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Abstract—This paper introduces a novel method for auto-
matically classifying questions with multiple labels, using data
specifically sourced from Stack Overflow. Traditional tagging
methods frequently face challenges due to the complexity and
semantic diversity of these questions, resulting in inconsistent
and sometimes inaccurate results. The process starts with pre-
processing to remove any unwanted elements. Next, we convert
the questions into meaningful representations using SMPNet. The
semantic vectors obtained are then processed using UMAP to
help us understand the overall structure of the data and make
it easier to cluster similar items.

After dimensionality reduction with UMAP, we use the K-
Means method to group the questions into clusters, with the best
number of groups determined by the Silhouette Score. Finally, a
fine-tuned DeBERTa model is trained for each cluster to accu-
rately predict the appropriate tags. Our approach significantly
outperforms traditional methods, achieving 2% improvement
over the best baseline. This strategy improves model efficiency
by narrowing the focus to specific subsets of data.

I. INTRODUCTION

Stack Overflow is a popular platform where programmers

at all skill levels go to find answers to coding problems. Each

user can ask questions and get help from others who might

have solutions. This website is continuously growing, and as of

November 2022, four new questions were being added every

minute, with over 34 million answers and 100 million monthly

visits from developers. This growth has made effective content

organization a challenge [1] [2].

Tags in Stack Overflow are important tools that describe

the subjects of questions, helping to sort them into clear

and specific groups. Tags are crucial for directing questions,

improving searches, helping users navigate, and enhancing

overall organization. Given the large number of users and

questions, tagging has become one of the most efficient

methods for organizing content [3] [4]. However, assigning

appropriate tags manually is not without challenges. Users

with different levels of knowledge sometimes add irrelevant

tags, leading to inconsistencies in tagging, which, in turn,

affect search precision and content organization.

Automatically assigning tags to questions on Stack Over-

flow is a significant challenge in the field of Natural Language

Processing (NLP). The platform’s vast and diverse content

makes automatic tag assignment a complex task. Despite

the clear advantages of automation, such as reducing human

errors and ensuring consistency, accurately modeling the rich

semantic context of questions remains a daunting task [1].

Previous studies have shown that adding appropriate tags can

significantly enhance information retrieval, improving both

precision and recall in search results [1]. However, existing

methods often fail to fully leverage the context and depth of

information present in questions and answers.

In this study, we introduce a method to automatically tag

questions on Stack Overflow using the pre-trained DeBERTa

model [5]. DeBERTa (Decoding-Enhanced BERT with Dis-

entangled Attention) is an advanced NLP model built on

BERT [6] and RoBERTa [7]. DeBERTa stands out among

NLP models due to its advanced attention mechanisms, which

allow it to capture rich semantic information from text. This

capability makes it particularly well-suited for handling the

complexity of Stack Overflow’s diverse content, enabling more

accurate and contextually relevant tag assignments. Our multi-

stage proposed method uses these advantages to make tagging

more efficient and accurate, which helps in better organizing

and finding information on Stack Overflow.

The contribution of this paper is structured as follows:

Section II succinctly presents an overview of related research;

Section III elaborates on the proposed methodology; Section

IV discusses an in-depth analysis with an explanation of the

experimental results; and Section V concludes this paper.

II. RELATED WORK

Saha et al. [8] developed a method for predicting tags using

the Support Vector Machines (SVM) algorithm. Their ap-

proach involves two main steps. First, an algorithm generates

a list of possible tags by examining the given question. Then, a

second algorithm checks the degree of similarity between the

question and the model. Xia et al. [9] introduced TagCombine,

a system that automatically suggests tags by combining three

special methods. These methods help improve tagging for

items without tags by using techniques such as ranking based

on similarity, ranking for multiple labels, and ranking based

on tag terms.
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Building on TagCombine, Short et al. [10] propose a hybrid

tag recommendation system, combining text-based techniques

from TagCombine with network-based recommendation ap-

proaches, which is called NetTagCombine. This approach

combines traditional text analysis methodologies, such as TF-

IDF, with network-oriented strategies so that a better predic-

tion about tags may be carried out more precisely. Saini and

Tripathi [11] suggested a way to predict tags for posts on Stack

Overflow, focusing on the 1,000 most common tags. They used

a method called multi-label classification, specifically a one-

vs-all approach with a linear SVM. They tried other methods

like Naive Bayes and unique feature extraction.

Alreshedy et al. [12] proposed a classifier to predict pro-

gramming languages from questions on Stack Overflow, using

the XGBoost algorithm. They cleaned the data, which included

titles, bodies, and code snippets, and then processed it using

TF-IDF, with a minimum document frequency set to 10. Jain

and Lodhavia [13] studied how to predict tags for questions on

Stack Overflow using two methods: a random forest classifier

and a k-nearest neighbor algorithm. They found that the k-

nearest neighbor method worked better than the random forest

method for this task.

