
Effective Restriction of the Data Manipulation
Operations in Oracle Database

Michal Kvet
University of Žilina

Žilina, Slovakia
Michal.Kvet@uniza.sk

Abstract— Relational theory is built on the foundation of four
main operations manipulating data – Insert, Update, Delete and
Select providing the data retrieval. However, many times, it is
necessary to limit operations changing existing data, forming the
concept of the insert-only tables. This paper evaluates
performance of individual solutions by creating a methodology of
data management and manipulation, which is a critical part of
the complex data management and big data term of the
intelligent transport systems, pointing to the security option. It
takes the reader through the data level protection, privileges, up
to immutable tables and retention periods. The evaluation study
environment takes Oracle Database 23ai.

I. INTRODUCTION

Relational theory of database systems has a long history.
The first database systems were released in 1960s, based on the
concept of entities and relationships between them. The whole
management of the data was formed on the set of operations,
which can be combined by building a robust solution [1].

In the initial phases, the amount of the data was strictly
limited, mostly due to the disc and hardware capacity. Simply,
the storage media were too expensive and even very
corruptible. Over the decades, the reliability, availability and
capacity problems disappeared, allowing to store significantly
larger ranges of data. Original conventional concept [2] [3] of
storing only current valid data was gradually enhanced by the
temporal theory [4] [5], allowing to store data over the time, to
focus on the data changes on the database, table or attribute
level. Temporal theory is still gradually expanding by pointing
on the architecture, precision levels and storage principles [6].
One way or another, temporal data management is currently an
inseparable part of the data processing. Data processing
possibilities resulted in building, developing and maintaining
concepts of big data [7] and analytics. Even these days, the
need for data analysis is more significant, focusing on the
optimizing processes, save natural resources, limiting
environmental impacts, etc. Proper decision-making is based
on the reliable data, characterized by the timeline evolution
reference [8]. Environmental data analytics [9] is one key part
of the data management and handling and it is necessary to
spread it to daily life, to cover environmental concepts in all
daily activities.

A typical example for the big data concept, sensor-based
network and complex data layer for the analytics in a temporal
manner, is transportation at all levels, from transport of people,
goods, supplies, couriers, to air transport [10]. A bunch of data
in various structures, precisions and reliability levels is

collected, then evaluated and stored, to reflect the current
situation, allowing to find optimal routes, evaluating threats, up
to identification of accident sections that should be under
greater police supervision [8] [10] [11]. In that environment, it
is critically important to ensure data consistency [2] [12].
Simply, to ensure, that existing collected data are durable and
cannot be changed, making additional security levels.
Naturally, data corrections can be done, but only in a temporal
manner forming transaction change layer in a bi-temporal
system.

This paper focuses on the techniques to ensure the existing
data cannot be changed by forming insert-only tables. Such a
requirement can be ensured by various techniques and means,
from the application level on the one side, through the data
layer operated by the triggers, up to privilege definition and
accessing another schema. A new concept is defined by
marking a table as immutable. This concept was introduced by
Oracle Database 23ai. Therefore, Oracle Database technology
is used for the evaluation, however, in the future study,
emulating that in other database systems will be inspected.

This paper summarizes individual approaches and creates a
methodology for creating and accessing data by restricting any
update operation.

The structure of the paper is organized as follows: Section 2
deals with the existing solutions by emphasizing triggers,
different schema and privilege management. Section 3
introduces immutable tables, enhanced by the retention policy
period. Performance evaluation study is present in section 4.

II. STATE OF THE ART

To make the data complex, secure and reliable, it is
inevitable to monitor and supervise the process of obtaining
the data, but mostly to ensure the existing data cannot be
changed, deleted or tampered with in any way. Such a
requirement arose shortly after the introduction of the first
database systems and was addressed in the form of triggers.

Triggers are a piece of PL/SQL code, that are stored in the
database and implicitly fired (run), when the associated
operation occurs. Traditionally, triggers are fired for the Insert,
Update and Delete operations. From Oracle Database 8i, it is
possible to create Data Definition Language (DDL) triggers
for system and other data events on database (like servererror,
startup, shutdown) or schema level (e.g. logon, logoff).
Among PL/SQL, Oracle can also run Java procedure as a body
of trigger [1] [2].

