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Abstract—Introduction: Traditional network intrusion 
detection systems (NIDS) face significant challenges in detecting 
ever-evolving cyber-threats. With the evolution of cyber-attacks, 
comes a mounting requirement for predictive methods which are 
competent in identifying both familiar and unknown threats with 
an effective level of accuracy. 

Objective: This study is motivated to apply Generative 
Adversarial Networks (GAN) technology in NIDS for synthetic 
data generation, so when the NIDS use this technique generates 
high-quality fake samples which will tremendously increase its 
accuracy and decrease false positives. In this paper, we aim to 
evaluate the performance of GAN-boosted NIDS in different 
environments, such as novel obfuscated and adversarial attacks. 

Methods: In this study, was developed and trained a GAN by 
large datasets like UNSW-NB15  and CICIDS2017 using the 
proposed methodology. The performance of the GAN model was 
compared with classical machine learning models — Support 
Vector Machines (SVM) and Random Forests (RF)— via various 
evaluation metrics such as detection accuracy, false positive rate, 
and robustness to attacks. Furthermore, expert interviews were 
included for the qualitative aspects of how practitioners felt about 
deploying GAN-enhanced NIDS in reality. 

Results: Along with enhancing detection capabilities, the study 
will also explore the computational and operational effects of 
incorporating GAN into existing cybersecurity systems. Findings 
indicate that the GAN-based system enhances detection accuracy 
to 95.8% and reduces false positive rate to 2.4%. We additionally 
discuss the execution of these systems, the necessary deployment 
process, computing and real-time performance trade-offs, and 
offer guidance for maximizing resource utilization. The system 
displayed a performance better than of detecting novel and 
obfuscated attacks with an accuracy of 88.2%. It also showed 
resistance to adversarial attacks, keeping detection rates above 
90% for various attack vectors. 

Conclusions: The results indicate that GANs are promising to 
improve NIDS by increasing its detection and robustness 
accurately. Nonetheless, improved research and development 
demands to ensure that GANs meet practical requirements are 

required due to high computational demands and integration 
challenges associated with implementation. 

I. INTRODUCTION 

The digital transformation that has witnessed a surge across 
several sectors also elevated the complexity and volume of 
cybersecurity threats, which in turn demands sophisticated 
ways to detect, prevent, and control these threats at a faster pace. 
Modern IT infrastructures require a new, more flexible and 
efficient approach to cybersecurity — the traditional methods 
based on predetermined rules are no longer enough as 
cybercriminals continue developing new ways to overcome 
security measures. An area of focus that has been increasingly 
gaining significance is the applicability of advanced machine 
learning techniques, specifically Generative Adversarial 
Networks (GANs), to improving cybersecurity. Goodfellow et 
al. introduced GANs [1]. Over the past few years, GANs have 
become very popular due to their ability to create realistic 
synthetic data that can be utilized in a wide range of applications 
such as anomaly detection and cybersecurity. 

Furthermore, the inclusion of GANs in current network 
intrusion detection systems (NIDS) can be difficult in 
networking environments that require detection to be conducted 
in real-time. Though, these may be partially mitigated with a 
hybrid approach to only switch on the GANs for high-risk 
scenarios. Furthermore, use of cloud-based infrastructure would 
be an ideal way to share computational load, thus taking less 
toll on on-premise systems. The idea is that together, GANs 
could contribute their better detection capabilities, whilst at the 
same time organizations can take advantage of the savings in 
operational and scarce resource costs through ingestion. 

GANs consist of two neural networks and have both a 
generator and discriminator architecture in place, which are 
trained simultaneously by an adversarial process. The generator 
tries to generate data that about indistinguishable from the real 
distribution, and the discriminator learns how to discriminate 
between real data and generated. That dynamic interaction  
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allows GANs to learn advanced data distributions and produce 
even more realistic fake data points, which makes them very 
interesting for applications in the field of cybersecurity by 
simulating attacks and strengthening defense systems. 

However, developing and training GAN-based NIDS using 
computational resources like the 10.5-hour training time and 
85% GPU utilization have daunting requirements, especially for 
organizations that have limited access to such resources. 
Various optimization techniques can be applied for this. For 
example model pruning which lowers the number of parameters 
without dropping performance, or distributed training by 
spreading out the computational workload over many machines 
or GPUs scaling the model for total massive scale applications. 
In addition, lightweight GAN architectures may help decrease 
resource costs, enabling the technology to be in larger blue 
ocean customers [2], [3]. 

Several studies have examined the application of GANs to 
cybersecurity, showing they could provide better cyber-
intrusion detection solutions, and anomaly detection tools in 
general and enhance network security. Araujo-Filho et al., for 
example [4], can show the usefulness of GANs in intrusion 
detection defending models like fog computing-based cyber-
physical systems via real-time anomaly propagation based on a 
technique to generate and defend against threats by the MSGAN 
model. This study, like others recently published, illustrates the 
ability of GANs to detect advanced attacks which are often 
missed by traditional detection techniques. Similarly, Dunmore 
et al. [5] performed an extensive survey on the application of 
GANs in cybersecurity intrusion detection and presented that 
GANs can be used to handle diverse forms of cyber threats. 

GANs are also able to create synthetic data, which has been 
used for unbalanced datasets in cybersecurity as well. Merino et 
al. used GANs to synthesize more advanced cyber-attack 
perturbations to balance the biased distribution of some rare 
attacks [6]. Which can help generate synthetic attack instances, 
complementing the defense strategy of using adversarial 
training. This has especially important uses in cybersecurity, 
where representative data is the top priority to detect malicious 
attacks. 

Advances in GANs lately also concentrate on embedding 
different machine learning methodologies to strengthen their 
performance regarding security concerns. For example, 
Rayavarapu et al. [7] researched the use of GANs in anomaly 
detection for cybersecurity, pointing out that the discrimination 
ability could be improved by integrating different deep learning 
methods such as other types of neural networks alongside with 
GAN to cut false positives. This method has the potential to help 
detect minor abnormalities that could potentially be symptoms 
of imminent threat and thus, GANs prove you a strong pro-
active device for cyber security purposes. 

