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Abstract—Computer vision approaches have been widely used
in mobility tasks such as visitor counting, traffic analysis, etc. The
European General Data Protection Regulation (GDPR) enforces
in-camera processing as storing and transmitting such data
violates this regulation.

This paper introduces a novel approach for object Re-
Identification (Re-ID) on edge devices using a color based encoded
virtual plane for location mapping. The method leverages the
spatial coding capabilities of the RGB color space to simplify
the localisation process. By assigning unique RGB values to
spatial coordinates, creating a multidimensional reference image
that facilitates instant and accurate object localisation. This
reduces computational complexity and allows global referencing
across multiple cameras. We present an algorithmic framework
for location mapping and demonstrating its capability through
experimental validation. The techniques potential is further ex-
plored in applications such as object Re-ID, marking a significant
advancement in computer vision and expanding the branch of
spatial encoding methodologies. This approach represents a shift
towards more privacy-oriented multi camera object tracking and
Re-ID solutions.

I. INTRODUCTION

Solving the Re-ID problem in multi camera environments

[1] is a well-known, current research field. Especially the

topics of object counting, traffic management or behavior

analysis requires solid and accurate positional object tracking.

This relies on the analysis of trajectories that can be extracted

of individual objects. Object Re-Identification (Re-ID) has

been defined by assigning a unique ID to the same object

(person, car, etc.) across multiple camera systems in an arbi-

trary environment. There is a differentiation of multi camera

setups, setting apart overlapping and non-overlapping camera

views. This paper specifically focuses on scenarios where

camera systems have overlapping fields of view. The set of

overlapping cameras as well as the observed regions can vary.

Within this setting, several different techniques and approaches

for identifying individuals and/or objects have been proposed

[2]. Most of these publications focus on person Re-ID [2]

which elaborates on specific features such as pose detection,

shape or cloth comparison for solving the matching process.

As the observed objects privacy has to be preserved, only

selected non-identifying or anonymised features are allowed to

be exchanged between camera systems or a centralised server.

The usage of highly identifying features like facial features

is prohibited in terms of privacy. Besides the extraction of

the objects features, every object could potentially be located

in the 3D environment during observation. By achieving

an accurate object localisation, over time a trajectory can

be formed which further helps solving the Re-ID problem.

Localisation has been addressed in a few articles [3], [4] so

far, but the Re-ID potential of the object position as feature

has not been evaluated in detail. Our approach introduces a

virtual plane with a color gradient positioned in the virtual

representation of the environment, where every camera also

has its own digital counterpart. Rendering the virtual envi-

ronment for each cameras view effectively creates globally

correct location reference images. Thus enables to rapidly

determine the global position inside the 3D environment of

every camera pixel in a singular RGB value. This paper

shows the effectiveness of our color based location approach

for multiple camera environments, and that solving the Re-

ID problem can be supported and solved by exact location

information. Furthermore the optimal camera tilt and object

rotation for targeting the correct location pixel on the reference

image is examined. The work is structured as follows: Section

II is dedicated to the different research areas related to this

article. Focused on multi object tracking (MOT) in several

camera constellations. A detailed description of the developed

location reference workflow, including the Re-ID testing setup

and datasets is summarised in section III. The results of our

accuracy and performance tests of the color based location

approach itself as well as the Re-ID testing is summarised in

section IV. Finally in section V an extensive conclusion is

drawn from all accomplished experiments.

II. RELATED WORK

A. SC-MOT

Single Camera Multi-Object Tracking (SC-MOT) is a key

research area in computer vision for tracking multiple objects

within a cameras video stream. It involves detecting and

maintaining the identities of multiple objects over time, despite

challenges like occlusions and changes in appearance. SC-

MOT is vital for surveillance, traffic monitoring and activity

analysis. The main challenges include accurately detecting
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objects in successive frames and associating these detections

over time amidst lighting changes, occlusions, and appearance

similarities [5], [6]. State-of-the-art systems use advanced deep

learning models for object detection and sophisticated data

association techniques to maintain consistent tracking [7].

Despite progress, SC-MOT remains a highly active researched

area, focusing on improving accuracy, efficiency, and adapt-

ability to various scenarios.

