysis

Performance assessments were conducted on an Intel i7

11370H processor with 16GB RAM, comparing execution

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 611 --

TABLE IV. COMPARISON OF CHARACTER-BASED SIMILARITY FUNCTIONS
RANKED IN DESCENDING ORDER FOR DATASET B

Similarity Function F1-score
ConvJ (σ = 0.5) 89.13%
ConvJ (σ = 1) 89.03%
ConvJ (σ = 2) 88.55%
ConvJW (σ = 0.5) 88.38%
ConvJW (σ = 1) 88.22%
ConvJW (σ = 2) 87.99%
JaroWinkler 86.17%
Needleman-Wunsch 85.85%
Jaro 85.78%
Levenshtein 85.39%
Damerau-Levenshtein 85.37%
Smith-Waterman 84.38%

Fig. 4. F1-score performance as a function of the σ parameter in the ConvJ
algorithm. The graph demonstrates the optimal σ value for maximizing the
F1-score, illustrating the algorithm’s sensitivity to this parameter for Dataset
B.

times and performance deltas to gauge the algorithms’ effi-

ciency. The summarized outcomes in Tables V and VI for

Dataset A and B reveal the computational advantages of ConvJ

and ConvJW against established string matching algorithms.

Computational Efficiency: Notably, ConvJ and ConvJW

not only excelled in accuracy but also in computational

efficiency. As evidenced in Tables V and VI, ConvJW

(σ = 0.5) recorded the fastest execution time on Dataset

B with 0:10:158, showcasing a substantial speed advantage

over traditional metrics like Jaro (1:21:675) and Jaro-Winkler

(1:33:368). This efficiency is paramount for large-scale ap-

plications, enabling rapid and precise string similarity assess-

ments across extensive datasets.

VIII. CONCLUSION

In this paper, we introduced Convolutional Jaro (ConvJ) and

Convolutional Jaro-Winkler (ConvJW), algorithms aimed at

refining the precision of character-based approximate string

matching. By integrating a convolutional methodology with

Gaussian weighting, these algorithms more accurately assess

the positional proximity of characters, a critical aspect often

overlooked by traditional metrics. Our extensive evaluation

across a variety of datasets revealed that ConvJ and ConvJW

TABLE V. PERFORMANCE OF STRING MATCHING ALGORITHMS ON
DATASET A

Algorithm Time (mm:ss:ms) Performance Δ (%)
ConvJ (σ = 0.5) 0:02:412 0.00%
ConvJW (σ = 0.5) 0:02:660 +10.28%
ConvJ (σ = 1) 0:03:607 +49.54%
ConvJW (σ = 1) 0:03:841 +59.25%
ConvJ (σ = 2) 0:05:540 +129.68%
ConvJW (σ = 2) 0:05:577 +131.22%
Jaro 0:10:314 +327.61%
Jaro-Winkler 0:10:736 +345.11%
Levenshtein 0:33:629 +1294.24%
Damerau-Levenshtein 0:58:098 +2308.71%
Needleman-Wunsch 1:13:331 +2940.26%
Smith-Waterman 1:24:695 +3411.40%

TABLE VI. PERFORMANCE OF STRING MATCHING ALGORITHMS ON
DATASET B

Algorithm Time (mm:ss:ms) Performance Δ (%)
ConvJ (σ = 0.5) 0:10:158 0.00%
ConvJW (σ = 0.5) 0:12:733 +25.34%
ConvJ (σ = 1) 0:15:948 +56.94%
ConvJW (σ = 1) 0:17:424 +71.54%
ConvJ (σ = 2) 0:25:537 +151.49%
ConvJW (σ = 2) 0:27:048 +166.32%
Jaro 1:21:675 +705.88%
Jaro-Winkler 1:33:368 +819.36%
Levenshtein 6:20:035 +3759.22%
Damerau-Levenshtein 11:20:111 +6708.99%
Needleman-Wunsch 15:45:774 +9296.85%
Smith-Waterman 16:38:783 +9815.41%

outperform existing methods, with ConvJ notably achieving

execution speeds up to 7 times faster than the fastest known

Jaro implementation and enhancing the F1-score by 10%

compared to Jaro.

According to the results, it appears that ConvJ and ConJW

exhibit superior performance for larger strings in comparison

to traditional approaches. This improvement can be attributed

to the fact that the window size is not proportional to the string

size but is instead fixed and determined by the parameter σ,

running in quasilinear time complexity O(|S1|w).
The research establishes a new standard in the domain of

character-based string matching, highlighting the potential of

ConvJ and ConvJW to significantly improve upon the accuracy

and efficiency of current approaches. The quasilinear time

complexity and superior accuracy of these algorithms suggest

a promising direction for future research, with implications for

a wide range of applications in data mining, bioinformatics,

and related fields. This work encourages further exploration

into convolutional similarity measures and their potential to

advance string matching techniques.