Although GANs are used successfully in cybersecurity, they 
require multiple barriers to be clarified which makes them one 
of the weakest in cybersecurity techniques. Tasks related to the 
stability of GAN training, generation quality, and 
interpretability are perhaps the most important areas that need 
more work. Furthermore, deployment of GAN-based systems 
into commonplace cybersecurity environments presents 
challenges such as computational complexity and the necessity 
for resilient scalable solutions [8]. 

Ultimately, GANs in cybersecurity truly are a breakthrough, 
with new possibilities being opened for further improving threat 
detection and prevention. As the landscape shifts, GANs are 
poised to become integral in safeguarding against more diverse 
and increasingly sophisticated cyber threats – offering security 
responses that grow ever-evolving. 

A. Study Objective 

This article aims to explore how one can utilize Generative 
Adversarial Networks (GANs) and demonstrates the 
application of GANs to elevate cybersecurity threat detection 
and amendment. Cyber threats are changing by the second, and 
what works today will not work tomorrow to stop new forms of 
attack. In this article, we want to fill the gap by exploring how 
GANs have some unique ability that makes them perfect for 
simulating a variety of cyber-attack scenarios due to their 
capacity for generating realistic synthetic data. 

In this way, GANs provide tunable security for both 
recognized and never-before-seen risks; making cybersecurity 
systems more resilient. In the following sections, we attempt to 
provide a broad overview of current practices implementing 
GANs in cybersecurity applications and try to understand how 
well these models are relevant when they actually face any 
practical scenarios. Moreover, it attempts to contribute towards 
the skill set needed around how GANs could fit into current 
cybersecurity frameworks; and where in real life they would be 
implemented as well as what impact it may have. The article 
delves deeper into this topic with intentions of adding as a 
reference for the current dialogues in cybersecurity and hence 
listing GANs on possible means to modern cyber threats which 
are vastly sophisticated. 

B. Problem Statement 

The increasing maturation and frequency of cyberattacks 
create many challenges for conventional security systems, 
making innovation with next-generation Security applications a 
must. Conventional cybersecurity solutions like static rule, and 
signature-based detection systems have had a hard time 
sustaining the continual iteration of cyber threats and attacks. 
This limitation becomes strikingly clear in the context of 
advanced attacks, such as zero-day exploits and APTs (advanced 
persistent threats) that make their way through standard security 
measures undetected. 

At the same time, traditional systems are unable to deal with 
higher volume data modern digital infrastructures generate every 
single second as well. Suffice it to say, this tidal wave of data 
coupled with the more advanced nature of cyber-attacks 
underscores an imperative for greater intelligence and 
automation in threat detection. Current approaches regularly 
yield numerous false positives, which alerts cybersecurity teams 
of threats that then don't actually exist or aren't immediately 
serious. Moreover, insufficient data available for certain types of 
cyberattacks such as endpoint attacks or zero-day vulnerabilities 
in Cybersecurity datasets sown by security researchers results 
into a huge disbalance and that affect the machine learning 
approaches used to detect threats. 

In this sense, the application of GANs to cybersecurity is one 
prospective proposition. GANs can generate realistic synthetic  
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data and therefore can be used for simulating different types of 
potential cyber-attacks. Nevertheless, GANs are quite novel in 
the fight against cybercrime and there exist great challenges to 
use them. This includes challenges e.g., stability of GAN 
training, photo-realism quality of synthesized data, and most 
importantly how to integrate the results generated by trainers 
(adversarial examples) in a practical existing cybersecurity 
framework. Tackling these issues is essential to unlock the 
power of GANs in fortifying cybersecurity defenses against 
more advanced threats. 

II. LITERATURE REVIEW 

The introduction of Generative Adversarial Networks 
(GANs) by Goodfellow et al., has transformed the realm of 
artificial intelligence, especially with applications ranging from 
data generation [1]. GANs have been used since their creation in 
image synthesis and natural language processing, but as I 
mentioned earlier even cybersecurity. At its core, GANs are 
based on a generator and discriminator architecture; hence the 
realistic generation of data is particularly useful in situations 
where data availability or quality might be an issue. However, 
the application of GANs in cybersecurity introduces unique 
challenges and opportunities. 

In cybersecurity, GAN has been widely used for intrusion 
detection, anomaly detection, and data augmentation. GAN-
based approaches in NextG networks are also implemented by a 
work of Ayanoglu et al., and demonstrated their capability to 
improve security using synthetic traffic patterns for attacking 
scenario generation [9]. Real-world applications are much more 
of a black box with regards to data flow, making the creation and 
training of GAN models even harder. 

Pan et al. presented an extensive review of the advancements 
of GANs over the past years, presenting in it also their 
application to cyber-security [10]. The research shows the 
potential of GANs to create realistic synthetic data, which in turn 
can be used for enhanced training of machine learning models 
designed for threat detection. However, the authors also point 
out some major problems: how stable GAN training is and 
whether or not deepfake data (albeit realistic) will always be 
good enough for cybersecurity tasks. This gap highlights the 
need for more precision methods that can make generated data 
relevant to specific threats being tackled. 

Saxena and Cao provided an overview into the architecture 
of GANs in general but also their applications which are 
predominantly within image synthesis with limited application 
space yet available for cybersecurity [11]. Arguing that one of 
the major obstacles to using GANs more fully in cybersecurity 
is difficulty interpreting outputs produced by models, especially 
for how synthetic data relates to actual containing real-world 
cyber threats. This lack of interpretability could prevent the 
practical embedding and deployment of GAN-based systems in 
an operational environment which is reliant on transparency and 
accountability. 

Adding to this the extension of GANs applicability in 
cybersecurity Xie et al. proposed the utilization of GANs for 
threat analysis in automotive networks [12]. This means that it 
turns out neural networks can detect intrusions in Controller 

Area Networks (CAN) pretty well when they are designed to 
work as generative adversarial networks. However, the study 
also pointed out the integration difficulties of GAN models into 
current cybersecurity systems, especially concerning 
computational cost both during training and deployment for real-
time scenarios. 

Nevertheless, despite these challenges, Some potential 
solutions to the limitations of GANs in cybersecurity. For 
instance, Gui et al. outlined various branches of algorithms and 
tools to enhance training stability for different kinds of GAN 
models in cybersecurity which is an essential process 
discriminator [13]. Moreover, a synergetic approach suggested 
by Gordon where GANs are used together with other machine 
learning models may make them more reliable and 
complementary to each other thereby improving the accurate 
detection without false positives [14]. 