B. MC-MOT

Multi Camera Multi-Object Tracking (MC-MOT) systems

are crucial in applications ranging from surveillance to au-

tonomous driving and traffic management, distinguished by

online and offline tracking methodologies. A further differ-

entiation criteria of MC-MOT systems is the used approach

for the Re-ID solution, grading the system in a Two-Step or
Global type. [8]

1) Online Tracking: processes and analyzes data in near

real-time, detecting and tracking objects as video is streamed

from cameras. This approach is essential for immediate actions

like real-time surveillance and live traffic monitoring. [9] The

most frequently used algorithms are SORT [10], DeepSORT

[11], ByteTrack [12] and FairMOT [13]. They use only his-

torical information, meaning predictions of object locations in

the current frame rely solely on data from previous frames.

[7], [8]

2) Offline Tracking: in the other hand, analyzes data post-

collection using complex algorithms for high-accuracy scenar-

ios like traffic flow studies. By processing the entire dataset

at once, including future points, it makes more informed deci-

sions on object trajectories, enhancing accuracy and handling

of complex scenarios. [14], [15]

3) Two-Step: Re-ID approaches are collecting fully associ-

ated trajectories of multiple SC-MOT systems. In the second

step it uses different association techniques including Bayesian

inference [16] or another layer of deep learning methods to

achieve a trajectory fusion. [8] This procedure is called Inter-

Camera association. The reason to implement such approach is

to compare the effectiveness of the MC-MOT system strictly

on a new matching algorithm by exert widely used SC-MOT

algorithms. [17], [18]

4) Global: Re-ID approaches in contrast are referring to

the strategy of tracking objects across a wide network of

cameras, across different locations and times with a single

unique trajectory per object. This approach digests the features

of new object detections, producing new objects or enhancing

the trajectories of existing objects dynamically during run-

time. [19], [20] A prominent matching algorithm used to

combine those detected features with existing objects is the

Hungarian Algorithm [21], [22] Achieving effective global

tracking requires addressing several challenges [23], [24], such

as:

• Cross-camera feature consistency: Ensuring that the

features used for identifying objects are robust across

different camera views and conditions.

• Spatial-temporal reasoning: Making sense of the spatial

layout of the camera network and the temporal gaps that

may occur between sightings of an object in different

cameras.

• Scalability: Efficiently processing data from potentially

large networks of cameras without compromising track-

ing accuracy or speed.

Global tracking approaches are key in applications such

as city-wide surveillance, large-scale event monitoring, and

complex security systems, where understanding the movement

and behavior of individuals or objects across broad areas is

crucial. The approaches presented in [23] and [24], leverage

advancements in machine learning, particularly deep learning,

to improve feature extraction, matching, and trajectory predic-

tion, thereby enhancing the overall efficacy and reliability of

Re-ID systems.

C. Privacy Preserving MC-MOT

The usage of anonymous features is crucial for protecting

individual privacy and adhering to ethical standards, especially

in applications related to surveillance and personal data pro-

cessing. As tracking technologies have the capability to track

and identify individuals across different spaces and time, they

pose significant privacy risks if not managed correctly. In [25]

a comprehensive progress is presented where the low level

features created by deep learning approaches for object Re-

ID can be used to nearly fully reconstruct the initial image.

Anonymity is accomplished through various techniques, in-

cluding pixelation, blurring faces or deep appearance features,

and using deep learning models to generate anonymised data

that retain essential characteristics for Re-ID purpose-s without

revealing actual identities [25].

III. COLOR BASED LOCATION REFERENCE SYSTEM

This section is dedicated to the novel approach of mapping

every pixel of the camera image view to an inter-camera

globalized virtual location.

For our Color Based Location Reference System (CBLRS),

a MC-MOT environment with partially or fully overlapping

camera views is required. The approach is proposed in three

distinct steps. The first step focuses on mapping the camera

images pixel coordinates to the XY-Position in the location

reference environment using a colorized virtual plane. The

global location is represented in the RGB color space and

mapped via the so called location reference image. Every

camera within the MC-MOT system has its own specific

reference image which is location synchronised across all

cameras. The second step deals with targeting a detected object

in such way, that the objects position can be determined by

using the generated location reference image of the previous

step. The final third step summarizes the actual centralized Re-

ID process in which a global approach with an online method

is implemented.
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A. Mapping location to color space

Let a CBLRS environment be defined as a physical

environment observed by a set of cameras C1...n where

n is the number of cameras. A camera is defined as

C = {xpos,ypos, zpos,xrot,yrot, zrot, Ioriginal, f ,H, IReID}.

