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Abstract—A live time-depended tasks execution based on
distributed multi-agent network rely strongly on time synchro-
nization ability of the system. A desynchronisation of the system
may lead to incorrect result or even failure at performing a
certain task. In this paper we propose a time-synchronization
algorithm derived from fast Nesterov gradient descent.

I. INTRODUCTION

Precise time synchronization is a non-trivial yet critical

prerequisite for the correct and efficient operation of dis-

tributed multi-agent systems (MAS) [1], [2] , especially those

deployed in applications with stringent timing requirements

and dynamic operational contexts. Examples of such systems

abound in modern engineering, encompassing domains such

as cooperative robotics, sensor networks for environmental

monitoring or surveillance, and distributed control systems for

industrial automation or smart grids [3]. In these scenarios,

where agents collaborate to achieve complex, time-sensitive

objectives, even minor deviations in their individual time

references can propagate through the network, leading to sig-

nificant performance degradation, inaccuracies in data fusion

and decision-making, task execution failures, and, in extreme

cases, potential safety hazards. This inherent vulnerability

underscores the paramount importance of developing robust

and efficient time synchronization algorithms specifically tai-

lored to mitigate the challenges posed by clock drift, network

latency, and dynamic environmental conditions in distributed

settings.

Traditional approaches to time synchronization [4], [5], [6]

while offering valuable insights and foundational principles,

often exhibit limitations when confronted with the complex-

ities of real-world deployments. Consensus-based algorithms,

for instance, may suffer from slow convergence rates, espe-

cially in large-scale networks or when faced with communica-

tion constraints. Clock synchronization protocols, such as the

Network Time Protocol (NTP), can be susceptible to network

delays and vulnerabilities, potentially impacting their accuracy

and reliability. While Stochastic Gradient Descent (SGD) [7]

has been explored as a potential solution for time synchroniza-

tion, its performance can be suboptimal in dynamic environ-

ments [8]where clock drifts and measurement noise exhibit

non-stationary characteristics. Consequently, there exists a

pressing need for more sophisticated methods that can not only

adapt to evolving conditions but also achieve precise synchro-

nization rapidly, ensuring the reliable and timely execution of

tasks within stringent time constraints.

Fast gradient methods, with Nesterov’s accelerated gradient

descent [7] as a prime example, offer a compelling avenue

for addressing these challenges. Unlike traditional gradient

descent, which relies solely on the current gradient infor-

mation, Nesterov’s method incorporates a ”momentum” term

that leverages past gradient information to accelerate con-

vergence, particularly for strongly convex functions. This

inherent ability to exploit historical trends makes fast gradient

methods well-suited for handling the dynamic nature of time

synchronization, where clock drifts [9] and network conditions

can vary over time. however, the direct application of fast

gradient methods to time synchronization necessitates careful

consideration of the unique challenges presented by distributed

environments:

1) Non-stationarity: Individual clock drifts and fluctuating

network conditions introduce time-varying parameters

into the optimization problem, requiring algorithms that

can adapt to this non-stationary optimization landscape.

Traditional fast gradient methods, designed for static

optimization problems, may struggle to maintain con-

vergence in such dynamic settings.

2) Noise Resilience: Clock readings and communication

channels are inherently noisy, introducing uncertainties

that can hinder the convergence of optimization algo-

rithms. Robustness to noise is therefore crucial to ensure

accurate and reliable time synchronization.

3) Distributed Operation: Time synchronization algorithms

must operate efficiently in a decentralized manner,

taking into account limited communication bandwidth,
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varying computational capabilities of agents, and the

potential for network disruptions. This requires careful

design choices to minimize communication overhead

and ensure robust performance in the face of network

imperfections.

This paper presents a novel time synchronization algo-

rithm explicitly designed to address these challenges. By

building upon the foundations of fast Nesterov gradient de-

scent and incorporating mechanisms to handle non-stationarity

and noise, our algorithm achieves both rapid and accurate

time synchronization in distributed multi-agent systems. We

provide a rigorous analysis of the algorithm’s convergence

properties, proving its ability to achieve synchronization under

specific conditions. Furthermore, we demonstrate its effec-

tiveness through simulations in realistic scenarios, showcasing

its superior performance compared to existing methods. This

work contributes to the advancement of reliable and high-

performance time synchronization techniques, enabling the

deployment of distributed MAS in increasingly complex and

time-critical applications across diverse domains

II. PROBLEM STATEMENT AND PROPOSED ALGORITHM

A. Multi-agent network description

A network system consisting of j nodes called as agents is

being considered. The system is working in a decentralized

way and tries to synchronise a time flow of each agent to

minimize a time difference between agents. Let N = {1, ..., j}
be a set of agents that tries to synchronize a grid. Each agent

has got their own working frequency νi, where i is a number

of agent in N . That makes an agent count it’s own time as a

first-order Markov process, from observer standpoint of view

we can describe it as (1):

tik+1 = tik +
ωi
k

νi
+ ζik, (1)

were ωk is a time modification coefficient at step k, which will

be modified by later proposed algorithm. For a single agent

that is not connected to a network zik = 1 at each k, ζk is a

noise caused at step k by internal delays and both internal and

external processes.