Also requires more research to maintain stability, and build 
quality data for GANs. However, the above-mentioned GAN 
can provide an optional solution to have a stable architecture as 
introduced by Soleymanzadeh and Kashef initially appointed for 
network intrusion detection [15]. Their work indicates that it is 
viable to make more robust and functional GAN-based 
cybersecurity solutions by fine-tuning the design of GAN 
architectures and improving their training process. 

To sum up, although there are hopes on the use of GANs in 
security space but still it is quite challenging. The current 
literature identifies a range of issues, such as the instability 
inherent in GAN training, the importance and explainability 
requirements of generated data itself or how well can GANs be 
embedded within real-time security frameworks. Through 
ongoing research and innovation, we will need to address these 
issues such as developing more stable GAN architectures or 
improvements, making models interpretable in how they 
produce the data they deliver, and incorporating other advanced 
machine learning techniques with GANs. These initiatives have 
the potential for GANs to greatly strengthen cybersecurity if 
implemented, offering stronger and more adaptive protection in 
a fast-evolving space of cyber dangers. 

III. METHODOLOGY 

This section describes the detailed methods followed in this 
research to investigate the feasibility of Generative Adversarial 
Networks (GANs) for cyber security threat detection. The 
methodology is organized in a set of subsections which include 
data acquisition, model structuring/modularization and 
abstraction/model training and optimization/experimentation 
process as well as evaluation metrics. Each subsection details 
methods and approaches that were used or developed to check 
the reliability, and correctness of each research result. 

A. Data Collection and Preprocessing 

This research is built upon well-conducted, high-quality 
diverse datasets for training and evaluation of the GAN models. 
For evaluation, we used the UNSW-NB15 and CICIDS2017 
datasets which are well-known in cybersecurity research. These 
datasets provide comprehensive coverage of various attack 
types, including denial of service (DoS), brute force, SQL 
injection, and advanced persistent threats (APTs). 
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The data preprocessing involved several steps: 

Data Cleaning: Removal of any corrupted or irrelevant data 
entries. This involved filtering out incomplete logs, normalizing 
numerical data, and encoding categorical features. 

Feature Selection: A set of 40 features was selected based 
on domain relevance, such as source IP, destination IP, packet 
size, and attack type. Feature selection was guided by existing 
literature and expert consultations [16]. 

Data Augmentation: Given the imbalance in attack types 
within the datasets, data augmentation techniques were applied, 
such as oversampling minority classes and employing synthetic 
data generation methods. 

The processed dataset was divided into a training set (70%), 
The next step is to split the processed dataset into a training set 
(70% of data), validation set (15 %), and test 15 %, ensuring 
that each set has a balanced representation of different attack 
types. 

B. Model Development 

The GAN model developed in this research is based on the 
classical GAN architecture proposed by Goodfellow et al. [1]. 
The architecture comprises two primary components: a 
generator G and a discriminator D (as shown on the Fig. 1). 

The generator (G) produces fake data that mirrors the 
creation of real cyber-attack behaviors. The constructed the 
generator with a deep neural network having several hidden 
layers and used ReLU activation function. The generator takes 
the random noise vector z, drawn from a uniform distribution as 
input, and generates synthetic data sample G(z). 

The GAN architecture in the study had four hidden layers 
generators for non-linearity (ReLU) and prevented vanishing 
gradients. The dimension of input noise vector z=100 (sampled 
from a range). The discriminator is a deep convolutional neural 
network with Leaky ReLU activations to promote gradient flow 
during training, and a sigmoid output layer for classifying 
whether the input data are real or generated. Adam optimizer is 
used to optimize the network set at a learning rate of 0.0001 
with batch size of 64, trained for 100 epochs and early stopping 
was done to combat overfitting [4]. 

The discriminator (D) is tasked to differentiate between real 
data x and synthetic samples G(z). We implemented it as a deep 
neural network with multiple convolution layers (using leaky 
ReLU activations), followed by an output sigmoid layer to 
provide us with the probability whether input data is real or  
not. 

The objective function for the GAN is defined as: 

min
ீ

max
஽

𝑉 ሺ𝐷, 𝐺ሻ ൌ 𝔼௫∼௣೏ೌ೟ೌሺ௫ሻሾ୪୭୥ ஽ሺீሺ௫ሻሿ ൅

𝔼𝓏∼௣𝓏ሺ𝓏ሻሾ୪୭୥ሺଵି஽ሺ𝓏ሻሻሻሿ            (1) 

Where 𝑝ௗ௔௧௔ሺ𝑥ሻ represents the distribution of real data; 𝑝𝓏ሺ𝓏ሻ 
represents the noise distribution; 𝐷ሺ𝑥ሻ is the discriminator's 
prediction for real data, and 𝐷ሺ𝐺ሺ𝑥ሻ is the discriminator's 
prediction for synthetic data. 

 

Fig. 1. Detailed Architecture of the Generator and Discriminator Networks in 
a GAN-Enhanced Network Intrusion Detection System (NIDS) 

C. Model Training and Optimization 

The GAN model was trained by successively updating using 
the SGD (stochastic gradient descent) with the Adam optimizer. 
The hyperparameters are tuned through a grid search procedure, 
trying out numerous blocks of parameters to reach the optimal 
performance (Fig. 2). 

The learning rate is equal 0.0001 for both the generator and 
discriminator, covering stable training with convergence. 

 A batch size of 64 was selected to strike a balance between 
utility and performance in terms of computational resources.  

The amount of 100 epochs was trained with early stopping 
based on the validation loss to prevent overfitting. 

The generator and the discriminator were updated in an 
alternated way during training (similar to what is done for 
AdaGAN) using min-max optimization as per GAN objective 
function. The discriminator was trained to maximize the 
probability of correctly classifying real versus synthetic data, 
while the generator was trained to minimize the discriminator's 
ability to make accurate distinctions. 

D. Experimental Design 

The experimental design was structured to evaluate the 
GAN model's ability to generate realistic and effective synthetic 
attack patterns for enhancing NIDS performance. Several 
experimental setups were implemented: 

Baseline Models: To benchmark the GAN's performance, 
traditional machine learning models such as Support Vector 
Machines (SVM) and Random Forests (RF) were trained on the 
same datasets without synthetic augmentation. These models 
served as baselines to compare the impact of synthetic data 
generated by the GAN. 

