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Abstract—This research endeavor is dedicated to the integra-
tion of specialized attentional mechanisms within the intricate
web of deep neural network architectures aimed at discerning
indications of lung carcinoma from monochromatic snapshots
derived from computerized axial tomography. Within this ex-
ploration, we propose a myriad of adaptations to the traditional
non-local blocks, infusing them with bespoke attentional nuances
to resonate with the idiosyncrasies of medical imaging data.
These bespoke adaptations ushered in discernible ameliorations
in the performance metrics of the fundamental deep neural
network model. Our solution facilitated a reduction in the model
parameter count without compromising classification efficiency
significantly. Additionally, it enabled a streamlined approach
to feature extraction, contributing to enhanced interpretability
and efficiency in the recognition process. These advancements
were meticulously validated across test subsets meticulously
curated from the Open Joint Monochrome Lungs Computer
Tomography dataset, the Lung Image Database Consortium and
Image Database Resource Initiative dataset, the Iraq-Oncology
Teaching Hospital / National Center for Cancer Diseases dataset,
Radiology Moscow and The Cancer Imaging Archive and from
several others.

I. INTRODUCTION

In the realm of modern medicine, lung cancer stands out

as a particularly lethal adversary, contributing significantly to

the global toll of 1.76 million annual deaths [1]. Advanced

diagnostic techniques heavily rely on computer tomography

(CT) scans, offering detailed cross-sectional views of internal

organs.

In parallel, the rise of online medical consultation plat-

forms [2]–[5] highlights a growing demand for user-friendly

interfaces capable of processing single-channel monochrome

CT images. This shift underscores the need for simplified yet

effective image analysis methods accessible to everyday users.

While existing methodologies for processing CT data ex-

ist [6]–[8], their suitability for rapid online diagnostics is

hampered by resource-intensive hardware requirements and

sluggish processing speeds [9], [10]. As a result, alternative

approaches for detecting lung neoplasms have gained traction,

with some showcasing impressive results, such as the two-

stage self-attention-based neural model [11]. However, the

sequential nature of such approaches often leads to prolonged

inference times, prompting investigations into streamlined

architectures [12]–[14].

Our research focuses on refining neoplasm recognition

frameworks to improve classification and segmentation accu-

racy. By introducting of specialized self-attention blocks and

integrating them into deep neural network (DNN) structure,

we successfully reduce inference times while maintaining high

classification performance.

II. RELATED WORK

Biomedical imaging holds paramount significance in the de-

tection of neoplasms within the pulmonary domain, necessitat-

ing robust methodologies for image classification and instance

segmentation within automated diagnostic systems. An array

of solutions has been devised to address the intricate task of

neoplasm segmentation across both general and biomedical

imaging domains [11]–[20].

Transformer-based architectures have risen to prominence

as leading contenders in numerous benchmarks for biomedical

image segmentation and classification [21]–[23]. However, it

is imperative to acknowledge that the attention mechanism

inherent within transformers was not originally tailored for

biomedical imaging modalities [24]–[26]. The utilization of

multi-headed attention [27], [28] within transformer architec-

tures often incurs a substantial parameter count, computational

resource demands, and relatively sluggish inference speeds.

Moreover, extant solutions typically neglect to adapt the at-

tention mechanism to the idiosyncrasies of biomedical image

processing or capitalize on distinctive visual cues characteristic

of such data [29], [30].

In our current study, we pivot our focus towards the re-

finement of the attention mechanism for the precise iden-
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tification of neoplasms within lung CT images, leveraging

single-channel monochromatic representations derived from

CT scans. These high-resolution images afford detailed cross-

sectional insights into pulmonary structures, facilitating the

discernment of anomalies such as neoplastic growths. Central

to our investigation is the adaptation of the attention mecha-

nism encapsulated within non-local blocks [31], [32], which

serve to bolster self-attentive capabilities within deep neural

network architectures tailored for biomedical image analysis.

