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Abstract—This study explores the vulnerability of Internet-
exposed services and the prevalence of Brute Force Attacks
(BFAs) as an intrusion method. It highlights the significance
of anti-hammering mechanisms in thwarting such attacks but
acknowledges that some services lack these protective measures.
Moreover, the potential consequences of successful breaches vary,
ranging from data leakage to complete system compromise. This
paper explores research opportunities presented by studying the
quality of BFAs, with a specific focus on Secure Shell (SSH)
attacks. It discusses previous research in this area and pro-
poses methodological improvements, including enhanced pattern
matching techniques and the evaluation of similarity metrics
based on Bloom Filters (BFs). Its conclusion critically reflects
on the findings and suggests directions for future research.

Index Terms—Bloom Filter (BF), Brute Force Attack (BFA),
Monitoring, Risk monitoring, Secure Shell (SSH), Similarity
assessment, Supervision, Surveillance

I. INTRODUCTION

Once a service becomes publicly exposed to the Internet,

network scanners usually discover its ports briskly as at-

tackable targets. At best for an offender, they can exploit a

known Common Vulnerability Exposure (CVE) to deface such

a service, attain sensitive data, or even access the underlying

operating system. If a service requires secret login credentials

and no CVE exists, BFAs may remain the sole possibility

for intrusion apart from snatching illegal access by dint of

social engineering. A Brute Force Attack (BFA) iteratively at-

tempts all relevant elements of dictionaries or combinations of

character sets until success, exhaustion, or cancellation. Anti-

hammering mechanisms thwart the endeavors of BFAs with

constant/increasing delays or temporary/permanent account

lockout after unsuccessful tries. Regrettably, not all services

protect themselves with such safeguards and, thus, lure BFAs.

Nonetheless, despite the absence of anti-hammering methods,

the situation has not deteriorated immediately, provided that

only long and complex credentials grant access to a service. It

goes without saying that deemed-as-secure credentials become

weak if used at another service that has leaked them. Be that as

it may, topical service log files, Security Information and Event

Management (SIEM) systems, Intrusion Detection Systems

(IDSs), and Intrusion Prevention Systems (IPSs) prove that

BFAs have not fallen out of fashion yet. Attackers continue to

conduct BFAs aggressively.

The impact of successful breaches vastly differs between mis-

cellaneous services. Bad enough, the cracked administration

portal of a website gives free reign to leakage of its data, de-

facement, and deletion. Much worse could be the conquest of a

container, an operating system, or a hypervisor. All three types

can be administered by the SSH, the contemporary protocol

for remote consoles. All guides highly encourage making SSH

only accessible to the Internet via a Virtual Private Network

(VPN) rather than directly. However, stubborn administrators

and borderline cases let an SSH Daemon (SSHD) listen on

a public interface via Transmission Control Protocol (TCP)

port 22, at worst, without any anti-hammering protection. As

aforementioned, BFAs will not be long in coming.

Hard to believe, but carelessly opening SSH directly to the

Internet also offers opportunities for scientific research. While

SIEM systems and IDSs recognize the quantity of BFAs, and

IPSs also prevent them, none of them assesses the quality of

BFAs. Quality in this context means the similarity between

attempted and correct credentials. This document operates on

the hypothesis that smaller differences between attempted and

genuine credentials lead to higher quality and greater risk of

credential guessing. Based on this, the research question arises

as to whether the quality and, consequently, the risk can be

thoroughly monitored in realtime. Two existing scientific pa-

pers already try to answer this research question by explicating

realtime risk monitoring of SSH BFAs [1], [2]. For this reason,

the technique in [1] counts the matching patterns of attempted

and true passwords in case of coincident usernames. The

approach in [2] improves the accuracy compared with [1] by

calculating three Bloom Filter (BF)-based similarity metrics.

Both treatises apply different threshold (pair) computation

techniques from [3]–[5] and recommend the candidate with

the least False Positive (FP) alerts.

In spite of expedient results, room for refinement always

emerges. Consequently, incorporating the following changes

should better address the research question concerning the

appraisal of the quality of BFAs.

1) Literature review dedicated to pattern matching based

on Bloom Filters (BFs)

2) Flowcharts depicting BF creation instead of pseudocode
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3) Verification of efficiency of novel metrics through an ex-

periment conducted on a modern Condition Monitoring

System (CMS)

4) Evaluation of closeness between (patterns of) attempted

and legitimate passwords based on adapted BFs (as

applied in [2]) and original BFs

This scholarly piece fulfills all four change requests. While [1]

sheds light on related work about SSH BFAs, [2] surveys ex-

isting publications about similitude determination of character

strings by dint of BFs. Section II follows up with an overview

of academic approaches for pattern analysis by means of BFs.

Since their utility for this treatise’s objectives shapes up as

limited, Sect. III describes how to effectively log abortive

SSH logon attempts with the help of password patterns and

BFs. Section IV specifies the creation of various metrics based

upon the logged foundered SSH login tries. The deployment

referenced in Sect. V demonstrates the feasibility and plau-

sibility of these devised metrics and provides comparative

analysis between them. Section VI self-critically reflects and

emphasizes the merits of this paper while hinting at auspicious

prospective work.

II. RELATED WORK

The predecessor to this disquisition primarily cites related

work on the reliable recognition of SSH BFAs, aiming to

improve them by counting coherent password patterns [1]. Its

sequel reviews related work focused on assessing the similarity

of character strings supported by BFs [2]. Unsurprisingly, it

refines the precision of the method in [1] by employing a

modified BF. Owing to this groundwork of both predecessors,

this section deliberately omits any references about BFAs

and BF-based similarity calculations and, instead, focuses

on present ideas of pattern matching using BFs. For the

sake of completeness, it must be admitted here that writers

evenhandedly use the term pattern for character strings and

their structural description.