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 337 --

A. Designing triggers

Triggers are primarily intended to perform a related action,
when a specific operation is performed, to check or set the
particular values. In this case, however, the task is opposite – to
stop the operation, itself. In Oracle Database, trigger can be
fired either before or after the operation itself. In [5] [13], there
is a discussion about the definition and performance impacts.
For these purposes, before trigger type is more suitable, since
the rollback command for the operation is limited. Instead, the
intended operation is immediately stopped.

B. Creating triggers

Triggers are created using the Create trigger command.
The header of the definition consists of the firing event,
positional timing and other clauses. For many database
systems, a trigger can be associated with only one operation
forcing the developer to call a stored procedure, if multiple
operations need to be associated with a common code snippet
[1]. Oracle Database is more progressive and allows to use one
trigger for multiple operations, even various conditions can
enhance the definition in the When clause [1]. Thus, Oracle
Database provides more powerful and easier definition. The
syntax of the trigger is stated in the following code block:

CREATE [OR REPLACE] TRIGGER [schema.]trigger_name
 { {BEFORE | AFTER}
 {INSERT | DELETE | UPDATE
 [OF column_name1 [column2 [, ...]]]}
 OR {DELETE | INSERT | UPDATE
 [OF column_name1 [column2 [, ...]]]}
 [...]
[FOR EACH ROW]
 [WHEN (condition)]
trigger_body

Based on [14] [15], if the trigger body is complex –
consisting of more than 60 lines of PL/SQL code, it is
recommended to encapsulate it as a stored procedure and just
reference it inside the trigger body. From the definition and
demands point of view, trigger size cannot exceed 32K [16].

C. Firing triggers

Trigger is fired once the associated operation is to be done.
A trigger is defined for one table only but can be spread for
multiple operations. In case of emulating insert-only tables,
body of the trigger can consist of only one command invoking
an exception, which is then propagated to the calling
environment resulting in stopping the operation itself, to which
the trigger is associated. It can work well; however, it has
significant performance limitations. First, trigger body is a
PL/SQL script and associated operation is in SQL. Whereas the
environments are not the same, context switches are required,
consuming additional resources, CPU and memory. Secondly,
there can be additional logic for the operations itself, so
multiple triggers for the particular operation can be defined.
Generally, triggers are fired in a random order [16], so there
can be many computations and evaluation logic done before the
operation itself is stopped. Finally, from the application
perspective, raised exception must be processed and presented
to the user in an appropriate format. Although it may seem that
the impacts are tiny, it is necessary to point to the complex data
structures, large amount of data to be handled. When dealing
with the temporal data processing in a dynamic transport

system environment, overall performance impacts can be
significant. Consequently, it may require additional CPU and
memory capacity. In a cloud environment, it can be done
easily, the parameters can be enhanced by one-click, but it
takes additional costs. In case of using on-premises, upgrades
can cause an avalanche of changes throughout the whole
architecture [15] [12].

D. Logging trigger manipulated data

Another related problem arises from the requirement to log
changes, even attempts to do that. That request primarily arises
from the security sphere, however, reflecting insert-only tables,
it can be demanding. To make the system reliable, logging
must be done in a separate transaction, otherwise the logged
data would be rollbacked as a result of operation
refuse [2] [17]. Fig. 1 shows the problem. From the master
transaction, new autonomous transaction must be created,
handling the logged data. This logging aspect definition,
however, requires new method definition and storing it in a
system.

Fig. 1. Data flow & logging secured by the trigger

The message provided to the user depends on the developer
definition by invoking RAISE_APPLICATION_ERROR
procedure. Example of the solution is stated in the following
code snippet:

create table dv(id integer);

create table logdv(id integer);

create or replace procedure proc_dv(id integer)
is
 pragma autonomous_transaction;
begin
 insert into logdv values(id);
 commit;
end;
/
create or replace trigger trig_dv
before insert on dv
 for each row
begin
 proc_dv(:old.id);
 raise_application_error(‐20000,
 'Insert‐only table');
end;
/

Please note, that it is infeasible to embed the inner
transaction directly to the trigger by raising an exception –
PLS-00710 – Pragma AUTONOMOUS_TRANSACTION
cannot be specified here:

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 338 --

create or replace trigger trig_dv
before insert on dv
 for each row
begin
 declare
 PRAGMA AUTONOMOUS_TRANSACTION;
 begin
 insert into logdv values(:old.id);
 commit;
 end;

 raise_application_error(‐20000,
 'Insert‐only table');
end;
/

E. Defining access privileges

One of the common ways, how to limit any operation, can
be performed by setting appropriate rights to the data. The
database is owned by a user other than the one accessing the
application. From the security point of view, the solution is
suitable because it separates the database and application
layers, not only at the level of the system as such, but also at
the level of access and data manipulation. On the other hand,
there is the fundamental question of applicability. The fact that
a specific user does not have the right to a specific operation
does not exactly mean that the operation as such cannot be
performed, e.g. by the owner of the database. It is therefore
necessary to ensure the access consistency and rights at the
level of all users. Moreover, in such a system it is rather
difficult to distinguish whether a given user in his role just does
not have the right to a given operation or it should be strictly
prohibited across the whole ecosystem. In the case of a multi-
user environment with a large number of roles, this can be a
significant problem. Consequently, it would be necessary to
maintain a separate system for managing privileges [6] [18]
[19].

Fig. 2 shows the principles for the multi-user environment
by using dynamic role (right) mapping. There is an owner of
the database and additional layer managing privileges of the
ordinary users connecting to the system. Depicted dynamic
right mapping module is temporal, and rights can evolve over
time.

Fig. 2. Dynamic right mapping

F. Securing operations by the application level

The last discussed option is based on shifting the whole rule
management to the application layer. In that case, application
itself is responsible for providing any security aspects and
access privileges. On the database layer, everything is allowed.
Although this concept partially covers the requirement to limit
change operations, any additional interoperability on the data
layer can be comprised. Furthermore, it cannot be said that the
table is read-only or is flagged as insert-only, since all these
operations are still generally available through the database
layer.

III. IMMUTABLE TABLE DEFINITION

A. Immutable tables

Immutable table definition was introduced in Oracle
Database 23ai [19] [20] and back-propagated into Oracle
Database 19c and 21c [20] [21]. Immutable tables are insert-
only tables in which existing data cannot be changed. Thus,
Update statements are prohibited from the definition. Deleting
rows is also generally restricted, however there can be a
defined retention period – rows can be deleted only after the
defined number of days elapsed between the Insert operation
and Delete attempt.

Limitation of the immutable table perspective relates to the
prohibition of the DDL, as well. So, the table structure and
layout cannot be later changed. However, constraint and index
management (adding or removing) is still available.

A different limitation is covered by the timing. Namely, the
minimum number of days you can specify for the retention
period is 16 days. Besides, there is a mandatory option
specifying the retention of the table itself, defined by the no
drop clause. The minimum number of days is 0. When defining
retention period for the table persistence, be aware, that there is
no option to drop table during its retention period other than
dropping the whole schema.

Any attempt to update or delete existing rows during the
retention period ends by raising an exception ORA-05715 –
Operation not allowed on the blockchain or immutable table.

1) Retention period
By defining the immutable table, it is necessary to specify

the retention policy – periods for dropping the table as a whole,
as well as the retention for the change operations

Drop table condition:

no drop [until <n> days idle]
Change operation policy:

no delete ([locked] |
(until <m> days after insert [locked]))

2) Syntax
Syntactical definition of the immutable table refers to the

immutable keyword specified in the table header, followed by
the table structure, encapsulated finally by the retention period.
For the evaluation study, flights are monitored. Those data
cannot be later changed due to the security and reliability
reasons. Thanks to this, flight efficiency can be evaluated,
which cannot be compromised later.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 339 --

Example of the definition for the air transport system
monitoring is stated below. It consists of flight identifier
(ECTRL_ID) and sequential number reference, starting from 1
expressing parking at the departure airport, followed by the
taxi, takeoff, flying, up to landing, parking. This couple forms
the composite primary key. Besides, the table consists of the
flight information region reference (FIR) denoted by the
FIR_ID attribute and temporal assignment – entry_time and
exit_time.

Create immutable table FIRmonTAB
 (ECTRL_ID integer,
 sequence_number integer
 check(sequence_number > 0),
 FIR_ID integer,
 entry_time date not null,
 exit_time date,
 primary key(ECTRL_ID, sequence_number))
 no drop until 0 days idle
 no delete until 30 days after insert;

Fig. 3 shows an example of the data stored in the
FIRmonTAB table:

Fig. 3. Data source structure

Flight information region borders are not strict and evolve
over time [8]. Fig. 4 shows the assignment. Please note that
FIRs do not reflect physical borders for the countries.