B. Agents communication

Agents are able to communicate with each other through a

network described by the undirected graph G = (N , E), where

N is a set of vertices and E ⊆ N ×N is a set of edges. Let

(j, i) ∈ E if there is an edge between agents j and i. The latter

means that agent j is send his current time estimation to agent

i and vice versa. For an agent i ∈ N , the set of neighbors is

defined as N i = {j ∈ N : (j, i) ∈ E}. The in-degree of

i ∈ N equals |N i|. Here and after, | · | is the cardinality of a

set.

We associate a weight bij > 0 with each edge (j, i) ∈ E .

Matrix B = [bij ] is called an adjacency or connectiv-

ity matrix of the graph. Denote GB as the corresponding

graph. Define the weighted in-degree of node i as the

i-th row sum of B: di(B) =
∑n

j=1 b
ij and D(B) =

diag{d1(B), d2(B), . . . , dn(B)} is the corresponding diagonal

matrix. The symbol L(B) = D(B) − B stands for the

Laplacian of graph GB .

In this paper, we rely on the next definition:

Definition 1. (Connectivity) An undirected graph G is said

to be connected if there is a path between every pair of distinct

vertices of G.

This definition is widely used in cooperative networked

systems [10] and related to consensus theory that will be used

in our work.

C. Algorithm formulation

In this paper, the problem is to minimise the difference

in time estimation between agents in a multi-agent system

is being described. A synchronisation occurs at the time of

consensus which for a simplicity happens every time-step

of agent with a least frequency. There are 2 purposes of

synchronisation: the first one is to understand how to modify

the agents flow of time compared to other agents. It’s done

through the search of a coefficient ωk = [ω1
k, ...ω

j
k]

T using a

consensus algorithm (2) that minimise a Laplacian potential

[11].

Find wk = 1−ArgminXk∈ RXk(t), ∀k = 1, ..., k

ωk+1(t) = 1− 1

tikh

∑
j∈N

bij(tik−1 +
ωk

νi
− tjk), (2)

where h is a step-size of consensus algorithm, tjk is time of

j agent. Observation starts at k = 0 that makes algorithm

applicable from k = 1 onwards.

Second one, is agents are trying to estimate a real time of a

multi-agent system. We can also describe a system flow of time

as a function of first-order Markov process (1) with noise.That

allow to incorporate easily a loss function into combination

with (2) to get a final function (3):

f(t̂, t, ω) = g
∑
j∈N

(t̂k − tjk)

(
p1 − p1g

tik

∑
j∈N

(t̂k − tjk)+

+p3 − p3
tikh

∑
j∈N

bij(tik−1 +
ωk

νi
− tjk)

)
,

(3)

were t̂ is a real time of a system, p1, p2, g are the weight

coefficient of the function.

Let (Ω,F ,P) be the underlying probability space correspond-

ing to sample space Ω, set of all events F , and probability

measure P. Fk−1 be σ-algebra of all probabilistic events

happened up to time instant k = 1, 2, . . . . E denotes mathe-

matical expectation, and Ek denotes conditional mathematical

expectation with respect to σ-algebra defined by t̂0, . . . , t̂k−1.

The algorithm proposed in this paper at each step k =
1, ..., kn (time starts at k = 0) provides estimate t̂k that can

be use by the agent and trying to approach minimum tk of

the function (3) (minimum tk can change over time). The

algorithm provides a sequence of estimates {t̂k}∞k=0 solving

the following problem (4):
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Find t̂k s.t. ∃N,C < ∞: ∀k > K

Ek‖t̂k − tk‖2 ≤ C. (4)

Assumption 1. Functions Fk have a common Lipschitz

constant L > 0 and strong convexity constant μ > 0:

∀t ∈ R
n ‖∇Fk(t)‖ ≤ L‖t− tk‖, (5)

〈∇Fk(t), t− tk〉 ≥ μ‖t− tk‖2. (6)

Assumption 2. For every k ≥ 0, drift is bounded as

‖Fk(t)− Fk+1(t)‖ ≤ a‖∇Fk(t)‖+ b, (7)

‖∇Fk+1(t)−∇Fk(t)‖ ≤ c. (8)

Assumption 3. ∀i ∈ N , j ∈ N i the noises ξi,jk are centered

and have bounded variance σ2.

Assumption 4. Communication graph GB is connected.