Chronologically, the first stems from the year 2010, authored

by Tuan, Hieu, and Thinh [6]. Just as every scholarly proposal

based upon BFs does, it rightly justifies their existence. During

the compilation of a BF, a binary index table arises that

contains all elements of an arbitrary set in a condensed form

to render subsequent time- and space-efficient membership

queries possible. Predefined hash functions handle this com-

pression. For every member, each hash function ensures a one

at a specific position in the BF. Unfortunately, BFs can produce

False Positives (FPs), i.e., wrongly confirm memberships.

For that reason, Tuan, Hieu, and Thinh additionally employ

Bloomier filters to eliminate FPs. While BFs depend on

bitwise index table entries, their Bloomier counterparts store

more information per entry, which entails higher complexity.

The authors combine both filter types to accelerate the perfor-

mance of pattern matching in the malware scanner ClamAV

by minimizing off-chip memory access times for exact pattern

comparison.

Because the authors’ initial draft merely supports patterns be-

tween ten and 20 characters, they (Hieu, Tuan, and Thinh) add

pattern fragmentation in a successor publication that processes

all static patterns of ClamAV irrespective of their length [7].

Furthermore, Hieu, Tuan, and Thinh generalize their extension

to make it adaptable for other applications. They term it

BBFex, which again poses an exact matching system without

any FPs. Realtime risk monitoring of SSH BFAs can deal

with sporadic FPs without difficulty if it imposes retention

periods of several minutes to render them toothless. Therefore,

Bloomier filters currently do not play a role in this paper but

might be considered for future opportunities.

Liu, Kang, Chen, and Ni present another use case of pattern

matching via BF [8]. It derives from the search for cellphone

users whose communication patterns most resemble a given

pattern across all base stations of a mobile network. The option

of shipping all relevant data to a sole main data center for

the sake of aggregation and calculation gets dismissed due

to unreasonable communication costs, particularly in large

networks like in China, where tons of data incur. Local

processing in base stations turns out to be a more effective

alternative, albeit causing a so-called distributed incomplete

pattern matching problem. To make matters worse, the amount

of FPs must be kept low, which renders ordinary BFs infea-

sible. Instead of resorting to Bloomier filters, the developers

utilize Weighted BFs (WBFs). Such derivatives store weights

in the form of integers in their arrays rather than bits. Although

WBFs significantly reduce FPs, the images of their generating

functions have much greater cardinalities compared to classic

BFs. At the same time, WBFs disperse over larger codomains,

collide less frequently with other WBFs, and become more

distinct.

Pande and Bakal refine the suggestion of Liu, Kang, Chen,

and Ni with unsupervised Machine Learning (ML) and term

the resulting data structures unsupervised WBFs [9]. Hence,

their system also handles untrained patterns, which enhances

accuracy and communication efficacy. Nevertheless, the in-

creased chance of uniqueness achieved by (unsupervised)

WBFs facilitates guessing their plaintext input. This might

be acceptable for noncritical use cases but certainly not for

securely mapping passwords as required for realtime risk

monitoring of SSH BFAs. An additional future treatise could

scientifically compare the likelihood of breaking the privacy

of WBFs and classical BFs.

Al-Tariq et al. address the undesirable correlation between the

FP rate and the number of members comprised in a BF [10].

A BF offers a certain level of accuracy based upon its array

length. This level remains as long as a BF does not contain

too many members. As soon as the member count exceeds

a tipping point, an excess of ones in the BF causes the FP

rate to deteriorate. Before such deterioration occurs, Al-Tariq

et al. increase the size of BFs and evenly redistribute all

members among them. They term this concept Extended BF.

Membership queries across multiple BFs undoubtedly require

more computing resources but can be fortunately parallelized.

Since passwords typically consist of a manageable number of

characters for memorization, realtime risk monitoring of SSH

BFAs does not necessitate this type of horizontal scaling.
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El-Ghamrawy dedicates herself to a knowledge management

framework for imbalanced data [11]. Such an imbalance

occurs when the cardinality of one mined data class con-

siderably surpasses those of other classes. This compromises

accuracy optimization in knowledge discovery processes due

to the neglect of relative distribution of classes. The proposed

solution utilizes a BF in its frequent pattern mining algorithm

for two reasons. Firstly, it ensures accurate mining of frequent

patterns, storing, and counting k-itemsets. Secondly, it reduces

the time required to discover knowledge by leveraging the

ability of BFs to locate ingested data all at once. Realtime

risk monitoring of SSH BFAs cannot leverage the findings of

this paper on knowledge management in any way.

Wada, Matsumura, Nakano, and Ito suggest an efficient

method for byte stream pattern tests by utilizing multiple

bit arrays with manifold distinct rolling hash functions to

create BFs [12]. For instance, signature-based anti-malware

and anti-intrusion software detect malicious patterns in byte

streams of network traffic with such tests. Field Programmable

Gate Arrays (FPGAs) achieve the necessary throughput. The

utilized Field Programmable Gate Array (FPGA) in the con-

ducted experiment attains 49.5 Gbps for 48 byte streams and

100k patterns, i.e., 227 times more than an Intel Core i7

Central Processing Unit (CPU). Wada, Matsumura, Nakano,

and Ito also formally elaborate on the FP probability of BFs.

Additionally, they practically evaluate the FP likelihood of

BFs based on randomly generated byte streams and Wikipedia

articles. Since realtime risk monitoring of SSH BFAs only

contrasts BFs of entered passwords respectively their patterns

with those of real ones, applying the idea of Wada, Matsumura,

Nakano, and Ito allures, but would be an overkill.

Stiawan et al. feel obliged to track employees who play

online games during working hours [13]. The author group

applies Deep Packet Inspection (DPI) on network traffic to

discern sessions of the fantasy game Dragon Nest. A BF

serves as a tool to check the existence of any Dragon Nest’s

pattern in captured dumps. An additional visualization of the

observations resulting from the DPI process proves an FP

ratio of approximately 0.4 percent. The article of Stiawan et

al. suggests implementing a realtime visualization of detected

online game traffic patterns in its concluding section. The

graphical capabilities of the prototype for realtime risk moni-

toring of SSH BFAs could be readily reused for this suggested

implementation.