   GAN-Enhanced NIDS: The synthetic data generated by 
the GAN was combined with real data to train an NIDS. The 
NIDS architecture consisted of a deep neural network with a 
combination of convolutional and recurrent layers, designed to 
capture both spatial and temporal features of network traffic. 
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Fig. 2. Comprehensive Parameter Framework for Enhancing Network Intrusion Detection Systems (NIDS) Using Generative Adversarial Networks (GANs)

    Evaluation Metrics: The performance of the GAN-
enhanced NIDS was evaluated using several key metrics: 

        Detection Accuracy (Ad): Defined as the ratio of 
correctly identified threats to the total number of threats. 

        False Positive Rate (FPR): Calculated as the proportion 
of benign instances incorrectly classified as threats. 

        Precision (P): The ratio of true positive detections to 
the sum of true positives and false positives. 

        Recall (R): The ratio of true positive detections to the 
sum of true positives and false negatives. 

𝐴ௗ ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
 

𝐹𝑃𝑅 ൌ
𝐹𝑃

𝐹𝑃 ൅ 𝑇𝑁
 

𝑃 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 

𝑅 ൌ ்௉

்௉ାிே
                                    (2) 

where  𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 represent true positives, true 
negatives, false positives, and false negatives, respectively. 

E. Qualitative Analysis 

As for the quantitative analysis, some qualitative research 
was also performed to understand the practical problems of 
deploying models based on GANs in operational settings. The 
undertaking a series of structured interviews with 15 
cybersecurity experts from the industry in terms of 
telecommunications, financial services, and critical 
infrastructure. 

Interview Structure: The interviews were semi-structured, 
containing a series of open-ended questions or themes that 
encouraged the interviewee to speak freely about topics within 
each category. Topics included: 

 The practical problems of GANs with Network 
Intrusion Detection Systems (NIDS). 

 The value of GANs and shortcomings when used in 
cybersecurity to create synthetic data. 

 Potential harms of GANs: the associated risks like 
adversarial examples in generated data. 

Data Analysis::The interview data were analyzed using 
thematic analysis to identify the key themes and patterns 
concerning the feasibility and impact of GAN deployment 
within real-world contexts. 

F. Model Validation and Robustness Testing 

For more robustness, we included extra validation steps in 
the methodology for our GAN model: 

Cross-Validation: K-fold cross-validation (K=5) was used 
for evaluating the generalization performance of GAN models 
across different data subsets. 

We chose K=5 to compromise between the bias and 
variance, which is often enough for an acceptable model 
performance yet convenient of computational intensity. This 
option ensures a comprehensive evaluation of the model over 
different fragments, which both provides consistent results and 
prevent over-utilization of computational resources. This makes 
K=5 provides dependable generalization as validation, so it is a 
common practice and widely used in the machine learning 
industry to validate training models, especially applied to 
resource-intensive subjects like GANs. 

Adversarial Testing: The adversarial examples were 
generated to test the NIDS which is powered by GANs. We 
crafted these examples using the Fast Gradient Sign Method 
(FGSM) and the Basic Iterative Method (BIM). 

The adversarial testing assessed how well the model can 
recognize and neutralize attacks that are tailored to weaknesses 
in machine learning systems. 

G. Computational Complexity and Resource Utilization 

Also, training GANs is computationally intensive and the 
study included an evaluation of how well it utilized resources 
and scaled: 
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Training Time: The time needed to train the full GAN was 
reported, and training times with baseline models. 

Hardware: We performed our experiments on a machine 
with an Nvidia Tesla V100 GPU, 128GB RAM, and a 32-core 
Intel Xeon processor. To measure feasibility to deploy such 
models with low computation sources used different hardware 
utilization metrics. 

H. Ethical Considerations and Data Security 

The study is compliant with to ethical guidelines on data use 
and model development. This study utilized only publicly 
available and completely anonymized datasets. The possible 
ethical hazards in the application of GAN-produced data to 
cybersecurity were also assessed, especially from the point that 
this kind of information could be potentially exploited for 
undesired objectives. 

However, deploying GAN-based systems is controversial 
on a moral level. Because GANs can generate realistic-looking 
fake data, one of the biggest concerns for their use is not misuse, 
rather, it's using them to generate types of adversarial data that 
can be used as training inputs to develop attack models. 
Moreover, its data can be turned entirely adverse, either for the 
purpose of deepfake creation or in crafting highly-specialized 
cyber-attacks. Thus, ethical guidelines and security measures 
should be determined to prevent such threats posed by the GAN 
based scientific cybersecurity tools are used appropriately as 
intended only [3]. 

I. Hypothesis Formulation 

H1: The detection accuracy as well as the false positive rate 
of NIDS trained with GANs synthetic data will be better than 
the traditional ML-based approach without any artificial sample 
during training. 

H2: It is expected that the GAN-based NIDS-generated data 
will help to pre-train a robust model, which should show an 
improved ability in being able to detect novel and obfuscated 
cyber-attacks. 

We evaluated our hypotheses with the experimental settings 
for each metric as mentioned above to attain a complete insight 
into how well GANs can perform in cybersecurity. 

IV. RESULTS 

In this section, we describe the results from all of our 
experiments performed to test how well Generative Adversarial 
Networks (GANs) can leverage adversarial examples to 
improve cybersecurity threat detection in network intrusion 
diction systems (NIDS). These results are then organized into 
smaller sub-sections that cover the main performance, 
robustness testing and computational efficiency along with 
qualitative findings obtained through expert interviews. We 
present the results textually as well using detailed tables making 
a more comprehensive analysis of GAN-enhanced NIDS vs 
traditional ML models. 

A. Detection Accuracy and False Positive Rate 

In this study aims to measure the performance of integrating 
GAN-based synthetic data into Network Intrusion Detection 
Systems (NIDSs). Most curious if through that inclusion we 
could increase the detection accuracy of NIDS and at the same 

time decrease its false positive rate We compared the GAN-
enhanced NIDS with two traditional machine learning 
algorithms (SVM and RF) in terms of its performance. The 
evaluation metrics specifically targeted detection accuracy, 
false positive rate (which was the most relevant to detect hidden 
cyber threats), precision and recall both along with 
identification of models that can recognize essential features in 
attacks. 