Fig. 4. Flight information regions (FIRs) borders

B. External tables

A specific way limiting change operations can be
represented by the external tables, which act as flat files outside
the database. The database itself has access to them using
Oracle directory as a mapping object between the database
system and storage repository. From the database layer point of
view, external tables are read-only, however, it cannot be
ensured, that particular file is inaccessible from the external

source. Thus, external tables are not suitable and robust for
ensuring insert-only data in a general format.

External table definition consists of the attribute list with
associated data types followed by the organization external
clause [15] [12] [21] [22] [23].

IV. PERFORMANCE EVALUATION STUDY

The environment for performance evaluation study was
characterized by the computer with the following parameters:

 Operating system: Windows 11 Pro, 22H2
 Processor: AMD Ryzen 5 PRO 5650U with Radeon

Graphics, 2.30 GHz
 Memory: 2x 32 GB DDR-4, 3200MHz, CL20
 Disc storage: 2 TB, NVMe, read/write 3500 MB/s
 Oracle Database 23ai Free Release 23.0.0.0.0 –

Production Version 23.4.0.24.05
Spatio-temporal data set was used, consisting of three

subparts:

 Monitoring flights - assigning airplanes to the FIRs
delimited by the entry and exit time,

 Planned route of the planes,
 Real route reflecting current circumstances, like

weather – wind, storms, restricted areas, etc.

The whole data set consisted of 10 000 flights. Generally,
each flight was delimited by 1 000 rows in planned and real
route, on average.

The computational evaluation study consists of two
experiments:

Experiment 1 deals with the triggers and impact of
logging. It takes the data to be updated by storing original
primary key values. Two approaches were considered – direct
insert into log table embedded directly in the code (SOL11) and
trigger event storing the data to be handled in the log table
(SOL12). It is worth repeating that logging data through the
trigger requires extracting insert operation into separate
autonomous transaction and thus, excluding the code into a
separate stored procedure. The evaluation is based on the
processing time using the ss.ff format.

Experiment 2 emphasizes limiting change operations using
trigger or immutable table. There are three approaches to be
considered. The first solution uses application-level limit, so on
the database layer, there is no limitation (SOL21). That solution
can be considered as a reference, since there is no additional
impact (on the database management layer). SOL22 uses
trigger with no extra logging, only exception is raised to limit
the update or delete operation. Finally, SOL23 uses immutable
table definition – insert-only table is defined on the data model
architecture level. Processing time demands (ss.ff) are treated
during this experiment, as well.

A. Experiment 1 – Results

Table 1 shows the results of the Experiment 1 dealing with
the logging. If there is a request to log data to be handled
during the Update operation attempt, direct Insert statement
embedded in the code requires 4.435 seconds. If the
management of the logging is extracted into trigger, Insert

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 340 --

statement into the log table itself is part of the additional
procedure invoking autonomous transaction. As evident from
the results, it requires 15.124 seconds, which reflects the
change of 10.689 seconds. The processing time demands are
risen of more than 240%. The reason is based on two facts.
Additional requirements and costs are caused by invoking
autonomous transaction and context switches. In this case,
trigger itself is a PL/SQL block, so the processor must switch
between SQL and PL/SQL environment. Additionally, nested
stored procedure also requires PL/SQL environment. The
automatic log management operated by the trigger is secured
and always work independently, but it comes at the cost of
increased cost and processing time. The task was to update
10 000 rows in total, reflected as one per thousand of the total
amount of data.

TABLE I. EXPERIMENT 1 – PROCESSING TIME RESULTS

 Logging
Direct insert into log
table

Trigger invoking
autonomous
transaction

SOL11 SOL12
Processing time
demands (ss.ff)

04.435 15.124

The graphical representation of the Experiment 1 is shown
in Fig. 5.