To solve the problem defined by (3) with consideration of

Assumptions 1-4 we propose the Fast Local Voting Protocol

for Time Synchronisation algorithm (FLVPTS) for each agent

i. Algorithm strongly relies on the our result we previously ob-

tained in [12]. The proposed FLVPTS algorithm has following

steps:

1) Chose t̂i0 ∈ R. (if time starts at 0 seconds chose 0). Set

tio = t̂i0. Chose h > 0, η ∈ (0, μ), αx ∈ (0, 1) so that

αx satisfying the inequality (9) can always be found.

Define H1 = h− h2L
2 .

2) k-th iteration (k ≥ 0):

a) Find αk ∈ [αx, 1) so that

H1 − α2
k

2γk+1
> 0. (9)

b) Let γk+1 = (1− αk)γk + αk(μ− η).
c) Choose

zik =
1

γk + αk(μ− η)
(αkγkt

i
k + γk+1t̂

i
k)

and find f i(zik, t, ω).
d) Find a new estimate t̂ik+1 = zik + hf i(zik, t, ω).
e) Set tik+1 as (10):

tik+1 =
1

γk

[
(1− αk)γkt

i
k+1+

+αk(μ− η)zik − αkf
i(zik)

]
.

(10)

The proposed algorithm should be launched at each agent i
independently.

Theorem 1. The problem (3) is solved by the FLVPTS

algorithm with

C =
2

μ
D∞

where D∞ is defined as (11):

D∞ = α−1
�

[2a+ hc

4ε
+ 2b+

+ (1− α�)(b+A∞c)+

+ h2L

2
σ2 +

c2

2η

] (11)

for Γ = maxn≥0 γk, ε ∈
(
0, 1

a(1+α�)+hc

(
H − α2

�

2Γ

)]
and α�,

η, h chosen in the algorithm.

The estimation error after a finite number of iterations is

bounded as:

Ekfk(t̂k)− f�
k ≤

n∏
i=1

(1− αk)(φ0(t0)− f� +Φ) +Dk

where φ0(x) = f0(t̂0) +
γ0

2 ‖x − t0‖2, Φ = γ0c
2

2μ2 , {αk}∞n=0,

{Λk}∞n=0 and {Zk}∞n=0 are sequences defined as (12-14):

αk ∈ [α�, 1), Λ0 = 1, Λk+1 = (1− αk)Λk (12)

A0 = 0, Ak+1 = (1− αk)((1− λk)a+Ak),

Zk = (1− λ)(b+ ac) +Akc,
(13)

D0 = 0, Dk+1 = (1− αk)Dk +
a(1 + αk) + hc

4ε
+

+ (1 + αk)b+ (1− αk)Zk+

+ h2L

2
σ2 +

αkc
2

2η
.

(14)

Proof is mainly similar to that in [12].

III. RESULT OF SIMULATIONS

In this section, we present a result of a numerical exper-

iment which illustrates the synchronisation between 5 fully

connected agents with non-equal rate of work. The synchro-

nization process takes place after a certain amount of time

(15 seconds) has passed since the start of the experiment.

Synchronization occurs at a frequency that is equal to the

frequency of an agent with a lowest rate of work. Parameters

of algorithm define as follows:L = 7, 1, μ = 0, 9, ν =
0, 8, γ = 0, 08, α = 0, 08. These parameters are chosen to

satisfy Assumptions 1–4.

The quality of protocol is defined by 2 metrics:

1) RMSE of agent i compared to other agents at time-step

k (Fig.1):

RMSEi
k =

√√√√ 1

N − 1

N∑
j=1

(t̂ik − t̂jk)
2

2) Mean RMSEk at time step k (Fig. 2):

MRMSEk =
1

N

N∑
i=1

STDi
k

At Fig.3 we can observe the time flow of each agent with and

without system synchronization compared to the simulation

of global time flow (in a way described as a ground truth).

The difference between the 8 Hz agent is due to the too low

frequency of operation, this agent was introduced to see how

the algorithm works with agents operating at low frequencies.
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Fig. 1. RMSE of agent i

Fig. 2. Mean RMSEk at time step k

IV. CONCLUSION

This article presented a time synchronization algorithm

for multi-agent systems, suitable for synchronizing time-

dependent tasks such as live process simulations. Several

avenues for further development are possible. Adaptive pa-

rameter tuning could be implemented at each step, employing

reinforcement learning and neural networks to optimize perfor-

mance. Additionally, incorporating the ability for the algorithm

to recognize the need for synchronization within the context

of the current task could enhance efficiency. Finally, exploring

methods for correcting past time steps during synchronization

could improve overall accuracy and consistency.

[4] A. Amirkhani and A. H. Barshooi, “Consensus in multi-agent systems:
a review,” Artificial Intelligence Review, vol. 55, no. 5, pp. 3897–3935,
2022.

Fig. 3. The time flow of each agent
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