Bhat, Thilak, and Vaibhav strive for fast pattern matching

with the support of BFs [14]. To this end, they benchmark

the BF assembly time with a variety of cryptographic and

non-cryptographic hash functions on Central Processing Units

(CPUs) and Graphical Processing Units (GPUs). Generally,

non-cryptographic hash functions outperform their crypto-

graphic counterparts in execution speed but exhibit less ran-

domness, resulting in a higher FP ratio. In contrast, crypto-

graphic hash functions excel in stability. Each CPU consists of

one or a few cores that sequentially run programs. Conversely,

GPUs feature massively parallel architecture with thousands of

small cores that efficiently handle a multitude of simultaneous

tasks. Originally designed for graphics processing, GPUs now

enjoy popularity for general-purpose computing due to their

additional processing power. An empirical study by Bhat,

Thilak, and Vaibhav confirms the expected superiority of

non-cryptographic hash functions over cryptographic ones in

terms of speed. The input size determines the competition

between CPUs and GPUs. CPUs outperform GPUs with small

inputs due to memory transfer latency in GPUs. However, a

larger amount of data shifts the advantage to GPUs with their

parallel mode of operation. Given the comparatively small

input of realtime risk monitoring of SSH BFAs, which involves

pairwise comparisons of password-fed BFs, the use of GPUs

appears redundant.

Even though extensive literature research has revealed some

interesting contributions, none of them seems suitable for

implementing the four change requests of Sect. I.

III. DATA COLLECTION

This section examines how to reveal and manage plaintext

credentials when offenders perform BFAs on an SSHD in any

Linux operating system. For the sake of secrecy, an SSHD

records metadata of every login attempt independently of its

success. The list below exemplifies the most prominent ones.

1) Timestamp

2) Target host name

3) SSHD process identifier

4) Authentication result

5) Entered username

6) Source Internet Protocol (IP) address

7) Source Transmission Control Protocol (TCP) port

Opposing the primary focus of this project, a log file of this

nature falls short in providing details on entered passwords

to maintain confidentiality. Fortunately, modern Linux distri-

butions incorporate Pluggable Authentication Modules (PAM)

as a robust framework for revealing plaintext passwords. Al-

tering a PAM configuration necessitates superuser privileges,

effectively preventing regular users from wiretapping foreign

passwords.

In brief, this section elucidates the modification of eight files

as outlined subsequently.

1) /etc/ssh/sshd config

2) /etc/pam.d/sshd

3) ∼/.google authenticator

4) /usr/bin/passwd

5) /root/shadow

6) /root/sshd

7) /root/sshd.log

8) /etc/logrotate.d/sshd

The location of three files in the root directory ensures their

confidentiality and protection from unauthorized access by

non-administrator accounts.

A. /etc/ssh/sshd config

To capture all login attempts, an SSHD must forward

each attempt to the PAM without rejection. This requires not
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restricting any groups or users by either commenting out (as

indicated by the hash characters at the beginning of the upper

four lines in the following list) or removing corresponding

entries in the SSHD configuration file /etc/ssh/sshd config.

Additionally, SSH access must be explicitly allowed for the

root account, as shown in the fifth line. The sixth and final

adjustment delegates the authentication process to the PAM.

1) # AllowGroups

2) # AllowUsers

3) # DenyGroups

4) # DenyUsers

5) PermitRootLogin yes

6) UsePAM yes

B. /etc/pam.d/sshd

By default, the PAM configuration file for SSHD (located

at /etc/pam.d/sshd) authenticates each local user with their

password as a single factor, the hash code of which resides

in the shadow file /etc/shadow. To achieve this, a typical

/etc/pam.d/sshd usually calls the file /etc/pam.d/common-auth,

which contains common authentication settings for all services

(as demonstrated by the middle line in the subsequent list-

ing). Before invoking the settings in /etc/pam.d/common-auth,

/etc/pam.d/sshd must execute an executable file, /root/sshd,

responsible for recording the entered password and creating its

corresponding BF. The top-listed line indicates this additional

step. Following the invocation of /etc/pam.d/common-auth, an

appended third line adds extra security by enforcing Two-

Factor-Authentication (2FA) with temporary numbers. The

logon process compels users to provide their currently valid

time-based code immediately after entering their correct pass-

word. For this purpose, each user must utilize a code generator

(app) that generates a fresh valid temporary number with six

digits every 30 seconds.

1) auth optional pam exec.so expose authtok /root/sshd

2) @include common-auth

3) auth required pam google authenticator.so

C. ∼/.google authenticator

In the current scenario of enforced 2FA, PAM coerces each

user to set it up by executing /usr/bin/google-authenticator.

This command displays the initialization string for the code

generator (app) and saves it (along with a few emergency

codes) to the hidden file ∼/.google authenticator located in

the home directory. Alternatively, a proficient user can man-

ually create ∼/.google authenticator. The following example

illustrates the structure of ∼/.google authenticator.

1) OWICUAE07LEN5Z4I247CZ0QW9W

2) ” TOTP AUTH

3) 00334742

4) 09035716

5) 46867186

6) 57704378

7) 87270038

D. /usr/bin/passwd

The well-known Linux command /usr/bin/passwd allows

a local system user to modify their password. Each update

rewrites the user’s hash in /etc/shadow using a cryptographi-

cally secure one-way function. The function’s design inten-

tionally makes it practically impossible to convert a hash

back to a cleartext password, for privacy purposes. Therefore,

/usr/bin/passwd must also compute all necessary BFs for a

new password during its runtime, i.e., it has to perform the

illustrated BF creation algorithm in Fig. 1 in addition.

For the sake of contrasting juxtaposition, /usr/bin/passwd
combinatorially produces BFs for the three dimensions as

itemized hereinafter, i.e., 3 x 2 x 2 = 12.

1) BF length: 16, 32, and 64

2) BF originality: modified BF, original BF

3) Test item: password, password pattern

Once a user $USR has entered a new password $PWD, the

additional program component initializes all BFs with zeros.