Fig. 5. Experiment 1 - results

B. Experiment 2 – Results

The second part of the study (Experiment 2) comprises
impact of insert-only table guarantee. Securing the data table
content can be done in various ways. In this study, the focus is
done on the trigger, which can raise an exception (application
error), if there is attempt to change the content of the table.
Trigger can be done on the row-level, fired for each accessed
row or once for the operation itself – in that case the whole
manipulated data are processed and evaluated as a bulk. SOL21
is a referential solution, in which the Update and Delete
operations are unlimited and not restricted in any way, based
on the assumption, that the application level secures, that the
data are not manipulated or compromised. SOL22 is based on
the trigger definition, version SOL22a defines row-level trigger
(defined by the For each row clause in the trigger definition),
while SOL22b deals with the statement-level trigger. Both
triggers are fired before the operation itself. For the statement
trigger, the whole data set to be handled is pre-prepared, all
data blocks to be changed are created as a single unit. Better

solution is provided for the row-level trigger, since if any row
causes an exception, the whole processing ends and other data
are not processed, not access at all. As evident, it can improve
the performance and lowering processing costs (Tab. 2). The
last evaluated solution is defined by the introduced immutable
table (SOL23) declaring the aspect of insert-only table on the
definition level. Reflecting the performance, the best solution is
provided by immutable table (SOL23), because no context
switch is present. Simply, any attempt of changing the row is
immediately refused from the definition. Statement-level
trigger switches the environment (SQL -> PL/SQL) once for
calling trigger and once for the returning to SQL. Compared to
the row-level trigger, in which context switch must be present
for each row to be changed, it could be assumed, that an
increase in the number of context switches has a natural
consequence in an increase in costs and thus also processing
time. But it's not like that. The reason is, that there is no
necessity to build whole row-set in advance. So if any row
causes an exception, processing automatically ends. And it is
precisely this fact that can be used when creating insert-only
table. Only a single row is handled (generally any row from the
set of data for which a change is requested).

The results are shown in Table 2, reflecting additional
processing time demands. They do not reflect total processing
time, but the additional demands are declared. Therefore, for
the the reference solution SOL21, value zero is present. The
evaluation was performed 10 000 times, in one request, the
whole flight was attempted to be updated, reflected by 1 000
rows.

TABLE II. EXPERIMENT 2 – PROCESSING TIME RESULTS

 Insert-only table definition
No limitation Trigger Immutable

table
SOL21 SOL22 SOL23

R
ow

-level

S
tatem

en
t-

level

 SOL21 SOL22a SOL22b SOL23
Processing time
demands (ss.ff)

00.000 2.420 2.653 2.397

Table 2 shows the results.

Graphical representation of the results is present in Fig. 6.

Fig. 6. Experiment 2 – results

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 341 --

The difference between individual trigger types reflects
9.63%, the row-level trigger is more preferred. The best
solution is provided by the immutable table, but as declared,
the differences are not so huge, primarily caused by the context
switch. It reflects less than 1% of additional demands.
Therefore, in the future, our focus will be done on the
optimization of the triggers.

V. CONCLUSIONS

This paper deals with the Oracle Database by pointing to
the performance. For the complex data analytics, there is a
common requirement to limit any change on the existing data.
In the past, it was primarily ensured by the application layer,
however, such a premise is no longer suitable, since the data
can be shared and integrated among multiple applications and
systems. Therefore, triggers are commonly developed to check
the operations, either on the row- or statement-levels.
However, their main disadvantage is associated with the
calling environment - PL/SQL, which requires context
switches from the SQL. In a complex system, it can have
significant impact on the performance. This paper uses triggers
as a reference solution, enhanced by various extensions and
optimizations. It points to the immutable table definition,
which limits any change operation directly from the definition.
The fundamental difference is based on the calling
environment and limits of the context switch, because for an
immutable table, a constraint is directly embedded in the data
model and used by SQL.

Data analytics is a dynamically developing field of
informatics and impacts many areas of the world. It can be
found in transport systems, industry, medicine, it strongly
points to the environmental data analysis, sustainability and
resource saving. Therefore, we assume a huge development
and research in the field of the data analytics, data access,
structures, as well as indexing, approaches and scalability,
mostly in the cloud environment. Namely, there are several
streams for the future development and research. Although the
immutable table definition seems promising and provides the
best performance reflecting the configuration to model insert-
only table, it is worth mentioning two facts - immutable tables
are exclusively available in Oracle Database 23ai and other
systems do not offer them. Therefore, in the next research, we
will focus on the trigger management - better results are
obtained by the row-level trigger, which can sooner stop the
whole operation. In the current situation, order of the rows to
be considered and evaluated by the database system is random
and depends on the already loaded rows in the instance
memory and costs for the loading. Therefore, in the future
research, we will evaluate multiple options and impacts on the
row order selection, to limit the "random" order used now.
Besides, we will focus on implementing analogy of the
immutable table to other database systems and approaches
making it generally applicable by spreading the concept
widely.