Prior research endeavors have explored diverse methodolo-

gies for neoplasm recognition within lung CT imagery, with

certain approaches demonstrating considerable promise [11]–

[14], which exhibited commendable performance on select

datasets, underscoring the potential for specialized approaches

within this domain. Nevertheless, there persists a notable

lacuna in tailored methodologies that optimize non-local block

construction specifically for neoplasm identification and seg-

mentation within lung CT images.

Our ongoing research endeavors encompass the iterative

development and meticulous evaluation of modified non-

local blocks [11], [31], [32], meticulously considering the

structural intricacies of neoplasms and the overarching visual

characteristics inherent within lung CT imagery. By integrating

these refined non-local blocks within established architectural

frameworks such as U-Net [15], our overarching objective is to

augment the efficiency and efficacy of neoplasm segmentation

and classification within lung CT images, thereby catalyzing

advancements in diagnostic precision and clinical decision-

making.

III. PROPOSED SOLUTION

A. Model structure overview

Our approach draws upon the methodological framework

delineated in the cited papers [12]–[14], a selection made

due to its direct relevance to our research objective. The

model expounded therein was meticulously crafted to optimize

the two-stage methodology [11] tailored for the analysis of

biomedical images, with a particular focus on lung neoplasm

detection employing single-channel monochrome CT images.

The authors proposed a solution adept at concurrent scene

classification and neoplasm segmentation, exhibiting promis-

ing performance metrics within the domain of lung image

analysis. Consequently, the foundational version we opted to

scrutinize closely mirrors the conceptual framework articulated

in the cited literature.

Central to our baseline solution is a U-Net [15] architecture

augmented with attention blocks strategically incorporated into

intermediate representations across diverse scales, as visually

represented in Fig. 1.

In an earnest endeavor to streamline the architectural design,

we embarked on a systematic exploration of the potentiality

of eliminating non-local attention blocks. Regrettably, such an

endeavor yielded a discernible decline in performance met-

rics, as meticulously documented in the Experimental Results

section.

Moreover, our experimental findings shed light on the

inherent constraints in the baseline architecture’s capacity for

generalization, a phenomenon elucidated in detail within the

corresponding section of the referenced literature.

Thus, the architectural framework under consideration

serves as an exemplary foundational scaffold upon which to

iteratively refine and tailor non-local blocks specifically for the

task of lung neoplasm segmentation, leveraging single-channel

monochrome CT images.

B. Basic non-local block (Basic NLB) construction

As discussed above, we adopted self-attention as the funda-

mental implementation of the non-local block, utilizing grid

tokenization techniques (depicted in Fig. 2).

The operational framework of this attention mechanism,

as depicted in Fig. 2, is widely recognized. Initially, the

input tensor undergoes grid-based tokenization, partitioning

it into rectangular segments. Each token (grid element) is

subsequently transformed into an isomorphic tensor xi, where

|xi| = N = n ∗ n, and dim(xi) = d. Subsequently, three sets

of tensors Q,K, V are derived through trainable projection

operations (f(x), g(x), h(x)) applied to the original tensor set

xi, resulting in

Q = f(xi),K = g(xi), V = h(xi).

Following this, similarity coefficients between each element

qi ∈ Q and other tensors are computed by evaluating dot

products qi∗kj ∀j ∈ [1..n]. Normalization, such as SoftMax
normalization, is then applied to these dot products, often

preceded by division by the square root of the dimension

dim(ki) = dk, yielding

αi = SoftMax(qik1/dk, qik2/dk, ..., qi ∗ kn/dk).

Subsequently, an attention map is constructed by linearly

combining these coefficients αi with the respective tensors

vi and applying a trainable projection operation v(x) to the

resultant expression:

oi = v(
∑

j∈[1..n]

(αi ∗ vj)).