These XYZ-values define the cameras six degrees of freedom

(DoF) meaning its exact position (three axis of translation)

and orientation (three axis of rotation) forming the extrinsic

camera parameters in the 3D environment. Naturally a camera

also includes its current image defined as Ioriginali where

i specifies the camera in the set of cameras. The implied

image size wi as width and hi as height and additionally

the cameras focal length fi form the cameras intrinsic

parameters. With this information the homography matrix

Hi is described. Every parameter till now is used to create

a virtual representation (digital twin) of the environment

including all cameras. A virtual two dimensional plane p is

added the this virtual environment and positioned that the

total observed area is covered. By leveraging the capabilities

of Hi and applying a texture gradient from 0% to 100% of

the color channel red and green on its width pw and height

ph, this plane can be used to calculate the image of the virtual

cameras view. This rendering is defined as reference image

formalised as IReIDi
- completing our camera definition.

This IReIDi is an exact overlay of the Ioriginali and can be

visualized as such.

The generation of such reference image can be accom-

plished with other approaches as well. For example, by us-

ing a game or 3D rendering engine. Such approach can be

useful if the exact camera partially parameters are unknown.

Recent datasets within the scope of object Re-ID, provide

the user with a homography matrix H, which can then be

used to transform pixel coordinates into world coordinates

of a plane in a 3D space. [26], [27] Let Iw ∈ N be the

image width and Ih ∈ N be the image height, let pw ∈ R

be the plane width and pl ∈ R be the plane length. Let

x = (x1, y1, 1) with x1 ∈ {1, 2, ..., Iw} and y1 ∈ {1, 2, ..., Ih}
be the vector describing the pixel-coordinates in homogeneous

coordinates and X = (X1, Y1, 1) with X1 ∈ (−pw

2 , pw

2

)
and Y1 ∈ (−pl

2 ,
pl

2

)
be the vector describing the worlds-

coordinates on the projected plane. Furthermore let H ∈ R
3×3

be the corresponding homography-matrix and s ∈ R a scaling

factor. The following equation allows us to convert pixel-

coordinates to worlds-coordinates and back:

s ∗
⎡
⎣x1

y1
1

⎤
⎦ = H×

⎡
⎣X1

Y1

1

⎤
⎦ =

⎡
⎣h11, h12, h13

h21, h22, h23

h31, h32, h33

⎤
⎦×

⎡
⎣X1

Y1

1

⎤
⎦ (1)

For benchmarking purposes, a simulated environment with

15 cameras and their corresponding calculated reference im-

ages is created. The calculation of the reference images is

shown in figure 2. The extracted color value of our location

method can be directly used to calculate pseudo distances be-

tween two virtual points. Furthermore, by building the detected

objects trajectories over time appending each color point, the

resulting lines of color could potentially be compared by using

histograms. This investigation would exceed the boundaries of

this work. Therefore, this theory will be covered in a future

work.

B. Location Targeting

By now, the reference images (IReID), which can be

used to pinpoint exact locations across different cameras

are constructed. The research of Re-ID approaches shows,

that for the object detection process often an off-the-shelf

solution is chosen. The resulting labels are usually rectan-

gular bounding boxes [28]. Other approaches use neuronal

networks, producing 3D bounding boxes [29] in the process.

But unfortunately, such datasets are rarely available. Naturally

an object is raised above the ground XY plane and positioned

on a single location point. Yet a bounding box provides a range

of pixels, the following question arises: Which of these pixels

should be considered as the objects exact point of origin?

This consideration gets even more complex when the objects

type, its rotation, as well as the downward tilt and angles of

the camera are introduced. All of those factors change the

dimensions of the bounding box shifting the objects origin.

Fig. 1. This images shows a camera detecting a vehicle. When the vertical
center point of the label is selected (red ray), the ray would target a position
behind the vehicle. The targeting pixel needs to be adjusted depending on
camera tilt and object rotation to select the closest possible position pixel of
the object. In this example approximately at the green visualised ray.