Another research stream, we would also like to focus, is
related to the retention periods and techniques to incorporate
them effectively to the trigger definition, management and
handling.

ACKNOWLEDGMENT

This paper was also supported by the VEGA 1/0192/24
project - Developing and applying advanced techniques for
efficient processing of large-scale data in the intelligent
transport systems environment.

REFERENCES
[1] Kuhn, D. and Kyte, T.: Expert Oracle Database Architecture:

Techniques and Solutions for High Performance and Productivity.
Apress, 2021.

[2] Kuhn, D. and Kyte, T.: Oracle Database Transactions and Locking
Revealed: Building High Performance Through Concurrency, Apress,
2020.

[3] Morris, S.: Resilient Oracle PL/SQL, O´Reolly, 2023.
[4] Kvet, M.: Developing Robust Date and Time Oriented Applications in

Oracle Cloud: A comprehensive guide to efficient Date and time
management in Oracle Cloud, Packt Publishing, 2023, ISBN: 978-
1804611869

[5] Kvet, M., Papán, J.: The Complexity of the Data Retrieval Process Using
the Proposed Index Extension, IEEE Access, vol. 10, 2022.

[6] Castro-Leon E. and Harmon R.: Cloud as a Service. New York: Apress,
2016.

[7] Jakóbczyk, M.: Practical Oracle Cloud Infrastructure: Infrastructure as a
Service, Autonomous Database, Managed Kubernetes, and Serverless.
New York: Apress, 2020.

[8] Standfuss, T. and Schultz, M.: Performance Assessment of European Air
Navigation Service Providers, DASC conference 2018

[9] Erasmus+ project EverGreen dealing with the complex data Analytics:
https://evergreen.uniza.sk/

[10] Cunningham, T.: Sharing and Generating Privacy-Preserving Spatio-
Temporal Data Using Real-World Knowledge, 23rd IEEE International
Conference on Mobile Data Management, Cyprus, 2022.

[11] Steingartner W., Eged, J., Radakovic, D., Novitzka V.: Some
innovations of teaching the course on Data structures and algorithms, In
15th International Scientific

[12] Gorelik, A.: The Enterprise Big Data Lake: Delivering the Promise of
Big Data and Data Science, O'Reilly Media, 2019.

[13] Malcher, M., Kuhn, D.: Pro Oracle Database 23c Administration:
Manage and Safeguard Your Organization’s Data, Apress, 2024

[14] Nuijten, A. and Barel A.: Modern Oracle Database Programming: Level
Up Your Skill Set to Oracle's Latest and Most Powerful Features in
SQL, PL/SQL, and JSON, Apress, 2023

[15] Fotache, M., Munteanu, A., Strîmbei, C., and Hrubaru, I.: Framework
for the assessment of data masking performance penalties in SQL
database servers. Case Study: Oracle, in IEEE Access, vol. 11, 2023, pp.
18520–18541.

[16] Rosenzweig, B. and Rakhimov, E.: Oracle PL/SQL by Example, Oracle
Press, 2023.

[17] Greenwald, R., Stackowiak R., and Stern, J.: Oracle Essentials: Oracle
Database 12c, O'Reilly Media, 2013.

[18] Abhinivesh, A., Mahajan, N.: The Cloud DBA-Oracle, Apress, 2017
[19] Anders, L.: Cloud computing basics, Apress, 2021
[20] Immutable table: https://oracle-base.com/articles/23/immutable-table-

enhancements-23
[21] Immutable table: https://oracle-base.com/articles/21c/immutable-tables-

21c
[22] Hoeren, T. and Kolany-Raiser, B.: Big Data in Context: Legal, Social

and Technological Insights, Springer, 2017.
[23] Lee, J., Wei, T. and Mukhiya, S.: Hands-On Big Data Modeling, Packt

Publishing, 2018.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 342 --