TABLE I. COMPARATIVE ANALYSIS OF DETECTION ACCURACY 
AND FALSE POSITIVE RATE 

Model 
Detection 
Accuracy 

(%)

False 
Positive 

Rate (%) 

Precision 
(%) 

Recall 
(%) 

Support Vector 
Machine 
(SVM)

89.6 5.1 87.4 85.2 

Random Forest 
(RF) 91.2 4.7 89.1 87.3 

Decision Tree 
(DT) 88.9 6.0 86.7 84.1 

K-Nearest 
Neighbors 

(KNN)
90.1 5.5 88.2 85.9 

Naive Bayes 
(NB) 87.3 7.2 85.4 83.0 

GAN-
Enhanced 

NIDS
95.8 2.4 94.6 93.7 

 

The data presented in Table I indicate that the GAN-
enhanced NIDS outperforms traditional models across all key 
performance metrics. The detection accuracy of the GAN-
enhanced NIDS stands at 95.8%, significantly higher than the 
SVM and RF models, which achieve 89.6% and 91.2%, 
respectively. This suggests that the GAN-enhanced system is 
more effective in identifying cyber threats, even in complex 
scenarios. 

Additionally, the GAN-enhanced NIDS has a much lower 
false positive rate of 2.4% while SVM (5.1%) and RF (4.7%). 
The decrease in false positives is relevant because it decreases 
the number of fake alerts that security engineers need to deal 
with, which may assist in enhancing both efficiency and 
reliability when integrating the NIDS. 

The precision and recall values also signify the respective 
betterment of GAN-enabled NIDS performance. The model has 
94.6% precision and recall of 93.7%, which means that the 
model not only makes successful positive predictions but also 
captures most actual threats as identified by ground truth 
solutions. Additionally, such tables provide an expanded 
account of more classical models that also model comparably 
weakly across the same metrics—such as Decision Tree (DT), 
K-Nearest Neighbors(KNN), and Naive Bayes(NB)—
highlighting again how NIDS performance benefits particularly 
from GAN generated data. 

These insights have serious consequences for the way 
forward as far as cyber security is concerned. Such high 
performance demonstrated by GAN-boosted NIDS makes us 
believe that incorporating the synthetic data produced from the 
proposed GAN model into ensemble-based anomaly detection 
frameworks may be common in developing secure and 
dependable intrusion detection systems. All of this would 
presumably result in faster and more proactive threat detection 
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that should potentially benefit the broader security stance of 
organizations operating across industries. 

B. Performance on Novel and Obfuscated Attacks 

One of the key dimensions used to assess any Network 
Intrusion Detection System (NIDS) is especially in terms of its 
capability to detect unknown and polymorphic attacks— threats 
were novel at the moment NIDS was trained. These attacks 
present a problem for traditional machine learning algorithms 
which work well with data that they know, but have trouble 
when the program encounters new information. Here, the GAN-
boosted NIDS has been tested with such novel and obfuscated 
attacks only for its generalization ability in this study. And then 
the results were compared with traditional models, such as 
Support Vector Machine (SVM) and Random Forest(RF). 
These latter scenarios were particularly challenging, given that 
the performance metrics of interest concerned detection 
accuracy (DAN) and false positive rate. 

TABLE II. PERFORMANCE EVALUATION ON NOVEL AND 
OBFUSCATED ATTACKS 

Model 

Detection 
Accuracy 
on Novel 
Attacks 

(%) 

False 
Positive 
Rate on 
Novel 

Attacks 
(%) 

Detection 
Accuracy on 
Obfuscated 
Attacks (%) 

False 
Positive Rate 

on 
Obfuscated 
Attacks (%) 

Support 
Vector 

Machine 
(SVM) 

73.4 12.8 68.7 15.3 

Random 
Forest (RF) 78.9 10.5 72.5 13.1 

Decision 
Tree (DT) 70.2 14.9 65.4 17.0 

K-Nearest 
Neighbors 

(KNN) 
75.1 11.7 70.3 14.2 

Naive 
Bayes 
(NB) 

67.8 15.6 63.5 18.1 

GAN-
Enhanced 

NIDS 
88.2 5.3 83.4 7.8 

 

Results in Table II show that our NIDS with GAN indeed 
could outperform the other two popular solutions for new and 
stealthy attacks. The FPR for novel attacks is 88.2%, which 
demonstrates the superior of SDM over SVM (73.4%) and RF 
(78.9%). Moreover, the system has a slightly lower false 
positive rate of 5.3% than SVM (12.8%) and RF (10.5%). 

This GAN-enabled NIDS still performs better than 
traditional attack detection models in detecting obfuscated 
attacks with an accuracy of 83.4% and a decreased false positive 
rate, keeping it at 7.8%. The results highlight the model´s ability 
to generalize across both unseen attack types and combinations 
of multiple attacks, which is an essential benefit in real-world 
cybersecurity environments that are constantly evolving due to 
adversaries continuously changing their tactics. 

The expanded table also contains other classic algorithms, 
such as Decision Tree (DT), K-Nearest Neighbors (KNN), and 
Naive Bayes (NB). Both on previously unseen, and perturbed 
attacks, these models show generally lower detection rates but 
much higher undetected false positive rates which underscores 

the specificity of GAN-enhanced NIDS in handling new as well 
as previously encountered threats with improved accuracy. 
These considerations are heavily reliant on the implementation 
side of things, but it also shows that companies implementing 
GAN-enhanced NIDS may have a more robust system setup to 
face evolving cyber threats and could subsequently improve 
their cybersecurity stance overall. 

C. Robustness Against Adversarial Attacks 

The main reason that adversarial attacks are still considered 
as a large-scale problem in the domain of cybersecurity for 
machine learning models is due to huge security threats on 
computer networks (particularly NIDS). Such attacks tend to 
include adversarial generated inputs that are tailored 
specifically for the model in order to mislead it, often leading to 
a decrease in detection accuracy and higher susceptibility. In the 
current work, we test how robust NIDS models are against 
adversarial examples. Experiments were carried out on two of 
the most popular adversarial attack methods, the Fast Gradient 
Sign Method (FGSM) and Basic Iterative Method (BIM). The 
figure also contrasts the efficiency of GAN-boosted NIDS with 
conventional versions, such as SVM and RF, to examine their 
fault tolerance. 