In a naive approach the center-center point (horizontal-

vertical) of the detections label could be considered as the

objects location target point. But the XY plane in the reference

image is located at ground floor. A ray on the center of the

object is cast through the object on a different location on the

RGB plane. By targeting the center-bottom point (horizontal-

vertical) the selected position is always between the camera

and the object but not the real objects origin. This problem is

visualised in figure 1. As the authors in [27] described, a lack

of datasets with exact object positions is present. By using

the Carla (Car Learning to Act) simulation software which

is powered by the unreal graphics engine the creation of an

synthetic dataset with photo-realistic images is achieved. To

tackle this targeting problem with the origin in camera tilt and

object rotation, the vehicle simulation framework Carla [30]

was used to create a small dataset of camera images from

15 different tilt-angle combinations. Which are presented in

figure 2. With this dataset the optimal horizontal target point

and object rotation should be determined. The results of this

experiment are discussed in section IV.
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Fig. 2. This figure shows an image collage of 15 cameras with discrete positions and rotations observing an uniform area. The cameras reference image
is augmented for better visualisation. As simple showcase a distinct RGB value of the reference image was selected by using the color selection tool of an
image software and overwritten with the color white - demonstrating its capability in the process.

C. Basic Re-ID Setup

The colors of these targeted pixels can be used as a

pseudo coordinate system for object locations. This simplifies

the calculation of distances between detected objects and is

enhancing the objects privacy by obfuscating the real location.

In section II reasoned methods for MC-MOT are presented

typically narrowing to the usage of deep learning algorithms

[25]. The result of the presented CBLRS can be used as a

new feature set for the object matching process within a Re-ID

system. To proof the capability of this feature set, the Carla

simulation engine was used to construct a dataset of a dual

camera system. The selected area consists of a roundabout

with occlusions which is observed by two cameras. A car

driving a full circle forces the matching algorithm to hand

over the objects ID between the cameras twice. Figure 3

shows the view of both cameras with the overlaid reference

image. In total, two small datasets, with two time synchronised

videos of 15 and 30 seconds length and 20 FPS were created.

Furthermore a basic Re-ID processing pipeline was created

with online tracking and a global Re-ID solution approach.

Fig. 3. Visualisation of the camera images including the overlaid reference
image for object localisation. The green dot visualises a distinct color value of
the reference images. Displaying the capability of matching positions across
multiple cameras.

1) Camera Pipeline:: The mentioned pipeline consists of

two parts and are visualized in figure 4. The first one is

processed directly within each camera. The process starts by

capturing the latest camera frame Ioriginali where i defines the

timestamp followed by a generic off-the-shelf labeling method.

In our case a pretrained YOLOv5 nano network was trained

with approximately 4000 traffic images in various scenarios

(real and synthetic). This process creates a set of detections

per camera frame defined as Di = {d1, d2, ...}. A detection

is defined by its type t which is derived from the labeling

methods class list and its bounding box extends resulting

in a this definition dj = {t, xleft, xright, ytop, ybottom} for

1 ≤ j ≤ n and n ∈ N. After the detection step, our

CBLRS is applied on on every detection using IReID to

compute the color based location information l defined as

l = {r, g, b} is attach to each detection dj . As final step the

collected detections with their corresponding location data, in

combination with the frame number or timestamp of capturing,

are transmitted to the central processing node by a message

M . Such message is defined as M = {i,Di}. Summarised

the 4 steps of the detection part of the pipeline are: capturing,

labeling, location and transmitting.

Fig. 4. This info graphic displays processes and connection between the two
implemented pipelines. Every individual camera houses the camera pipeline,
consisting in capturing, labeling, locating and transmitting data. A global
matching pipeline is receiving such camera data, builds the trajectories by
matching data and provides visualisation tools.

2) Matching Pipeline:: The second part of the pipeline is

located within the central processing system. This part collects

and combines all messages received every cameras within the

system. Every past detection is collected, stored in an objects

data field and used to compare against up coming detections.

At time t we are given an image of the current frame

I(t) ∈ R
W×H×3 where W is the image width and H is

the image height as well as the current detections D =
d1, d2, ..., dn where n is the number of detections. Each
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detection d = (u, cT ) contains a timestamp u ∈ R and a RGB

value c ∈ R
3 which resembles the transformed bounding-box-

coordinates on the RGB plane as explained in equation 1. An

arbitrary object Oi = {a1, a2, ...}, where a is an associated

detection from a past image I(s) for 1 ≤ s ≤ t which contains

a timestamp u ∈ R and a RGB value c ∈ R
3 from a detection

as well as the ID i ∈ N from the object Oi. The current

position of an object Oj is defined as the RGB value of its

latest associated detection a. As soon as a message with a

new set of detections D is received the euclidean distance

between every detection and every object within the system is

calculated.