Alternatively, this sequence of operations can be represented

in matrix form, where Q,K, V are denoted in matrix format

as

Q = [f(x1), ..., f(xn)],

K = [g(x1), ..., g(xn)],

V = [h(x1), ..., h(xn)].

Consequently, the resultant attention map can be computed as:

O = v(SoftMax(
QKT

√
dk

)).

The resulting attention map is employed to reweight the

elements of the input tensor X = [x1, ..., xn] in conjunction

with the residual connections concept, yielding: Y = WO+X .
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Fig. 1. U-Net based DNN model with attention modules for neoplasms presence recognition.

Fig. 2. Original non-local block scheme [12].

C. Localized non-local block (Localized NLB) modification
It is worth noting a significant aspect of the self-attention

mechanism elucidated above, namely its non-local nature.

Specifically, the process of weighting the components of O,

as detailed earlier, involves computing the following linear

combination:

oi = v(
∑

j∈[1..n]

(αi ∗ vj)).

As such, each tensor’s attention map relies on similarity

coefficients

αi = SoftMax(qik1/dk, qik2/dk, ..., qi ∗ kn/dk)
that remain invariant regardless of the spatial arrangement of

the corresponding tensors qi and kj . However, the specific con-

text of our investigation, particularly the distinct characteristics

and spatial organization of lung neoplasms, prompted us to

explore methods to enhance the significance of neighboring

regions relative to those more distant from the region of

interest.

To implement this concept technically, we introduce an

additional coefficient to scale the dot products of vectors

from corresponding regions. This coefficient diminishes as the

regions move away from the focal point. Consequently, we

employ modified coefficients calculated using the formula:

α∗
i = SoftMax(dist(i, 1)qik1/dk,

dist(i, 2)qik2/dk, ..., dist(i, n)qikn/dk,

where

dist(i, k) = 1/min(|columni − columnk|, |rowi − rowk|),
with columnx and rowx representing the column and row

numbers of the grid position of region x, respectively. The

overall operational schema of the proposed modification to

the non-local block is depicted in Fig. 3.

D. Symmetry-based non-local block (S-B NLB) modification

In our exploration of modifying the attention mechanism

for the task at hand, we investigated an alternative heuristic
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Fig. 3. Localized non-local block scheme.

rooted in the concept of symmetry within vectorized tokens.

This approach was motivated by observations pertaining to

the spatial distribution and morphology of neoplasms within

lung CT images. Unlike nodules, which manifest as irregular

protrusions in lung CT images, neoplasms within lung CT

scans often exhibit characteristic shapes and occupy consider-

able spatial extents.

To accommodate these distinct features observed in lung

CT images, we adjusted the weighting scheme of tokens

within the intermediate attention map based on dot product

vectors derived from the partitioning of original token vec-

tors. Specifically, we introduced modified self-attention feature

maps defined as

o∗i = v(θi ∗
∑

j∈[1..n]

(αi ∗ vj)),

where

θi = (xi[1, ..., �(n+ 1)/2�]∗
xi[�(n+ 1)/2�+ 1, n])/|xi[1, ..., �(n+ 1)/2�]∗

xi[�(n+ 1)/2�+ 1, n]|.
This modification, illustrated in Fig. 4, aims to enhance the

attention mechanism’s sensitivity to the distinctive features of

neoplasms in lung CT images, thereby optimizing their recog-

nition within the analytical framework under consideration.

E. Symmetry-localized non-local block (S-L NLB) modifica-
tion

Upon confirming the efficacy of the aforementioned adap-

tations within our research framework, detailed in Section IV,

we made the decision to integrate these concepts. This amalga-

mation resulted in the refinement of the attention mechanism’s

architecture (refer to Fig. 5).

Consequently, to implement this amalgamated modification,

we introduced localized adjustments while computing similar-

ity coefficients

αi = SoftMax(dist(i, 1)qik1/dk,

dist(i, 2)qik2/dk, ..., dist(i, n)qikn/dk),

as elucidated earlier. Additionally, we incorporated posterior

modifications to the attention map based on the symmetric

heuristic

o∗i = v(θi ∗
∑

j∈[1..n]

(αi ∗ vj)),

as discussed previously.