This includes four hexadecimal-based BFs, each initialized

with 16 zeros; four base32-based BFs, each with 32 zeros;

and four base64-based BFs, each with 64 zeros. Additionally,

it duplicates $PWD to create a string $PWD PAT, of the

same size, which will represent the pattern of $PWD after

further modifications later in this algorithm. The subsequent

loop iterates over all characters of $PWD that nearly spans

the remainder of the BF creation algorithm.

Firstly, the loop modifies $PWD PAT by transforming each

character of $PWD position-wise. Digits in $PWD become 0
in $PWD PAT, uppercase characters in $PWD turn to A in

$PWD PAT, lowercase characters in $PWD morph into a in

$PWD PAT, and special characters in $PWD mutate into in

$PWD PAT. Next, it applies the SHA3 384 and SHA3 512

hash functions separately to each character of $PWD and

$PWD PAT. To avoid redundant hashes, the input for both

functions equals the concatenation of the character’s position

number, the character itself, and $USR.

A nested loop follows, compiling all hexadecimal-based

BFs during its first iteration, all base32-based BFs during

its second iteration, and all base64-based BFs during its

last iteration. Accordingly, hexadecimal, base32, and base64

versions of the aforementioned hashes kick in.

The modified BF for $PWD being constructed

flips its bit representing the first character of

SHA3 384($position||$PWD[$position]||$USR]) from

zero to one or vice versa. The same applies to

the representing bit of the starting character of

SHA3 512($position||$PWD[$position]||$USR]).

Creating the original BF for $PWD turns out to be

simpler. Its bits representing the initial characters

of SHA3 384($position||$PWD[$position]||$USR])

and SHA3 512($position||$PWD[$position]||$USR])

unconditionally become one regardless of their prior

states.

Similarly as for $PWD, the algorithm continues

by generating the modified and original BFs for
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Fig. 1. BF creation
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$PWD PAT, derived from the initial characters of

SHA3 384($position||$PWD PAT[$position]||$USR]) and

SHA3 512($position||$PWD PAT[$position]||$USR]).

Finally, /usr/bin/passwd replaces the twelve BFs in the line

for $USR in the file /root/shadow with the output of the BF

creation algorithm.

E. /root/shadow

The file /root/shadow stores the twelve aforementioned

BFs for the configured password of each user account. The

following stanza illustrates the order in which the algorithm

in Fig. 1 stores all the BFs for each user account in a line

within /root/shadow.

$USR

$BF PWD PAT 16 orig $BF PWD PAT 32 orig

$BF PWD PAT 64 orig

$BF PWD PAT 16 $BF PWD PAT 32

$BF PWD PAT 64

$BF PAT 16 orig $BF PAT 32 orig

$BF PAT 64 orig

$BF PAT 16 $BF PAT 32

$BF PAT 64

The following paragraph visualizes the BFs for the user root
with the password abcdef in /root/shadow, which would be a

one-liner there.

root

1100000101100111 01010000000000010010110000111001

0010001000000000000000000000000100001100011000000000101010000001

1100000000000011 01010000000000000000110000111001

0010001000000000000000000000000000001100011000000000101010000001

1000010100100111 01000000001100110000100000011001

0010000000000000000011100000010100000000010000000000001001000010

1000010000100111 01000000000100000000100000011001

0010000000000000000011100000000000000000010000000000001001000010

F. /root/sshd

This publication gains merit from the presence of the

executable file /root/sshd. To reiterate, the line auth optional
pam exec.so expose authtok /root/sshd in /etc/pam.d/sshd ex-

ecutes /root/sshd during every login attempt, which expects

input of $USR and $PWD for further processing.

In the event of a correctly entered $PWD, its hash matches

that in /etc/shadow. Since the significance of successful logins

dwindles to zero during BFAs, /root/sshd immediately termi-

nates under such circumstances.

Conversely, the opposite case requires verifying the similarity

between $PWD and the actual password by performing a bi-

nary comparison of their BFs. To that end, /root/sshd computes

all twelve BFs of $PWD (just as /usr/bin/passwd does) without

saving them to /root/shadow. Instead, it contrasts them with

their counterparts in /root/shadow bit by bit. The quotient

of matching and total bits yields the desired similarity index

per BF, i.e., /root/sshd calculates twelve similarity indexes. In

the end, /root/sshd logs the timestamp, $USR, and all twelve

likeness indexes to the file /root/sshd.log.

G. /root/sshd.log

The log file /root/sshd.log retains the timestamps,

usernames, and all twelve similitude indexes of all past

failed login attempts that have occurred since its last rotation

(as described in the next subsection). Furthermore, the

corresponding source IP addresses and cleartext passwords

enhance each log line for the purpose of manually verifying

the similarity indexes. The stanza below reveals the order of

the variables recorded per line.

$timestamp $s PWD PAT 16 orig $s PWD PAT 32 orig

$s PWD PAT 64 orig $s PWD PAT 16 $s PWD PAT 32

$s PWD PAT 64 $s PAT 16 orig $s PAT 32 orig

$s PAT 64 orig $s PAT 16 $s PAT 32 $s PAT 64 $ip

$PWD

The following paragraph provides a fictitious example

illustrating these variables with specific values.

202403020100 root 0.5 0.53125 0.671875 0.625 0.625

0.71875 0.5 0.46875 0.671875 0.5 0.625 0.75 1.2.3.4

336331jum

H. /etc/logrotate.d/sshd

The volume of /root/sshd.log steadily grows with each

failed login attempt. This would progressively hinder the

computation of metrics in Sect. IV if it continuously scanned

the abundance of historical login failures. Therefore, the

configuration content below from the file /etc/logrotate.d/sshd
ensures daily rotation of /root/sshd.log and preservation for

366 days, also archiving all log files of a leap year entirely.

1) /root/sshd.log

2) {
3) copytruncate

4) daily

5) missingok

6) notifempty

7) rotate 366

8) }
Restarting SSHD triggers the outlined changes in this section,

necessary for generating metrics.