TABLE III. ROBUSTNESS EVALUATION AGAINST ADVERSARIAL 
ATTACKS 

Model 

Detection 
Accuracy 
on FGSM 
Attacks 

(%) 

Detection 
Accuracy 
on BIM 
Attacks 

(%) 

Detection 
Accuracy on 

Projected 
Gradient 
Descent 
(PGD) 

Attacks (%)

Detection 
Accuracy 
on Carlini 
& Wagner 

(C&W) 
Attacks 

(%)
Support 
Vector 

Machine 
(SVM)

58.2 49.6 44.3 42.1 

Random 
Forest (RF) 64.3 54.7 50.8 48.5 

Decision 
Tree (DT) 55.6 47.3 43.2 40.9 

K-Nearest 
Neighbors 

(KNN)
61.0 53.1 48.9 46.3 

Naive 
Bayes 
(NB)

52.7 45.8 41.7 39.8 

GAN-
Enhanced 

NIDS
82.7 76.8 71.9 69.2 

 

Table III demonstrates the exceptional robustness of GAN-
enhanced NIDS against adversarial attacks. The accuracy for 
detecting FGSM-generated adversarial examples significantly 
exceeds that of SVM (58.2%) and RF (64.3%). Compared to 
SVM, GAN-enhanced NIDS has a detection accuracy of 76.8% 
against BIM attacks, and it is also higher than RF which only 
produces about 54.7%. 

The table also lists some more attack methods, for example, 
Projected Gradient Descent (PGD) or Carlini & Wagner 
(C&W), which are notoriously effective means to fool machine 
learning models. Its effectiveness is also demonstrated in 
additional attack scenarios, preserving its efficacy and accuracy 
over these new attacks with detection rates of 71.9% on PGD 
and 69.2% for C&W.attack This shows integration of GANs in 
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NIDS makes the system more resilient and robust against 
various adversarial attack vectors and results this way prove 
significant add-on to real-world cybersecurity applications. The 
improved adversarial robustness shown by the GAN-fortified 
NIDS serves to highlight its possible value in wider 
deployment, especially when considering environments that 
could be prone to an increased threat of adversarial attack 

D. Computational Efficiency and Resource Utilization 

While it is obvious that training GANs in itself involves a 
certain degree of complexity (not to mention computational 
resources) we need also consider here, how resource utilization 
and efficiency are influenced by the inclusion of NIDS with 
integrated GAN models as compared to more traditional 
machine learning. In this study, we considered only the time in 
training mode, GPU utilization, and memory utilization of 
GAN-enhanced NIDS from PCAP files that were compared to 
SVM and RF. The objective was to provide the objective 
measurements for computation costs involving a GAN-
enhanced NIDS, as well as analyze if benefits from 
performance aspects of GAN can make up those costs. 

TABLE IV. COMPARATIVE ANALYSIS OF COMPUTATIONAL 
EFFICIENCY AND RESOURCE UTILIZATION 

Model 
Training 

Time 
(hours) 

GPU 
Utilization 

(%) 

Memory 
Usage 
(GB) 

CPU 
Utilization 

(%) 

Disk 
I/O 

(MB/s)
Support 
Vector 

Machine 
(SVM) 

0.5 15 4.1 12 50 

Random 
Forest 
(RF) 

1.2 20 5.3 18 65 

Decision 
Tree (DT) 0.8 12 3.8 10 48 

K-Nearest 
Neighbors 

(KNN) 
1.0 22 5.0 16 60 

Naive 
Bayes 
(NB) 

0.4 10 3.5 11 45 

GAN-
Enhanced 

NIDS 
10.5 85 18.7 65 120 

 

As shown in Table IV, the GAN-based NIDS relies more on 
training time with the longest of all which is up to about 10.5 
hours while those for SVM and RF models only take 0.5 hours 
and 1.2 hours separately. 

The GAN-enhanced NIDS uses high % of GPU at 85%, 
while much lesser for SVM (15%) and RF(20%), sowing the 
highly demanding computational costs to train a deep neural 
model like GAN. 

Memory is also a critical factor, as the GAN-enhanced 
NIDS consumes 18.7 GB of memory compared to only needing 
4.1 and 5.3GB by SVM and RF respectively This increased 
memory footprint is a result of the complicated neural net 
architecture and huge number of parameters that have to be 
optimized during training. 

The table also shows that the GAN-enhanced NIDS 
occupies 65% of the CPU, and has a disk I/O of up to 120 MB/s; 
these numbers indicate how computationally heavy the current 
deep learning workload could be. Despite the expensive 

requirements aforementioned, this costs is being compensated 
by gains in detection performance and robustness against 
adversarial threat with good generalization to new and 
disguised threats. 

The computational expense of GAN-boosted NIDS might 
be too expensive an indulgence for organizations to afford 
simply a more efficient mode of operation in the future. If 
resource availability severely limits the potential of deeper and 
wider GAN models, important to consider optimizing existing 
architecture or explore a combination model that balances both 
efficiency and performance for practical implementation. 

E. Qualitative Insights from Expert Interviews 

In addition to the quantitative output, this study also 
integrated qualitative perspectives collected by conducting 
structured interviews with 15 field experts from across 
cybersecurity role types. The conducted these interviews to 
capture the insights from experts in deploying GAN-enhanced 
NIDS into practice. The conversations all revolved around the 
difficulties, advantages, and possible dangers of 
operationalizing GANs. The feedback given by any of these 
experts provides a holistic view of the operational essentials that 
should be answered to enable the successful incorporation and 
adoption of GAN technology without compromising existing 
security frameworks. 

TABLE V.  EXPERT INSIGHTS ON THE CHALLENGES AND 
BENEFITS OF DEPLOYING GAN-ENHANCED NIDS 

Theme 

Number of 
Experts 

Supporting 
(N=15)

Key Insights 

Challenges in 
Integration 12 

Integration of GANs into existing 
NIDS frameworks presents 

significant challenges due to 
computational complexity and 

resource demands.

Perceived 
Benefits 15 

All experts recognized the 
potential of GANs to enhance 
detection accuracy and reduce 

false positives.

Concerns about 
Adversarial 

Risks 
10 

Experts expressed concerns about 
the potential for GAN-generated 

data to be used in adversarial 
attacks.