This distance is used as cost parameter for a Hungarian

matching algorithm. If a match exceeds a certain threshold

in distance, a new object is created. If not, the detection gets

appended to the closest corresponding object. Summarised, the

three steps of the matching part of the pipeline are: receiving,

matching and visualising.

IV. EVALUATION

The following section presents a comprehensive analysis

of the conducted tests designed to measure the CBLRS’s

effectiveness and reliability. At first the datasets to conduct

the evaluations with where selected. The following tests in-

clude performance benchmarks, targeting accuracy, and Re-

ID capability. These assessments were meticulously chosen to

provide a holistic view of the system’s capabilities in various

operational scenarios. Performance benchmarks evaluates the

system’s speed and efficiency compared to other techniques.

Targeting accuracy examines the optimal camera orientations

for locating targets. And Re-ID capability examines the ability

of location information to correctly link related objects and

compares our CBLRS approach with a lookup table approach.

Together, these tests offer valuable insights into the system’s

strengths and areas for improvement.

A. Dataset Selection

Selecting an appropriate dataset for MC-MOT tasks can be

challenging, particularly when the dataset does not include

homography matrices. As show in section III, homography

matrices are useful in tracking scenarios for mapping object

positions between different camera views or correcting per-

spective distortions. [31] Especially for our proposed method

a homography matrix is mandatory. However, many public

MOT datasets do not provide these matrices, necessitating

alternative strategies. The only MOT dataset which provides

this information is the Synthehicle dataset [27]. This dataset

consists of different traffic scenes of mostly non overlapping

multiple camera views. As the name suggests all data is

synthetically generated by using the Carla Car Simulation soft-

ware [30]. As comparison metric the authors of Synthehicle

provide a Multi Object Tracking Accuracy (MOTA) score. Our

work is focused on maximising the localisation accuracy of

synchronised camera images. Therefor we need to compare

our work with a Higher Order Tracking Accuracy (HOTA)

score as MOTA does not incorporate localisation accuracy.

[32] Carla was used to create a new dataset with overlapping

camera views suited to validate our initial workflow.

During the evaluating our results, the CityAI Challenge

2024 released a of dataset. [33] Exposing a brand new MOT

dataset of overlapping camera views including homography

matrices for all cameras. Furthermore a validation script to

calculate the HOTA score (consisting of detection, association

and localisation accuracy) is included. An example of camera

views are visualised in figure 5. The dataset consists of

multiple scenes of warehouse environments where synthetic

people have to be tracked. The method proposed in this work

was used to tackle this challenge.

B. Object Targeting Accuracy

The vehicles in the self-created dataset are visualised in

figure 2. They are rotated in three different angles (top to

bottom) of 0°, 45°and 90°combined with five different camera

tilts (left to right) of 10°, 30°, 50°, 70°and 90°. This dataset

was labeled by hand with bounding boxes and unique vehicle

IDs. The Carla simulation software allows to extract the object

position what is used as ground truth (GT). For position

targeting the center of the labels horizontal axis was chosen.

The vertical axis was split in 5% steps from center (50%) till

bottom (95%). Every targeted position pixel was compared

to the GT by calculating the euclidean distance between the

targeted pixel and GT.

Since the Carla simulation provides the coordinates in

meters the distance from target to GT in meters or centimeters

was selected as metric. The results show the average offset

distance (AOD) to the estimated object origin is 112cm.

Depending on the camera tilt, the best result was achieved

at 30°with an AOD of 56cm to the vehicles origin, peaking

at a vertical targeting position (VTP) of 65% with an AOD

of 30cm. Comparing the objects rotation, the best result was

achieved, when targeting 45°rotated objects with an AOD of

74cm. The full result will be published after acceptance, and

submitted to supplementary files peaking at a VTP of 55%
with an AOD of 53cm.