IV. EVALUATION

A. Dataset description

In this study, we have collected publicly available lung

CT-snapshots datasets: LIDC-IDRI, IQ-OTH/NCCD, Lung-

PET-CT-Dx and Radiology Moscow and The Cancer Imaging

Archive.

1) LIDC-IDRI: The Lung Image Database Consortium and

Image Database Resource Initiative (LIDC-IDRI) dataset con-

tains diagnostic and lung cancer screening thoracic CT scans

with marked-up annotated lesions. It encompasses over 1,000

cases, each with associated radiologist annotations of nodules,

including their locations and characteristics.

2) IQ-OTH/NCCD: Iraq-Oncology Teaching Hospital / Na-

tional Center for Cancer Diseases (IQOTH/NCCD) encom-

passes CT scans from both healthy individuals and lung cancer

patients at various disease stages. Expert oncologists and

radiologists from these centers annotated the slides within the

dataset, which comprises a total of 1,190 images derived from

CT scans across 110 cases.

3) Lung-PET-CT-Dx: The Lung-PET-CT-Dx dataset con-

tains paired PET and CT scans of patients with lung cancer.

These images are annotated with information regarding the

location, size, and type of lung tumors. The dataset contains

more than 200,000 images from 355 patients.

4) Radiology Moscow and The Cancer Imaging Archive:
The dataset employed for training, validation, and test-

ing purposes encompasses a total of 10,052 single-channel

monochrome images. These images, sourced from combined

datasets available from Radiology Moscow and The Cancer

Imaging Archive, are meticulously categorized based on the

presence or absence of neoplasms. Notably, the dataset is

evenly divided into two distinct classes, facilitating balanced
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Fig. 4. Symmetry-based non-local block scheme.

Fig. 5. Symmetry-localized non-local block scheme.

representation during training, testing, and validation phases,

adhering to a partitioning ratio of 7,196 for training, 1,428 for

validation, and 1,428 for testing.

It is noteworthy that for some of the listed datasets we

needed to transform the image format, converting the detec-

tion markup into a segmentation markup (by applying the

watershed method to the region of interest). The markup for

binary classification was obtained naturally from the meta-

information presented in the listed data sets.

B. Experimental results

Based on the aforementioned criteria, the our combined

dataset is partitioned into two distinct classes. Consequently,

we rely on conventional metrics utilized for assessing the

efficacy of binary classification, including Precision, Recall,

and F1-score. And mIoU and mDice for segmentation task.

Furthermore, alongside evaluating the classification perfor-

mance, we conduct a comparative analysis of the inference

time across various neural network architectures investigated,

considering our hardware configuration and the number of

model parameters.

The findings are presented in Table I for the segmentation

task and in Table II for the classification task.

The outcomes depicted illustrate that proposed specialized

attention blocks usage allows to increase the performance of

baseline DNN architectures.

TABLE I. RESULTS OF THE 
CLASSIFICATION TASK

Method
classification metrics

precision recall F1
L-Net 0.782 0.692 0.734

EfficientNet-b4 0.822 0.791 0.806
ResNet50 0.813 0.774 0.793

Unet encoder with self attention 0.799 0.769 0.784
MultiAttention over ResNet50 0.837 0.798 0.817
MultiAttention X 1 over L-Net 0.846 0.799 0.822