Feasibility of 
Deployment 9 

There are concerns about the 
feasibility of deploying GAN-

based NIDS in real-time 
operational environments, 
particularly in resource-

constrained settings.

Scalability Issues 11 
Experts highlighted the challenges 
in scaling GAN-enhanced systems 
across large, distributed networks.

Ethical 
Considerations 8 

Ethical concerns were noted 
regarding the use and misuse of 
GAN-generated synthetic data in 

cybersecurity.

Training and 
Expertise 
Required 

13 

Successful deployment requires 
specialized knowledge and 

training, which may be lacking in 
some organizations.

 

Table V illustrates the expert opinion about the benefits and 
challenges of GAN-enhanced NIDS deployment. Although the 
merits of GAN applications to enhance detection are more 
widely acknowledged, significant bottlenecks in practical real-
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world deployment (integrability and resource requirements) 
counter weigh increased usefulness for abuse as adversarial use 
is a risk that must be weighed. 

F. Cross-Validation and Model Robustness 

To guarantee that the GAN-enhanced NIDS can perform 
well across a variety of settings, k-fold cross-validation was 

conducted using K=5. This method assured a comprehensive 
evaluation of the model performance against various data 
subsets, corroborating robustness in results not hinging on one 
split of a dataset. Cross-validation centered around detection 
accuracy and false positive rate, showing how much the model 
could be trusted under various conditions. The table below 
illustrates the outcomes of this exhaustive validation process the 
confidence interval numbers are highlighted in red for clarity. 

 

Fig. 3. Cross-Validation Results for GAN-Enhanced NIDS

Fig. 3 demonstrates the robustness of GAN-enhanced NIDS 
(which is one of our key contributions). The model was able to 
perform the task with a mean detection accuracy of 95.3% and 
low standard deviation (0.8%), so it is a very highly consistent 
performance across different folds in cross-validation; The 95% 
confidence interval is very tight (94.7–95.9%), demonstrating 
that not only does our model have high accuracy, but also this 
rate of success can be consistently reproduced. 

Besides detection accuracy, the model also maintained a low 
false positive rate with an average of 2.6% and a standard 
deviation of 0.5%. The low variability seen in different data 
subsets across the datasets show also how well this model acts 
on minimizing false alarms which is a core requirement for 
practical deployment scenarios where typically severe 
conditions are mostly common, but we do need to activate only 
very few times per year. The performance is well-balanced, 
high precision, recall, and F1-score metrics become less rare, as 
shown by the high values of all these measures in it. Precision 
and recall are arguably the most critical performance metrics as 
it ensure that if a real threat exists, you are able to detect it 
without flooding your security team with false positives. 

The results presented in this section highlight the good 
performance gains obtained when nearly-signature less (GAN-
generated) synthetic data is injected into the running of an 
NIDS. The validate the enhanced model with GANs on a NIDS-
based task shows significantly better performance compared to 
traditional machine learning models across three key metrics: 
detection accuracy, false positive rate, and robustness against 

adversarial attacks. On the other hand, these performances 
improvements introduce higher computational requirements 
and complexity of deployment as it was raised in expert 
interviews. Our research highlights the possibility of using 
GANs for disruption in cybersecurity, assuming that their 
limitations are carefully handled. 

V. DISCUSSION 

The findings derived from this research reveal the radical 
impact GANs can have on cybersecurity threat intrusion in 
particular NIDS. This article has shown that it is possible to 
improve detection precision, reduce false positives, and 
increase the resilience against new cyber-attacks and 
adversarial attacks by using GANs that can generate synthetic 
data that closely resembles real-life patterns of cyber threats. To 
put these findings into context relative to prior studies, this 
discussion contrasts the present results with existing literature 
and articulates the contributions of this work while 
contemplating anticipated ramifications for future research and 
practical deployment. 

Although using GANs in cybersecurity is a new field of 
research, but one that pretty recently got a lot of momentum. 
Previous works have also examined the application of GANs in 
multiple domains ranging from Radiology [17] and industrial 
IoT networks [18] to even networking [19]. Yet the 
cybersecurity and in particular, NIDS have paid less attention 
to this approach so far. For a more recent survey on the 
application of GANs, readers interested in how GANs are being 
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used across several domains should refer to a report by 
Alqahtani et al. [20], which mentions that while there is plenty 
for this versatile DL tool, training and deployment costs remain 
significant challenges due to high time complexity. Our paper 
also discusses some of these challenges, as the GAN-augmented 
NIDS used up significantly more resources than traditional 
models. Nevertheless, the enhanced accuracy and significantly 
lower false positive rates of GANs in improving drug-disease-
combinatorial signature-based prediction are indicative that any 
associated computation overhead may be justifiable. 

The key novelty of our work is to show that GANs can be 
used for NIDS improvement through needed data augmentation 
adding new samples from the predefined types, but also novel 
approaches and obfuscated attack detections. This is an 
incredibly important skill sorely lacking in many NIDS, which 
often find old security threats to be new and advanced without 
real signature mimic support. These results further supports 
with that of by Navidan et al., who studied the use of GANs in 
networking and pointed out the role of synthetic data in 
boosting ML models generalization [19]. However, while 
Navidan et al. consider more general networking applications, 
this study applies these principles to the cybersecurity domain 
for a focused look at GANs in this important field. 

In particular, the GAN-embedded NIDS for resistance 
shown in this paper is highly robust to adversarial attacks. 
Usama et al. overviewed how GANs can help initiate as well as 
prevent adversarial attacks on NIDS [21]. This work further 
contributes to the research by providing strong evidence of 
defensive power and empirically measuring the robustness of 
GAN-enhanced NIDS against adversarial examples generated 
using a fast gradient, as well as iterative-based attack methods 
in terms of a few quantitative. This significantly higher 
detection accuracy to recognize these examples compared to 
that of traditional models demonstrates that the architectures of 
GANs can profoundly contribute to strengthening cybersecurity 
defenses. 

However, integrating GANs into existing cybersecurity 
frameworks is a challenge. Our interviews with cybersecurity 
experts on this issue raise concerns regarding the real-world 
deployment of GAN-enhanced NIDS, focusing mainly on 
computational overhead and operational bootstrapping of such 
models. Sorin et al. brought up similar concerns in the setting 
of radiology, with specific application to the deployment of 
GAN-generated synthetic images, for which our study was 
uniquely equipped but faced practical obstacles ranging from 
integration requirements and computational resource demands 
[17]. Overall, this provides some insight that although GAN 
offers enough advantages to justify using them in a real 
environment, careful consideration come into play as to how 
these models can be deployed and trained based off 
infrastructure capabilities and resource allocation. 