IV. METRICS GENERATION

As /root/sshd calculates and preserves twelve distinct sim-

ilarity indexes for every failed login attempt, it stands to

reason to prepare an equal number of independent metrics.

Each metric will indicate the riskiest login failure(s) from the

previous time span, namely those with the highest similarity

score. This necessitates adjustments in both of the listed files

thereafter.

1) /root/metric

2) /etc/snmp/snmpd.conf

A. /root/metric

The executable file /root/metric requires invocation by a

CMS alongside one parameter determining which similarity

index, as described in Sect. III, it will utilize for metric gener-

ation. As per the request, /root/metric scans all corresponding

similarity values logged by /root/sshd in /root/sshd.log during
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the last time interval. The program evaluates the peak value

and exits by outputting it. Evaluating the highest similarity

instead of summing all scanned scores makes more sense, as

a single login attempt with a very similar password often poses

a greater threat than multiple attempts with less similarity.

B. /etc/snmp/snmpd.conf

Executing /root/metric merely provides a snapshot of the

requested metric rather than its complete history. A CMS

lends itself to regularly fetching metrics, visualizing their

histograms, and identifying and notifying anomalies. Among

other options, the Simple Network Management Protocol

(SNMP) [15] suits securely and efficiently transmitting metrics

from SNMP-capable nodes to a CMS using Object Iden-

tifiers (OIDs). Specifically, SNMPv3 (the third version of

SNMP) supports the confidential and unaltered transport of

OIDs [16]. As an SNMP Daemon (SNMPD) authenticates

incoming SNMPv3 requests based on usernames, having an

operational SNMP account ensures accessibility for a CMS.

The following excerpt from a sample SNMPD configuration

file /etc/snmp/snmpd.conf authorizes the username checkmk to

fetch all twelve metrics.

1) rouser checkmk
2) exec PWD PAT 16 orig /root/metric PWD PAT 16 orig
3) exec PWD PAT 32 orig /root/metric PWD PAT 32 orig
4) exec PWD PAT 64 orig /root/metric PWD PAT 64 orig
5) exec PWD PAT 16 /root/metric PWD PAT 16
6) exec PWD PAT 32 /root/metric PWD PAT 32
7) exec PWD PAT 64 /root/metric PWD PAT 64
8) exec PWD 16 orig /root/metric PWD 16 orig
9) exec PWD 32 orig /root/metric PWD 32 orig

10) exec PWD 64 orig /root/metric PWD 64 orig
11) exec PWD 16 /root/metric PWD 16
12) exec PWD 32 /root/metric PWD 32
13) exec PWD 64 /root/metric PWD 64

Each line containing the keyword exec assigns a leaf within

the Object Identifier (OID) subtree 1.3.6.1.4.1.2021.8.1.101

to the mentioned metric. This allocation occurs sequentially,

meaning SNMPD begins by mapping the subordinate

OID 1.3.6.1.4.1.2021.8.1.101.1 to PWD PAT 16 orig and

concludes with 1.3.6.1.4.1.2021.8.1.101.12 for PWD 64.

Upon SNMPD’s operation with the updated

/etc/snmp/snmpd.conf, a CMS can then request the twelve

metrics using the appropriate credentials.

V. EXPERIMENT

Before delving into the details of the conducted experiment,

a few thoughts on the anticipated metrics deserve contempla-

tion.

Firstly, given that each similarity score computed by /root/sshd
results in a positive fractional value equal to or less than

one, it follows that /root/metric can only provide metrics with

maximum values equal to or smaller than one.

Secondly, an alikeness score of zero indicates that every

bit of a BF differs from that of another, while a likeness

score of one signifies their complete equality. Moreover,

/root/sshd never records similitude indexes of succeeded lo-

gons in /root/sshd.log. Consequently, an alikeness score of one

suggests the submission of a highly similar, albeit incorrect

password rather than a correct one.

Thirdly, the original BF [17], utilized for six out of twelve

similarity indexes, maintains set bits without resetting them

to zero during its operation. In contrast, the adapted BF [2],

employed for the remaining six alikeness scores, may reset

ones to zeros during its compilation. Consequently, the oc-

currence of zeros and ones in modified BFs converges with

increasing password length, resulting in similarity scores of

0.5 even for markedly dissimilar passwords. This characteristic

solely renders alikeness indexes (derived from adapted BFs)

between 0.5 and one meaningful.

Fourthly, the simultaneous utilization of multiple hash func-

tions leads to the alteration of an equal number of bits in

a modified BF per password character. Both /usr/bin/passwd
and /root/sshd employ the SHA3-512 and SHA3-384 hash

functions, resulting in an equal distribution of ones and zeros

in these BFs. Consequently, these BFs only yield likeness

indexes as positive fractions with even numerators, satisfying

the condition: count of coherent bits
BF length

|count of coherent bits ≡ 0

(mod 2) ∧ BF length ∈ {16, 32, 64}. Hence, the use of two

hash functions reduces the resolution of indexes derived from

adapted BFs by half compared to using a single hash function.

Typically, adhering to best practices involves utilizing com-

plex and lengthy passwords, which undeniably enhances se-

curity. However, this approach diminishes the experiment’s

presentability in terms of BF-based real-time risk monitoring

of SSH BFAs. Why? Simply put, attackers would fortunately

struggle to guess well-configured strong passwords or those

that only marginally deviate from them. Consequently, the

twelve generated similarity values from /root/sshd and met-

rics from /root/metric would tend to fluctuate around their

baselines, with occasional spikes as FPs. To address this secu-

rity versus presentation dilemma, configuring a deliberately

weak password does the trick, providing no access under

any circumstance. Choosing the superuser account root for

this purpose seems appropriate because attackers commonly

target root accounts for BFAs. Furthermore, root access should

ideally be restricted to using the commands /usr/bin/su or

/usr/bin/sudo through intermediary low-privileged accounts,

rather than allowing direct login. Deliberately weakening

security with a simple root password and then removing

/root/.google authenticator dooms all login attempts to root

to fail, even those with correct passwords. To further weaken

the root password, selecting a dictionary entry proves advis-

able. The infamous rockyou.txt file, stemming from the 2009

incident involving the US company RockYou, serves as a rich

source for deliberately vulnerable passwords. This repository

contains a staggering number of distinct cleartext passwords

from compromised RockYou customers, which can also be

configured for Linux system accounts. Easily accessible via

Internet searches and available for download from various

sources, the file has evolved over time, with the 2021 ver-

sion, rockyou2021.txt, containing even more leaked passwords.