Khezrian et al. [14] performed tag prediction using Tag-

BERT, which was based on the BERT framework. BERT is

a language representation model that utilizes a bidirectional

Transformer architecture, allowing it to consider both left and

right contexts simultaneously. During the pre-training phase,

the model learns masked language modeling and next-sentence

prediction tasks that build deep contextualized embeddings

for words. In this research, the pretraining and embedding

operations were carried out by the BERT module. Output

from BERT was transferred to a textual model for further

processing through convolutional neural networks (CNNs) and

deep neural network (DNN) layers. Xu et al. [15] proposed the

Post2Vec architecture that utilizes the embedding of words

with Word2Vec and predicts tags on Stack Overflow posts.

The preprocessing, input layer, feature extraction layers, and

feature combination module with tag prediction comprise the

main parts of the Post2Vec model.

Devine and Blincoe [16] suggested using Extreme Multi-

label Classification (XMLC) for predicting tags on Stack

Overflow without needing labeled data. They tested fourteen

different pre-trained models and found that the MPNet model,

which was partly trained on data without tags, worked the best.

Their research also showed that models trained on specific

types of text, like titles or question-answer pairs, can be very

good at classifying data without any prior training, especially

when there isn’t much-tagged data available for a particular

topic.

He et al. [17] developed the PTM4Tag model that enhances

the recommendations of tags for posts on Stack Overflow using

pre-trained models. The proposed model mainly operates in

three steps: pre-processing, feature extraction, and classifica-

tion. In the pre-processing stage, the raw data from Stack Over-

flow is organized into titles, descriptions, and code snippets.

These are then processed during the feature extraction stage

using pre-trained models, such as BERT, to generate feature

vectors that are combined through a fusion layer into a unified

representation of the post. In the classification stage, this is

finally converted into a tag vector that shows the likelihood

of every tag. Utilizing a multi-layer neural network aligns

the post representation with the most appropriate tags, using

different pre-trained models for each of the components.

Erjon et al. [18] applied multiple sentence embeddings

based on BERT to represent Stack Overflow questions. They

used a k-nearest neighbor multi-label classifier to predict tags

by exploiting similarities in feature vector representations.

Among the methods tested, RoBERTa-Sentence proved to

be the most effective for sentence embedding, demonstrating

superior performance in the tagging task. Subramani et al. [19]

explored tag prediction for Stack Overflow questions using

deep learning models. They worked with the StackSample

dataset, focusing on the top 50 tags. Their approach involved

training MLP, LSTM, and GRU models, with the results

showing that the LSTM and GRU models outperformed the

MLP model.

Chehreh et al. [20] developed a multi-stage method for

tagging Stack Overflow questions. The process starts with NLP

techniques to preprocess the questions, followed by embedding

them using the MPNet-based sentence transformer model.

First, candidate tags are extracted using the YAKE algorithm,

and second, candidate tags are identified through one of the

multi-label k-nearest neighbors, multi-label Random Forest, or

cosine similarity methods. In the next stage, overlapping tags

are selected and scored, with a genetic algorithm normalizing

features and assigning weights to identify the top five tags.

III. APPROACH

This section starts by introducing the dataset used in this

research and then explains the method we propose in detail.

It outlines the key characteristics of the data and the rationale

behind the chosen approach, setting the foundation for the

subsequent analysis and implementation.

A. Dataset Analysis

Stack Overflow has become a crucial resource for devel-

opers and researchers, resulting in the development of various

datasets and tools for studying its content. The Stack Overflow

dataset comes in different versions, and these datasets are

useful for many NLP tasks. The version we’re using can be

found on Kaggle [21].

The dataset includes 10% of the text from questions and

answers on the Stack Overflow website and is divided into

three separate files. The questions file holds the ID, title,

body, creation date, closure date, score, and owner ID for

all non-deleted Stack Overflow questions. The answers file

contains the body, creation date, score, and owner ID for

each answer, with the ParentId column connecting it to the

corresponding question in the questions file. Furthermore, the

tags file provides the ID and tags for each question [21].

This dataset includes 1,264,218 questions and 3,750,995

tags, with 37,036 unique tags. Each question in this dataset
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is associated with up to 5 tags, with an average of 2.9 tags

per question. The 20 most common tags in this dataset are

shown in a word cloud in Fig. 1.

Fig. 1. Illustrates the 20 most frequent tags of the dataset by word cloud

B. Proposed Method

The structure and main steps of the proposed method are

visualized in Fig. 2. This figure provides a clear overview of

the approach, highlighting the main components and workflow

involved in the method.