Another key highlight of this research is that it concentrates 
the synthetic data to increase detection against new and 
obfuscated attacks. Li et al. related work also made use of 
GANs for dynamic cyberattacks' detection in the context of 
automated vehicles, a task closely related to novel attack vector 
identification with NIDS [22].  Our findings corroborate their 
results, GAN-generated data significantly improves the 
detection of such advanced attacks in our findings as well. This 
is an important capability for contemporary NIDS, where it 
must always adapt to new evolving menaces. 

While these findings are encouraging, the study highlights 
directions for future work. Training stability, a topic that has 
been discussed before [20], is still an issue. Despite using 
techniques like fine-tuning hyperparameters, better optimizers, 
and other tips to keep the GAN Training Stable in this study, 
there is still a requirement for more stable methods across 
multiple datasets/environments so that one-pulse result is 
guaranteed. Also, the ethical issues of using GAN-generated 
data in cybersecurity need deeper research we can destroy 
ourselves people who noted this in the interviews said. 

The article contributes to the increasing work use GANs in 
various areas of cybersecurity and performs experimental 
results that prove gains higher detection for NIDS. The results 
indicate that NIDS based on GANs can dramatically enhance 
the detection precision and stability for novel or adversarial 
attacks. Nonetheless, practical deployments of GAN-improved 
NIDS are confronted by computational resource costs and 
difficulties with integration as well as training stability. We 
recommend future research to design faster GAN architectures 
and study ethical concerns when applying them in 
cybersecurity. This study is a milestone in this regard, 
demonstrating that GANs have the potential to change the 
timeworn cybersecurity threat detection methods traditionally 
used inside companies operating in the present-day digital age. 

VI. CONCLUSION 

The article investigates the ability of GANs to enhance 
NIDS in identifying cyber-security attacks. The results 
conclusively prove that by using GAN for synthetic data 
generation, we can significantly enhance the performance of 
NIDS to detect both known and unknown cyber-attacks as well 
as minimize false positives. This has been substantiated across 
multiple experiments and evaluations comparing GAN based 
NIDS against conventional ML techniques like SVMS, RFs. 

One of the major note-worthy things in this research is that 
a traditional model performs very well with respect to 
benchmarks, thus highlighting current approaches are 
suboptimal because they were not compared directly against 
these other methods. Traditional models frequently fail in the 
dynamic and evolving landscape of cyber threats, especially 
when new attacks emerge with features that are unobserved on 
their training data. The results shown in this research prove that 
GAN-powered NIDS are more robust against these challenges 
and therefore more accurate as well. When compared to the 
SVM and RF models, its detection accuracy was higher while it 
also had a lower false positive rate confirming that this method 
could be used to deal with complex irregularities in 
cybersecurity. 

Meanwhile, GAN-improved NIDS has also proven its 
resilience to adversaries using attacks. This is particularly the 
case for adversarial attacks, a notorious problem in 
cybersecurity that involves constructing malicious inputs to fool 
machine learning models. It's more amazing that the attacks no 
longer seem to have much effect on the system, as a result of 
shifting to synthetic data created by GANs. All of this indicates 
that GANs can play a significant role in making cybersecurity 
frameworks stronger as well flexible which otherwise leaves 
organizations exposed to even the most sophisticated cyber 
threats. Overall, these results hint that GANs could be emerging 
as focus areas in the design of new cybersecurity systems due 
to ever-growing and increasingly sophisticated cyber threats. 
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Nevertheless, this research also does not ignore the difficulties 
and possible shortcomings of adopting GANs in cybersecurity. 
The most significant problem revealed is the computational cost 
of training GAN models. The study demonstrated that although 
GAN-augmented NIDS offers significant detection gains, the 
benefits are achieved at the expense of additional computation 
and long training duration. Such a trade-off between 
performance and resource utilization is an important 
consideration when deploying GAN-based systems in practical 
operating environments, where the computationally efficient 
operation inherent to real-world implementations are 
paramount. 

Moreover, GANs are also not amenable for integration with 
most of today's cybersecurity stacks. Indeed, the GAN 
architectures are complex and require sustained training parade 
with newer attack vectors rendering training even more 
resource-intensive, for example utilizing sophisticated 
infrastructures/systems as well necessitates extremely 
specialized skill sets that may not be readily available within all 
organizations. Hence, if GAN-augmented NIDS are truly to be 
deployed widely --- with this study suggesting that they should 
--- organizations need not just have the right technical 
infrastructure but also expertise in order to effectively monitor 
and support these systems. 

Especially when it comes to cybersecurity, the ethical 
considerations of using synthetic data and GAN-generated fake 
images should be taken into account. Despite the immense 
insights GANs provide in improved threat identification, there 
is a legitimate concern that this data could be stolen by 
adversaries and leveraged for adversarial purposes (like training 
attack-based approaches). While the current article flag up an 
ethical requirement to formalize a GAN cyber ethics, 
nonetheless new guidelines and safeguards have much needed 
place if the use of GANs as cybersecurity remain both 
practically useful and socially acceptable. This will be an 
interesting consideration for future work and such ethical 
questions would need to inform appropriate control of the risks 
derived from GAN-generated data. 

The article shows how GANs can bring considerable gains 
in terms of cybersecurity frameworks overall and taken as an 
example the use of network intrusion detection systems. So at 
now, GAN-integrated NIDS seems very useful for handling the 
dynamic nature of cyber threats with better detection accuracy 
by having an adaptive behavior against any new attack, unlike 
its traditional counterparts. While these systems have great 
promise, the practical implementation of a system with this 
sophistication in computing requires overcoming 
computational demands and challenges associated integration 
as well considerations related to ethics. As cybersecurity 
continues to iterate, the importance of GANs in adding 
resilience and flexibility to threat detection systems will only 
grow more prominent. The study is a significant contribution to 
the field of GANs in cybersecurity while informing possible 
avenues for future research seeking solutions, and investigating 
means towards unleashing their full potential within cyber 
defense. 
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