Among the subsets within these files, words consisting of
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precisely six lowercase characters stand out, with abcdef
being a notable representative. As both predecessors of this

disquisition explain, the latter becomes the experimental root

password [1], [2]. Admittedly, the deliberate choice of easily

guessable credentials enhances presentability but simultane-

ously limits the relevance of the results for real-world use

cases.

An SSHD instance running on Ubuntu Linux 23.10, configured

according to the specifications outlined in this document,

including the use of simplistic credentials, became exposed

to the Internet in March 2024. The network architecture

depicted in Fig. 2 illustrates the SSHD’s placement within

a Demilitarized Zone (DMZ), along with the utilization of

SNMP and SSH protocol, and their corresponding daemons

on Ubuntu Linux 23.10. Upon execution of /root/metric, the

desired metric got evaluated by considering all recorded events

from the preceding minute. Consequently, a CMS polled a

fresh value for each metric every 60 seconds via an SNMPv3-

request. While the predecessors’ performed experiments [1]–

[5] utilized the long-established Nagios as CMS, this writ

breaks the mold by relying on an up-to-date version of

Checkmk, a product developed from Nagios Core [18].

To ensure consistency with previous papers [1], [2], the CMS

computed a fixed threshold (pair), three individual dynamic

(critical) thresholds, and three techniques for selecting dy-

namic threshold pairs for each metric, as outlined below.

1) Fixed approach: The (critical) threshold corresponds to

a similarity score that arises from comparing two BFs

differing in exactly one character (two bits for original

BFs or four bits for revised BFs).

2) Three sigma rule without prior outlier removal:
The (critical) threshold resides three standard deviations

above the arithmetic mean of an unfiltered metric his-

tory [1]–[5].

3) Three sigma rule with prior outlier removal: The

(critical) threshold sits three standard deviations above

the arithmetic mean of an metric history cleared of

outliers [1], [2], [4], [5].

4) Maximal value: The (critical) threshold takes on the

maximum value from an outlier-free metric history [1],

[2], [4], [5].

5) Tolerant approach: The maximum of an unfiltered

array with dynamical thresholds serves as the critical

threshold, with the warning threshold set at the me-

dian [1], [2], [5].

6) Balanced approach: The maximum of an unfiltered

array with dynamical thresholds represents the critical

threshold, with the minimum serving as the warning

threshold [1], [2], [5].

7) Strict approach: The critical threshold derives from the

median of an unfiltered array with dynamical thresholds,

with the minimum serving as the warning threshold [1],

[2], [5].

The CMS calculated dynamic thresholds for each metric by

considering up to 52 previous values collected over the past

365 days. Specifically, it utilized metric values from exactly

one week ago, two weeks ago, and so forth up to 52 weeks

ago. This comprehensive approach ensures coverage across all

potential attack seasons throughout the year.

To mitigate desensitization resulting from overwhelming

surges of notifications caused by short-term peaks, a notifi-

cation will only be triggered after ten consecutive threshold

exceedances, i.e., after a nine-minute retention period. This

protocol accommodates scenarios where eligible users unin-

tentionally input slightly incorrect passwords, leading to metric

spikes beyond their thresholds.

All value pairs (each separated by a slash, indicating the

quantity of threshold exceedances and resultant notifications)

in the subsequent twelve tables serve as evidence of the

effectiveness of the nine-minute retention time interval. This

becomes apparent through the count of notifications on the

right of slashes, consistently being lower than the threshold

exceedances on the left. All twelve tables show the count

of threshold exceedances categorized by the aforementioned

threshold (pair) calculation methods, leading to warning and

critical conditions followed by triggered notifications. The

tables differ in their employed BF size and, thus, have an

individual fixed (critical) threshold set, which increases with

the BF size.

A pairwise contrasting juxtaposition of all twelve tables would

be indisputably tedious and meaningless. The comparison

graph in Fig. 3 provides a remedy by remarkably condensing

the analysis to seven expressive comparisons, as follows

hereinafter.

A. Comparison between PWD PAT 16 orig,
PWD PAT 32 orig, and PWD PAT 64 orig

The elaborated fixed (critical) thresholds in Tables I

(PWD PAT 16 orig), II (PWD PAT 32 orig), and III

(PWD PAT 64 orig) ensure that all keyed-in passwords with

barely one wrong character (equating to two deviating bits

in original BFs) exceed them. It must be noted that even a

BF of a password with more than one incorrect character

can deviate purely in two bits from the true password’s BF,

leading to excessively high assessed similitude scores and

threshold exceedances. This type of FPs occurs if correct

and incorrect characters produce identical hashes and, thus,

set identical bits in a BF, resulting from hash collisions. A

glance at the three tables substantiates that smaller BFs tend

to register more FPs of fixed (critical) threshold exceedances

and resultant notifications, as they possess a smaller size. The

decreasing rate of FPs argues in favor of employing larger

BF sizes.

An examination of the dynamic threshold (pair) evaluation

approaches consistently reveals zero or between 333 and 337

threshold exceedances in Tables I (PWD PAT 16 orig) and II

(PWD PAT 32 orig), whereas Table III (PWD PAT 64 orig)

significantly exceeds this range, with figures ranging from

897 to 908. This further supports the preference for larger

BF sizes, as they exhibit greater sensitivity to threshold

exceedances without triggering redundant notifications.
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Fig. 2. Experimental rigging

Fig. 3. Comparison graph

Ultimately, one can observe that the regularity of the BFAs

contributes to the mastery of all dynamic threshold (pair)

derivation methods, leading to zero notifications.