ACKNOWLEDGMENT

It was supported by the Erasmus+ project: Project number:

2022-1-SK01-KA220-HED-000089149, Project title: Includ-

ing EVERyone in GREEN Data Analysis (EVERGREEN)

funded by the European Union. Views and opinions expressed

are however those of the author(s) only and do not necessarily

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 612 --

reflect those of the European Union or the Slovak Academic

Association for International Cooperation (SAAIC). Neither

the European Union nor SAAIC can be held responsible for

them.

REFERENCES

[1] M. A. Jaro, “Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida,” Journal of the American
Statistical Association, vol. 84, no. 406, pp. 414–420, 1989.

[2] W. E. Winkler, “String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage.” 1990.

[3] Y. Wang, J. Qin, and W. Wang, “Efficient approximate entity matching
using jaro-winkler distance,” in International conference on web infor-
mation systems engineering. Springer, 2017, pp. 231–239.

[4] K. Dreßler and A.-C. Ngonga Ngomo, “On the efficient execution of
bounded jaro-winkler distances,” Semantic Web, vol. 8, no. 2, pp. 185–
196, 2017.

[5] P. Pitchandi and M. Balakrishnan, “Document clustering analysis with
aid of adaptive jaro winkler with jellyfish search clustering algorithm,”
Advances in Engineering Software, vol. 175, p. 103322, 2023.

[6] “Oracle database data quality operators documentation,”
https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/
data-quality-operators.html, 2023, accessed: 2024-03-19.

[7] “Talend open studio documentation,” https://help.talend.com/r/en-US/8.
0/studio-user-guide/defining-matching-key, accessed: 2024-03-19.

[8] “Ibm infosphere documentation,” https://www.ibm.com/docs/en/ignm/7.
0.0?topic=overview-score-type, accessed: 2024-03-19.

[9] “Informatica data quality documentation,” https://docs.informatica.com/,
accessed: 2024-03-19.

[10] “Apache lucene documentation,” https://lucene.apache.org, accessed:
2024-03-19.

[11] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.
Soviet Union, 1966, pp. 707–710.

[12] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[13] F. J. Damerau, “A technique for computer detection and correction of
spelling errors,” Communications of the ACM, vol. 7, no. 3, pp. 171–176,
1964.

[14] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[23] M. Zhang, J. Tang, and X. Zhang, “Text data processing and analysis:
A brief survey,” in Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, 2016, pp.
2065–2066.

[15] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[16] X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, “Fpgasw: acceler-
ating large-scale smith–waterman sequence alignment application with
backtracking on fpga linear systolic array,” Interdisciplinary Sciences:
Computational Life Sciences, vol. 10, pp. 176–188, 2018.

[17] M. Farrar, “Striped smith-waterman speeds database searches six times
over other simd implementations,” Bioinformatics, vol. 23, no. 2, pp.
156–161, 2007.

[18] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,” Proceedings of the Seventh International Sym-
posium on String Processing and Information Retrieval (SPIRE 2000),
pp. 39–48, 2000.

[19] D. Hirschberg, “A linear space algorithm for computing maximal com-
mon subsequences,” Communications of the ACM, vol. 18, no. 6, pp.
341–343, 1975.

[20] P. Christen, “A comparison of personal name matching: Techniques
and practical issues,” in Sixth IEEE International Conference on Data
Mining-Workshops (ICDMW’06). IEEE, 2006, pp. 290–294.

[21] W. W. Cohen, P. Ravikumar, S. E. Fienberg et al., “A comparison of
string distance metrics for name-matching tasks.” in IIWeb, vol. 3, 2003,
pp. 73–78.

[22] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[24] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very
deep convolutional networks for text classification,” arXiv preprint
arXiv:1606.01781, 2016.

[25] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[26] N. Gali, R. Mariescu-Istodor, D. Hostettler, and P. Fränti, “Framework
for syntactic string similarity measures,” Expert Systems with Applica-
tions, vol. 129, pp. 169–185, 2019.

[27] Rosetta Code, “Jaro similarity,” https://rosettacode.org/wiki/Jaro
similarity, n.d., accessed: 2024-02-28.

[28] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution
approaches on real-world match problems,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 484–493, 2010.

[29] DBS Universität Leipzig, “Benchmark datasets for entity reso-
lution,” https://dbs.uni-leipzig.de/en/research/projects/object matching/
benchmark datasets for entity resolution, 2023, accessed: 2023-02-
21. [Online]. Available: https://dbs.uni-leipzig.de/en/research/projects/
object matching/benchmark datasets for entity resolution

ISSN 2305-7254__PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

-- 613 --