Unet + S-B NLB 0.878 0.836 0.856
Unet S-L NLB 0.884 0.843 0.863

TABLE II. RESULTS FOR 
SEGMENTATION TASK

Method
seg metrics

IoU Dice
L-Net 0.801 0.890

Unet++ 0.823 0.903
DeepLabV3+ 0.815 0.898

Unet with self attention 0.835 0.910
Unet + localized NLB 0.846 0.917

Unet + S-B NLB 0.851 0.920
Unet + S-L NLB 0.878 0.935

V. CONCLUSION

In this study, we present an investigation into the application

of specialized attention blocks integration into DNN structure

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 663 ----------------------------------------------------------------------------



for recognizing neoplasms in lung CT images. Our efforts

have culminated in the development of a special types of

non-local blocks that integration achieves better performance

on the joint dataset for both of the classification problem

statement and the segmentation problem statement, surpassing

baseline models without specialized attention integration. We

also conduct a comprehensive performance comparison with

alternative approaches explored in our research.

In addition to detailing the neural network architectures

utilized in our study, we provide supplementary segmentation

labeling for the datasets under consideration. Future endeavors

may focus on extending the application of our developed

methodologies to address various challenges in biomedical

image processing beyond neoplasm recognition in lung CT

snapshots.
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[7] K. Kobylińska, T. Orlowski, M. Adamek, and P. Biecek, “Explainable
machine learning for lung cancer screening models,” Applied Sciences,
vol. 12, p. 1926, 02 2022.

[8] G. Kasinathan and S. Jayakumar, “Cloud-based lung tumor detection and
stage classification using deep learning techniques,” BioMed Research
International, vol. 2022, 2022.

[9] H. Yang, L. Chen, Z. Cheng, M. Yang, J. Wang, C. Lin, Y. Wang,
L. Huang, Y. Chen, g. S. Pen, Z. Ke, and W. Li, “Deep learning-based
six-type classifier for lung cancer and mimics from histopathological
whole slide images: a retrospective study,” BMC Medicine, 2021.

[10] M. A. Heuvelmans, P. M. van Ooijen, S. Ather, C. F. Silva, D. Han,
C. P. Heussel, W. Hickes, H.-U. Kauczor, P. Novotny, H. Peschl,
M. Rook, R. Rubtsov, O. von Stackelberg, M. T. Tsakok, C. Arteta,
J. Declerck, T. Kadir, L. Pickup, F. Gleeson, and M. Oudkerk,
“Lung cancer prediction by deep learning to identify benign lung
nodules,” Lung Cancer, vol. 154, pp. 1–4, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0169500221000453

[11] A. Samarin, A. Savelev, and V. Malykh, “Two-staged self-attention based
neural model for lung cancer recognition,” in 2020 Science and Artificial
Intelligence conference (SAI ence). IEEE, 2020, pp. 50–53.

[12] A. Samarin, A. Savelev, A. Toropov, A. Dzestelova, V. Malykh,
E. Mikhailova, and A. A. Motyko, “One-stage classifiers based on
u-net and autoencoder with attention for recognition of neoplasms from
single-channel monochrome computed tomography images,” Pattern
Recognition and Image Analysis, vol. 33, pp. 132–138, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:259310593

[13] A. Samarin, A. Savelev, A. Toropov, A. Dzestelova, V. Malykh,
E. Mikhailova, and A. Motyko, Prior Segmentation and Attention Based
Approach to Neoplasms Recognition by Single-Channel Monochrome
Computer Tomography Snapshots, 08 2023, pp. 561–570.

[14] A. Samarin, A. Savelev, A.and Toropov, A. Dzestelova, V. Malykh,
E. Mikhailova, and A. Motyko, “One-staged attention-based neoplasms

recognition method for single-channel monochrome computer tomogra-
phy snapshots,” Pattern Recognition and Image Analysis, vol. 32, pp.
645–650, 10 2022.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.
[Online]. Available: http://arxiv.org/abs/1505.04597

[16] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A
nested u-net architecture for medical image segmentation,” CoRR, vol.
abs/1807.10165, 2018. [Online]. Available: http://arxiv.org/abs/1807.
10165

[17] F. Isensee, J. Petersen, S. A. A. Kohl, P. F. Jäger, and K. H.
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