B. Comparison between PWD PAT {16, 32, 64} orig and
PWD PAT {16, 32, 64}

The lower fixed (critical) thresholds immediately catch

a reader’s eye when comparing the usage of original BFs

with that of revised BFs. This lowering happens because

exchanging one character of a string may flip up to four bits

in an adapted BF, rather than maximally two in the case of an

original BF. This reduction results in a fixed (critical) threshold

of 0.75 in Table IV (PWD PAT 16) rather than 0.875 in Ta-

ble I (PWD PAT 16 orig), 0.875 in Table V (PWD PAT 32)

instead of 0.9375 in Table II (PWD PAT 32 orig), and 0.9375

in Table VI (PWD PAT 64) in place of 0.96875 in Table III

(PWD PAT 64 orig). Just as original BFs, modified BFs of

keyed-in passwords with more than one wrong character can

have four or fewer incorrect bits due to hash collisions.

On average, Tables IV (PWD PAT 16), V (PWD PAT 32),

and VI (PWD PAT 64) display more exceedances of their

fixed (critical) thresholds than Tables I (PWD PAT 16 orig),

II (PWD PAT 32 orig), and III (PWD PAT 64 orig). This

suggests more hash collisions.

TABLE I
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD PAT 16 ORIG)

Warning Critical
Fixed (critical) threshold of 0.875 N/A 17,396/235

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 333/0

Tolerant approach 0/0 0/0
Balanced approach 335/0 0/0
Strict approach 337/0 0/0

TABLE II
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD PAT 32 ORIG)

Warning Critical
Fixed (critical) threshold of 0.9375 N/A 15,800/159

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 333/0

Tolerant approach 0/0 0/0
Balanced approach 333/0 0/0
Strict approach 334/0 0/0

TABLE III
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD PAT 64 ORIG)

Warning Critical
Fixed (critical) threshold of 0.96875 N/A 15,578/156

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 897/0

Tolerant approach 0/0 0/0
Balanced approach 897/0 0/0
Strict approach 908/0 0/0

The threshold exceedances and notifications of dynamical

thresholds based on revised BFs bear resemblance to those

in Table III (PWD PAT 64 orig).

C. Comparison between PWD PAT 16, PWD PAT 32, and
PWD PAT 64

The comparison in Subsect. V-A describes many

more exceedances of dynamical thresholds in Table III

(PWD PAT 64 orig) than in Tables I (PWD PAT 16 orig)

and II (PWD PAT 32 orig) at the same count of notifications,
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TABLE IV
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD PAT 16)

Warning Critical
Fixed (critical) threshold of 0.75 N/A 18,362/268

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 877/0

Tolerant approach 0/0 0/0
Balanced approach 888/0 0/0
Strict approach 865/0 0/0

TABLE V
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD PAT 32)

Warning Critical
Fixed (critical) threshold of 0.875 N/A 17,431/230

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 877/0

Tolerant approach 0/0 0/0
Balanced approach 895/0 0/0
Strict approach 899/0 0/0

TABLE VI
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD PAT 64)

Warning Critical
Fixed (critical) threshold of 0.9375 N/A 17,255/220

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 867/0

Tolerant approach 0/0 0/0
Balanced approach 877/0 0/0
Strict approach 870/0 0/0

which favors large-sized BFs. A glance at Tables IV

(PWD PAT 16), V (PWD PAT 32), and VI (PWD PAT 64)

surprises with almost identical figures regarding exceedances

of dynamical thresholds in the range from 865 to 899, as well

as the absence of resultant notifications. This demonstrates

that even small-sized revised BFs keep pace with large-sized

original BFs.

D. Comparison between PWD PAT {16, 32, 64}[ orig] and
PWD {16, 32, 64}[ orig]

To recap, Tables I to VI depict threshold exceedances and

resulting notifications based on similarity indexes of BFs

compiled by password patterns. Tables VII to XII perform

the same analysis directly with the received passwords. Their

conversion to patterns does not apply in these tables. Given the

reused fixed (critical) thresholds, the exceedances and resulting

notifications notably fall lower than those in the first six tables.

This can be explained by the increased difficulty for an attacker

TABLE VII
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD 16 ORIG)

Warning Critical
Fixed (critical) threshold of 0.875 N/A 152/0

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 2,411/0

Tolerant approach 0/0 0/0
Balanced approach 2,433/0 0/0
Strict approach 2,404/0 0/0

TABLE VIII
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD 32 ORIG)

Warning Critical
Fixed (critical) threshold of 0.9375 N/A 119/0

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 2,343/0

Tolerant approach 0/0 0/0
Balanced approach 2,322/0 0/0
Strict approach 2,309/0 0/0

TABLE IX
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD 64 ORIG)

Warning Critical
Fixed (critical) threshold of 0.96875 N/A 87/0

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 2,258/1

Tolerant approach 0/0 0/0
Balanced approach 2,291/1 0/0
Strict approach 2,280/1 0/0

to guess a correct password compared to its pattern.

A contrasting juxtaposition of the dynamic threshold ex-

ceedances reveals a surprising trend. Ranging between 1,495

and 2,512, they conspicuously surpass their counterparts in

Tables I to VI and the measured exceedances of the fixed

(critical) thresholds in Tables VII to XII. An examination of

the histograms in the CMS reveals that many passwords during

BFAs deviate significantly from genuine ones. Consequently,

the employed threshold (pair) reckoning algorithms determine

lower thresholds than the fixed ones, resulting in more ex-

ceedances.

E. Comparison between PWD 16 orig, PWD 32 orig, and
PWD 64 orig

Once more, a decrease in the exceedances of the fixed (crit-

ical) thresholds can be observed when examining Table VII

(PWD 16 orig) before Tables VIII (PWD 32 orig) and IX

(PWD 64 orig). This again confirms the negative correlation
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between BF size and FP rate. No threshold exceedance streak

lasted longer than nine minutes and triggered any notification.