Fig. 2. Illustrates the proposed method

The primary goal of this approach is to develop a multi-label

classification model that can correctly predict the right tags for

each question. Since questions can have different meanings

and need various labels, this method uses a two-step process:

first, clustering questions by how similar they are in meaning,

and then adjusting separate models for each cluster. This plan

helps the model work better and faster because each model

deals with a more similar part of the data.

In the first stage, the questions need to be pre-processed

to remove any extra noise and to transform the text into a

form that is effective for clustering and classification. During

this stage, the text is converted to lowercase to reduce case

sensitivity. Additionally, URLs and HTML tags are removed

to clean the text of extra noise. Punctuation and numbers are

also removed, leaving only letters and spaces. After this, the

text is tokenized, and common and insignificant words that do

not affect meaning (stopwords) are removed. Finally, words

are lemmatized to return them to their base form, ensuring

that all variations of a word are considered the same unit.

After pre-processing, the questions are converted into se-

mantic vectors. For this purpose, we use SMPNet [22], a

sentence transformer model that is based on MPNet [23] and

fine-tuned on one billion sentence pairs from various NLP

tasks.

MPNet is a version of transformer models [24] that lever-

ages the advantages of BERT and XLNet [25]. XLNet is

a general autoregressive pretraining model. XLNet models

bi-directional context using a training strategy called Per-

muted Language Modeling (PLAM). This technique allows

the model to learn dependencies across left and right contexts

by considering all the possible permutations of the input

factorization. MPNet model uses PLM to more effectively

capture dependencies between predicted tokens. Additionally,

MPNet integrates auxiliary positional information as input,

allowing the model to process entire sentences and reduce

positional discrepancies that exist in XLNet.

MPNet has undergone pre-training on a substantial text

corpus exceeding 160 GB. SMPNet, employing Siamese and

triplet network architectures akin to SBERT [26], derives

significant semantic embeddings from sentences. SBERT, the

first sentence transformer model, reduced the time required

to find the most similar pair from 10,000 sentences to about

5 seconds by making modifications to BERT. Thus, while

both SBERT and SMPNet use similar structures, SMPNet is

more accurate and efficient, using newer methods compared

to SBERT. This model can turn semantically similar sentences

into vectors that are close to each other.

After obtaining the semantic vectors from SMPNet, these

vectors are further processed using UMAP [27] for dimension-

ality reduction. UMAP helps in preserving the global structure

of the data while reducing the dimensionality, making it more

efficient for clustering. By reducing the dimensionality of the

vectors, UMAP enables the K-Means clustering algorithm to

work more effectively, especially in terms of both computa-

tional efficiency and the quality of the clusters formed. The

proportion of dimensions before and after applying UMAP is

illustrated in Fig. 3. This pie chart highlights the significant

reduction in dimensions achieved through UMAP.

After converting the sentences into lower-dimensional vec-

tors with UMAP, they are clustered using the K-Means al-

gorithm [28]. Determining the optimal number of clusters

is a key challenge in clustering. An incorrect choice can

result in inadequate separation of sentences and, consequently,

complicate the classification models. To tackle this issue,

we utilize the Silhouette Score criterion [29]. The Silhouette

Score is a metric for evaluating clustering quality, combining

intra-cluster and inter-cluster information. Specifically, the

Silhouette Score rewards clustering solutions that show both

compactness within individual clusters and clear separation

between clusters. This metric generally takes a value between

-1 and 1; a value close to 1 indicates good clusters, while

a value close to -1 indicates poor clusters. The number of

clusters with the highest Silhouette Score is selected as the

optimal number of clusters.

In Fig. 4, the calculated Silhouette Scores for different
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numbers of clusters, ranging from 10 to 50, are displayed. This

chart helps us select the optimal number of clusters, which

corresponds to the highest Silhouette Score.

Once the clusters are identified, each cluster is examined

separately. For each cluster, a DeBERTa model is fine-tuned

to learn the appropriate labels for the questions in that cluster

effectively. This model has been improved by introducing

disentangled attention and an enhanced masked decoder. In the

disentangled attention mechanism, each word is indexed with

two vectors, one for its content and another for its position

in the sentence. This separation allows the model to pay

more effective attention to both the semantic and positional

relationships of words. DeBERTa’s enhanced masked decoder

also considers the absolute positions of words in the masked

word prediction process, which helps the model better distin-

guish differences in sentences with similar words. DeBERTa

outperforms BERT and RoBERTa in various NLP tasks and

has achieved significant results, especially in text identification

and classification. In this stage, the questions and their tags

are fed into the DeBERTa model, which is specifically trained

for that cluster.