C. Performance Benchmark

For every detection the homography can be used to directly

calculate the objects position. This calculation involves mul-

tiple matrix calculations, therefore the complexity is naturally

high. The most potent algorithm, the Strassen algorithm is used

to perform such calculations with a complexity of O(n2.81).
[34] Furthermore camera systems used for traffic monitoring

typically have limited processing power which is better used

for labeling the image data. To outsource this calculation the

raw images need to be transmitted via a network. But the

transmission of raw images can be conflicting with the EU

general data protection regulation (GDPR). [35] To preserve

the privacy of detected objects and still sustain a high frame

rate count for labeling, the color based mapping is introduced.

Our CBLRS utilises a color gradient on a virtual plane

to create a reference between pixel coordinates and object

position. It was tested using 8 bit color space, where total
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Fig. 5. A sample data frame of the CityAI challenge dataset.

of 65.536 distinct locations can be addressed on a single

plane, which refers to 16 bit. In a theoretical scenario where

a roundabout is observed and the virtual XY plane extends

for 50x50m a resolution of 19cm per pixel can be achieved in

both axes. Depending on the plane size and required accuracy

the channel depth can get extended from their original 8 bit up

to 16 bit or higher, doubling the accuracy for each additional

bit. Furthermore the by now unused blue color channel can be

leveraged to position multiple virtual planes for e.g. a city wide

spanning MC-MOT systems. The blue channel can then be

used to identify a specific plane. Raising the distinct locations

to 16.777.216 when using 255 planes. As these reference

images are generated beforehand, the complexity during run-

time for a precise localisation is reduced to O(1). The location

representation in RGB values furthermore allows for direct

distance calculations as well as obfuscating the objects real

coordinates thus boosting the privacy factor.

In real world examples, such cameras are often powered by

small edge devices, therefor we conducted a benchmark on

processing speed of several edge devices, including the Jetson

Nano, Jetson Xavier, Raspberry Pi 3, and Raspberry Pi 4.

The performance was compared between the different location

processing methods: the homography calculation itself, usage

of a lookup table (LUT) and our color based model. Our tests

revealed significant variations in processing efficiency across

these devices.

The results are displayed in table IV-B. The Jetson Xavier

outperformed the others due to its superior computational

power, handling all methods with ease, particularly excelling

in homography calculation despite its complexity. The Jetson

Nano also performed well in LUT and RGB image process-

ing, though it lagged significantly in homography tasks. The

Raspberry Pi 4 showed respectable performance, significantly

improving over the Raspberry Pi 3, which struggled with the

more computation-intensive homography calculations. Overall,

the Jetson Xavier demonstrated the best all-around perfor-

mance, while the Raspberry Pi 4 offered a balanced and

cost-effective solution for less demanding tasks. Across all

devices the difference between those methods is consistent.

LUT compared to calculation of homography matrices is 3

to 5 times faster. Whereas accessing a RGB pixel compared

to LUT is approximately 20 − 25% faster. In terms of file

storage a singular LUT file for a 1080p image is 31.6 MiB

in size whereas the equivalent color coded reference image in

PNG file format only takes 143.4 KiB disk space. The JSON

file containing the homography matrix only uses about 500

Bytes.

D. MC-MOT / Re-ID Benchmark

In the following page we discuss the used visualisation

method for subjective result examination on our Re-ID imple-

mentation. Afterwards our findings on the two datasets (Carla,

CityAI24) are presented and discussed in detail.

1) Data visualisation:: During processing, the objects are

enriched with their temporal spacial information, forming their

trajectory. These trajectories are visualised and mapped to a

birds eye image of the observed area. Figure 6 shows such

visualisation.

2) Carla Dataset:: After every frame has been processed

the resulting objects with their associated predictions were

examined. In total 606 messages with a total of 2410 detections

were processed. All of those are combined and matched to a

total number of 19 vehicles. The ground truth has 21 registered

TABLE I BENCHMARK OF DIFFERENT LOCALISATION METHODS OF DIFFERENT EDGE DEVICES. EACH METHOD WAS RAN 100.000 TIMES (N = 100000),
ACCESSING A RANDOM CAMERA PIXEL. THE RESULT VALUES REPRESENT THE ECLIPSED TIME IN SECONDS PROCESSING TOOK. THE RANDOMNESS WAS UNIFIED

BY USING A SET RANDOM SEED.