Among all the tables considered in this subsection, Table IX

grabs the reader’s attention with three threshold (pair) elabora-

tion techniques, each resulting in one notification. A glance at

the notification history in the CMS reveals and validates the

corresponding notifications on 3/18/24 at 11:34 A.M., each

provoked by ten consecutive threshold exceedances before-

hand. Only the BF with the largest size in this survey detected

this anomaly. This once again suggests the importance of

utilizing BFs with larger sizes whenever possible.

F. Comparison between PWD {16, 32, 64} orig and
PWD {16, 32, 64}
Tables XI (PWD 32) and XII (PWD 64) exhibit moderately

higher exceedances of their fixed (critical) thresholds com-

pared to Tables VIII (PWD 32 orig) and IX (PWD 64 orig).

The jump from 152 exceedances in Table VII (PWD 16 orig)

to unrealistic 1,173 in Table X (PWD 16) stands out conspic-

uously and indicates too many FPs, likely due to its relatively

low fixed (critical) threshold of 0.75. Subsection V-A delves

into this phenomenon.

A similar scenario arises with the dynamic thresholds. Of all

the tables, Table X (PWD 16) once more draws attention

with its markedly lower number of exceedances across all

dynamic thresholds compared to those present in Table VII

(PWD 16 orig). 16 bits clearly do not suffice for revised BFs

to operate accurately, once more emphasizing the necessity for

larger BFs. Minor but noteworthy for the sake of completeness,

both the maximum value and the strict approach in Table XII

(PWD 64) triggered a second notification in comparison to

Table IX (PWD 64 orig).

G. Comparison between PWD 16, PWD 32, and PWD 64

Table X (PWD 16) presents another novelty among all

twelve tables. A single minute during the observation period

witnessed an instance where at least one BFA exceeded the

critical threshold of the strict approach. The CMS reveals that

the aforementioned minute occurred on 3/17/24 at 03:11 A.M.

Further investigation reveals that ten consecutive threshold

exceedances on 3/25/24 at 06:04 P.M. caused the second

notification concerning the two approaches mentioned earlier

in Table XII in Subsect. V-F.

What inference can be drawn from the seven recent

contrasting juxtapositions?

As expected, the comparison in Subsect. V-D satisfactorily

demonstrates universally lower threshold exceedances for

password-based metrics compared to their pattern-based

counterparts. This results from the higher difficulty of

guessing passwords compared to their patterns.

The exertion of BFs with solely 16 bits particularly challenges

this assertion. Just through a single exchanged character in a

string, up to two bits in its original and four in its adapted

BF can be altered. Considering 16 bits of a BF, this may

impact 25% and 12.5% of them, respectively, opening the

TABLE X
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD 16)

Warning Critical
Fixed (critical) threshold of 0.75 N/A 1,173/0

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 1,520/0

Tolerant approach 0/0 0/0
Balanced approach 1,495/0 0/0
Strict approach 1,503/0 1/0

TABLE XI
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD 32)

Warning Critical
Fixed (critical) threshold of 0.875 N/A 160/0

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 2,512/0

Tolerant approach 0/0 0/0
Balanced approach 2,480/0 0/0
Strict approach 2,500/0 0/0

TABLE XII
THRESHOLD EXCEEDANCES/NOTIFICATIONS OF BFAS AGAINST VALID

USERNAMES (PWD 64)

Warning Critical
Fixed (critical) threshold of 0.9375 N/A 150/0

Three sigma rule without prior
outlier removal

N/A 0/0

Three sigma rule with prior outlier
removal

N/A 0/0

Maximum value N/A 2,380/2

Tolerant approach 0/0 0/0
Balanced approach 2,368/1 0/0
Strict approach 2,368/2 0/0

floodgates to FPs. This deficiency in sufficient BF bits

leads to outlier figures in Tables I (PWD PAT 16 orig),

II (PWD PAT 32 orig), and X (PWD PAT 16), strongly

advocating for the utilization of 64-bit long BFs.

This suggests that both original and adapted BFs can be prone

to FPs when they comprise insufficient size. Even Table II

(PWD PAT 32 orig), based on 32-bit long BFs, embodies

FPs. Opting for revised BFs seems to be the safer choice

against FPs.

VI. CONCLUSION

Section I introduces four change requests that this document

must address to more effectively answer the research question

related to assessing the quality of BFAs.

Section II provides a literature review dedicated to pattern

matching based on BFs. Apart from the predecessors of this

publication, it introduces nine related citations and explains

why they do not satisfactorily address the four aforementioned

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 143 ----------------------------------------------------------------------------



claims.

Figure 1 depicts an algorithmic flowchart for BF generation

instead of pseudocode. The executables /usr/bin/passwd and

/root/sshd strictly implement this algorithm.

In line with Fig. 2, a server based on Ubuntu Linux 23.10 in a

DMZ entices BFAs against its SSHD. This host also generates

log data as outlined in Sect. III and derives appropriate

metrics as explained in Sect. IV. Subsequently, a state-of-the-

art CMS like Checkmk securely collects the prepared metrics

via SNMPv3. The outcome of the experiment at the end of

Sect. V addresses the initial research question by confirming

the improved efficiency of this workflow.

In detail, Tables I to VI evaluate the similarity between patterns

of attempted and legitimate passwords based on original and

adapted BFs. Additionally, Subsects. V-A to V-C quantitatively

describe the discrepancies between them. Tables VII to XII,

along with Subsects. V-E to V-G, provide comparable insights

into the similarity between tried and actual passwords based

on original and modified BFs. Additionally, Subsect. V-D

contrasts the first six tables with the last six. All the contrasting

juxtapositions together suggest that both original and adapted

BFs may experience FPs when their size remains insufficient.

Nevertheless, choosing revised BFs appears to present a safer

option against FPs and, therefore, serves as a favored way to

answer the research question.

Eventually, it should be noted that conventional ML algorithms

can and ought to be prospectively employed to calculate

thresholds from BF-based metrics.
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