This approach offers several key advantages. First, models

are trained on smaller groups of similar questions instead of

the whole dataset, which can have very different meanings.

This makes the models more accurate. Second, by splitting

the data into different groups and training separate models,

we can create smaller and better models. This reduces the

time it takes to make predictions and makes the system work

more efficiently.

Fig. 3. Proportion of Dimensions Before and After UMAP

IV. EXPERIMENTAL RESULTS

This section details the results of our experiments in

benchmarking the effectiveness of the proposed method. We

compared our model against baseline approaches using various

metrics that emphasize efficiency improvements. These results

will help confirm that our method can capture the subtlety aris-

ing in multi-label classification tasks while question tagging

and, therefore, find wider applications. To ensure our model

is strong during training and testing, we removed tags that

appeared less than 100 times in the data. We then evaluated our

model’s performance using Precision, Recall, and F1-Score.

Fig. 4. Silhouette Scores Across Cluster Counts (10-50)

Our dataset includes questions from Stack Overflow, with each

question having three main parts: the title, the question itself,

and any code that goes with it. These parts are important for

our analysis.

In the evaluation phase, our approach predicts up to five tags

per question. For this evaluation to be fair, it is designed to

suit the number of tags that each question may actually have.

For instance, if a question has only three associated tags, we

evaluate only the top three predicted tags from our approach.

The results of these evaluations are presented in Table I.

TABLE I. EVALUATION RESULTS OF 
ALL TAGS

Approach F1 score Recall Precision

Erjan et al. 2023 0.541 0.643 0.467

Xu et al. 2021 0.625 0.740 0.541

Chehreh et al. 2024 0.659 0.766 0.578

Our Approach 0.679 0.788 0.597

In this study, the impact of different training data sizes

on model quality was also examined. The results indicate

that increasing the training data size has a direct effect on

improving model performance, but the extent of this impact

varies across different stages. For instance, when the data

volume increases from very low levels (such as 1/16 and 1/8)

to larger amounts, a significant improvement in model quality

is observed. This suggests that at these early stages, the model

is highly dependent on having more data, and adding more

data rapidly enhances its performance.

However, at higher levels, such as when the data volume

increases from 3/4 to the full dataset, the changes in model

quality gradually diminish. In other words, at these stages,

the model already has sufficient data for learning, and adding

more data has a lesser impact on improving its performance.

Thus, it can be concluded that during the early stages
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of increasing data, the changes in model quality are more

pronounced. However, as the model approaches using the full

dataset, these changes gradually decrease, and the additional

data contributes less to improving the model’s performance.

This finding highlights the importance of having sufficient

data during the early stages of training, while the efficiency

of adding more data decreases in the later stages.
The results of this evaluation are illustrated in Fig. 5, which

clearly show the changes in model quality based on the size

of the training data.

Fig. 5. Impact of Training Data Size on Model Quality (F1-Score)

As part of our experiments, we checked how dimensionality

reduction affects our results, so we evaluated our method both

without and with this dimensionality reduction. The findings

showed that using dimensionality reduction made the system

work much faster. Additionally, as shown in Table II, this

method not only cuts down on processing time but also boosts

the performance of our model.

TABLE II. COMPARISON OF MODEL PERFORMANCE WITH AND 
WITHOUT DIMENSIONALITY REDUCTION

Approach F1 score Recall Precision

Without dimensionality
reduction

0.665 0.773 0.583

With dimensionality
reduction

0.679 0.788 0.597

V. CONCLUSION

This paper presents a novel and robust approach to the

automatic multi-label classification of questions, specifically

tailored for the dynamic and diverse environment of Stack

Overflow. The complexity of accurately tagging questions on

such a platform, where topics can span a wide range of

domains, poses significant challenges that traditional methods

have struggled to address. By implementing a two-stage strat-

egy that first clusters questions based on semantic similarities

and then fine-tunes dedicated models for each cluster, we have

made substantial progress in enhancing both the precision and

effectiveness of the tagging process.

The integration of advanced NLP models, such as SMPNet

for generating meaningful semantic embeddings and DeBERTa

for fine-tuned classification, has proven to be particularly

advantageous. When combined with dimensionality reduction

techniques like UMAP, these models facilitate a more manage-

able and accurate clustering process. Additionally, employing

the Silhouette Score to determine the optimal number of clus-

ters further enhances the reliability of our approach, ensuring

that each model is trained on a well-defined and homogeneous

subset of data.

Our experimental results demonstrate a significant improve-

ment over baseline methods, both in terms of F1-score and in

generalizing across various types of questions. The approach is

scalable and can be adapted to other large-scale, content-rich

platforms where effective content organization is at a premium.
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