n=100000
i5-4690K
@ 3.50GHz

Pi 3
@ 1.2GHz

Pi 4
@ 2GHz

Jetson
Nano
@ 1.6GHz

Jetson
Xavier
@ 2.2GHz

Homography 0.84073 30.7385 19.16133 115.0698 4.98495
Lookup Table 0.24109 10.2173 5.80970 31.0034 1.07157
Color based (ours) 0.19545 8.40112 4.59746 23.1562 0.81251
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Fig. 6. The left image shows the predictions of a single frame visualised against the GT data, the middle image shows the predicted trajectories and the right
image displays the ground truth.

vehicles in the observed area. One of the vehicles was not

recognised, because our YOLO was not trained to detect

motorcycles. The other undetected object is not yet entered

the Field of View (FOV) of any camera. The average distance

from each prediction to a object origin is 1.8 meters. The figure

6 visualises the results of this experiment.
3) CityAI 2024 Dataset:: Compared to the self created

dataset, the camera angles of this dataset are steeper and

the area to observe is smaller. Therefor the RGB reference

area was condensed to a square with edges of 30m centered

around the world center. This results in a localisation raster

of 12x12cm. We conducted our tests on the validation scene

43 of the dataset. A YOLOv8 medium model was trained

on the datasets training data (scenes 1-40). Scene 43 is

composed of 10 camera videos with in approximately 240.000

frames to process in total with about 6 detected objects per

frame resulting in a total of 1.454.348 detected objects. The

CityAI dataset provides us with a method to evaluate our

results, giving us the metric of Higher Order of Tracking

Accuracy (HOTA) [32]. Fundamentally HOTA is calculated

by combining the systems performance in detecting (Detection

Accuracy - DetA), associating detections to the correct object

(Association Accuracy - AssA) and assign a location (Location

Accuracy - LocA). The full extend of this metric is not in the

scope of this paper but can be researched in this work [32].

TABLE II VALIDATION RESULT OF CITYAI DATASET

SCENE 43.

Lookup-Table Ours
HOTA 33.711 32.903
DetA 86.667 85.924
AssA 13.126 12.614
LocA 94.596 93.857

As our Re-ID approach purely uses the detected objects

location as association feature a weak result of association ac-

curacy (AssA) was expected. With the RGB approach we were

able to archive a Location Accuracy (LocA) value of 93.86%
and a total HOTA of 32.90%. For comparison, we exchanged

the localisation approach to the LUT implementation of the

performance benchmark. The results show, that a ”per-camera”

localisation speed increase from approximately 20% decreases

the pipelines LocA about 0.74 percentage points (0.8%) and

the HOTA metric about 0.8 percentage points HOTA (2.4%),

showing that by limiting location resolution the processing

speed can be enhanced.

V. CONCLUSION

Recent research in MC-MOT has increasingly focused on

deep learning methods to address the data association problem

in Re-ID. This shift has been driven by the inadequacy of tra-

ditional algorithms to effectively calculate distances between

feature sets. In this work, we introduce our novel spatial

feature to MC-MOT and Re-ID, demonstrating significant

potential and jet fully preserve the privacy of tracked identities.

As the only used feature is the entities location and this feature

is defined in a virtual pseudo environment. Our proposed

methods enhance the precision of label targeting but also

open new avenues for integrating prediction-based methods

into MC-MOT algorithms. This advancement allows for more

accurate tracking of both the precise labels and the global

movement of objects.

During the course of our research, we found that the existing

literature did not provide any datasets with the necessary

camera positions and information required to calculate ref-

erence images. Consequently, we created a small dataset to

demonstrate the effectiveness of our proposed feature. The AI-

City Challenge 2024 released a synthetic dataset that, for the

first time, included the homography matrix of the capturing

device. This development provided an opportunity for an active

comparison of our approach using the newly available dataset.

This work introduces a novel approach to enhance object

localization performance on edge devices with minimal impact

on accuracy. The method’s elegance lies in its simplicity and

visualization capabilities. Additionally, the proposed pipeline

can serve as a baseline for developing modular feature ex-

traction methods to further enhance Re-ID potential. The

sophisticated reasoning and advancements achieved in two-

dimensional location targeting (Section III-B) demonstrate
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significant research potential for further improvements in this

specialized area.
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